Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 307, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825668

RESUMO

Skin aging is characterized by the disruption of skin homeostasis and impaired skin injury repair. Treatment of aging skin has long been limited by the unclear intervention targets and delivery techniques. Engineering extracellular vesicles (EVs) as an upgraded version of natural EVs holds great potential in regenerative medicine. In this study, we found that the expression of the critical antioxidant and detoxification gene Gstm2 was significantly reduced in aging skin. Thus, we constructed the skin primary fibroblasts-derived EVs encapsulating Gstm2 mRNA (EVsGstm2), and found that EVsGstm2 could significantly improve skin homeostasis and accelerate wound healing in aged mice. Mechanistically, we found that EVsGstm2 alleviated oxidative stress damage of aging dermal fibroblasts by modulating mitochondrial oxidative phosphorylation, and promoted dermal fibroblasts to regulate skin epidermal cell function by paracrine secretion of Nascent Polypeptide-Associated Complex Alpha subunit (NACA). Furthermore, we confirmed that NACA is a novel skin epidermal cell protective molecule that regulates skin epidermal cell turnover through the ROS-ERK-ETS-Cyclin D pathway. Our findings demonstrate the feasibility and efficacy of EVs-mediated delivery of Gstm2 for aged skin treatment and unveil novel roles of GSTM2 and NACA for improving aging skin.


Assuntos
Vesículas Extracelulares , Fibroblastos , Glutationa Transferase , RNA Mensageiro , Envelhecimento da Pele , Cicatrização , Animais , Camundongos , Fibroblastos/metabolismo , Glutationa Transferase/metabolismo , Vesículas Extracelulares/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Epiderme/metabolismo , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Pele/metabolismo , Masculino , Humanos , Células Epidérmicas/metabolismo , Células Cultivadas
2.
Front Pharmacol ; 15: 1401979, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38783943

RESUMO

Breast cancer, the most prevalent malignant tumor among women globally, is significantly influenced by the Wnt/ß-catenin signaling pathway, which plays a crucial role in its initiation and progression. While conventional chemotherapy, the standard clinical treatment, suffers from significant drawbacks like severe side effects, high toxicity, and limited prognostic efficacy, Traditional Chinese Medicine (TCM) provides a promising alternative. TCM employs a multi-targeted therapeutic approach, which results in fewer side effects and offers a high potential for effective treatment. This paper presents a detailed analysis of the therapeutic impacts of TCM on various subtypes of breast cancer, focusing on its interaction with the Wnt/ß-catenin signaling pathway. Additionally, it explores the effectiveness of both monomeric and compound forms of TCM in the management of breast cancer. We also discuss the potential of establishing biomarkers for breast cancer treatment based on key proteins within the Wnt/ß-catenin signaling pathway. Our aim is to offer new insights into the prevention and treatment of breast cancer and to contribute to the standardization of TCM.

3.
Int Wound J ; 21(4): e14862, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572823

RESUMO

Oral mucosa is an ideal model for studying scarless wound healing. Researchers have shown that the key factors which promote scarless wound healing already exist in basal state of oral mucosa. Thus, to identify the other potential factors in basal state of oral mucosa will benefit to skin wound healing. In this study, we identified eight gene modules enriched in wound healing stages of human skin and oral mucosa through co-expression analysis, among which the module M8 was only module enriched in basal state of oral mucosa, indicating that the genes in module M8 may have key factors mediating scarless wound healing. Through bioinformatic analysis of genes in module M8, we found IGF2 may be the key factor mediating scarless wound healing of oral mucosa. Then, we purified IGF2 protein by prokaryotic expression, and we found that IGF2 could promote the proliferation and migration of HaCaT cells. Moreover, IGF2 promoted wound re-epithelialization and accelerated wound healing in a full-thickness skin wound model. Our findings identified IGF2 as a factor to promote skin wound healing which provide a potential target for wound healing therapy in clinic.


Assuntos
Pele , Cicatrização , Humanos , Pele/metabolismo , Reepitelização , Mucosa Bucal , Fibroblastos/metabolismo , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo
4.
Korean J Physiol Pharmacol ; 28(3): 285-294, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38682176

RESUMO

Myocardial infarction is one of the leading causes of mortality globally. Currently, the pleiotropic inflammatory cytokine interleukin-6 (IL-6) is considered to be intimately related to the severity of myocardial injury during myocardial infarction. Interventions targeting IL-6 are a promising therapeutic option for myocardial infarction, but the underlying molecular mechanisms are not well understood. Here, we report the novel role of IL-6 in regulating adverse cardiac remodeling mediated by fibroblasts in a mouse model of myocardial infarction. It was found that the elevated expression of IL-6 in myocardium and cardiac fibroblasts was observed after myocardial infarction. Further, fibroblast-specific knockdown of Il6 significantly attenuated cardiac fibrosis and adverse cardiac remodeling and preserved cardiac function induced by myocardial infarction. Mechanistically, the role of Il6 contributing to cardiac fibrosis depends on signal transduction and activation of transcription (STAT)3 signaling activation. Additionally, Stat3 binds to the Il11 promoter region and contributes to the increased expression of Il11, which exacerbates cardiac fibrosis. In conclusion, these results suggest a novel role for IL-6 derived from fibroblasts in mediating Stat3 activation and substantially augmented Il11 expression in promoting cardiac fibrosis, highlighting its potential as a therapeutic target for cardiac fibrosis.

5.
Anal Chem ; 96(18): 7073-7081, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38663374

RESUMO

A spatial-potential-color-resolved bipolar electrode electrochemiluminescence biosensor (BPE-ECL) using a CuMoOx electrocatalyst was constructed for the simultaneous detection and imaging of tetracycline (TET) and lincomycin (LIN). HOF-101 emitted peacock blue light under positive potential scanning, and CdSe quantum dots (QDs) emitted green light under negative potential scanning. CuMoOx could catalyze the electrochemical reduction of H2O2 to greatly increase the Faradic current of BPE and realize the ECL signal amplification. In channel 1, CuMoOx-Aptamer II (TET) probes were introduced into the BPE hole (left groove A) by the dual aptamer sandwich method of TET. During positive potential scanning, the polarity of BPE (left groove A) was negative, resulting in the electrochemical reduction of H2O2 catalyzed by CuMoOx, and the ECL signal of HOF-101 was enhanced for detecting TET. In channel 2, CuMoOx-Aptamer (LIN) probes were adsorbed on the MXene of the driving electrode (DVE) hole (left groove B) by hydrogen-bonding and metal-chelating interactions. LIN bound with its aptamers, causing CuMoOx to fall off. During negative potential scanning, the polarity of DVE (left groove B) was negative and the Faradic current decreased. The ECL signal of CdSe QDs was reduced for detecting LIN. Furthermore, a portable mobile phone imaging platform was built for the colorimetric (CL) detection of TET and LIN. Thus, the multiple mode-resolved detection of TET and LIN could be realized simultaneously with only one potential scan, which greatly improved detection accuracy and efficiency. This study opened a new technology of BPE-ECL sensor application and is expected to shine in microchips and point-of-care testing (POCT).


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Eletrodos , Lincomicina , Medições Luminescentes , Tetraciclina , Tetraciclina/análise , Tetraciclina/química , Técnicas Biossensoriais/métodos , Lincomicina/análise , Técnicas Eletroquímicas/métodos , Medições Luminescentes/métodos , Catálise , Pontos Quânticos/química , Compostos de Cádmio/química , Aptâmeros de Nucleotídeos/química , Compostos de Selênio/química , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Antibacterianos/análise , Antibacterianos/química
6.
Plant Dis ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616400

RESUMO

Amorphophallus muelleri is an Araceae plant with perennial tuber, widely used in food, pharmaceutical and chemical industry due to its richness in glucomannan. In April 2022, an outbreak of a target spot on A. muelleri plantlets was observed in a nursery in Ruili, Yunnan, China. The leafstalks of the diseased plantlets in the nursery turned brown and decayed (Fig.1 A-B), then gradually some water-soaked spots on the true leaves developed along the veins (Fig.1 A). Subquencely, the spots on the true leaves turned dark green to white-grayish in the center, which formed light to dark brown concentric rings with a target-like appearance surrounded by a yellow halo (Fig.1 C). When the temperature was 20-34℃ and the relatively humidity was 25-80%, dark-green to black sporodochia with white hypha appeared on the lower and upper leaf surfaces. Finally, 5-8% of the plants surveyed on 800 m2 of one-year-old plantlets in the nursery showed the symptoms and some plants with infected leafstalks would be death. Similar symptoms were also observed on about 10% of the transplanted plants surveyed on 12000 m2 (1.2 ha) of two-year-old plantlets in the field. Five diseased leaves from five distinct plantlets in the nursery were collected for pathogen isolation. Leaf pieces(5 x 5 mm) were cut from the edge of necrotic lesions, and surface-sterilized with 2.5% sodium hypochlorite for 1 min, 75% ethanol for 30 s, then rinsed 5 times by sterilized distilled water, finally put the leaf pieces on sterilized filter paper for 3-5 minutes to dry them and transferred onto potato dextrose agar (PDA) in petri dishes at 25℃ for three days. Five pure cultures identical to colony and conidial characteristics were isolated from five individual plants. The representative pure culture (M1) was grayish-white and circular colonies were 7.50 cm in diamter after 15 days at 25℃, with dark green concentric rings of sporodochia, the dorsal view of the colonies were yellowish. Conidia were aseptate, smooth, cylindrical, 5.00-6.25 (5.71) x 1.25-1.67 (1.63) µm (n = 20) rounded at both ends. A spore suspension (1 x 106 spores/ml) was prepared by harvesting spores from 15-day-old cultures grown in the dark at 25℃, then a thirty-ml of spore suspension was sprayed on the healthy leaves of 10 two-year-old plantlets. Thirty-ml of sterile water was sprayed on the healthy leaves of another 10 seedlings and used as the control. All seedlings were placed in a nursery at 20 to 34℃ and a relative humidity of 25 to 80%. Similar symptoms (Fig.1 D-F) to those observed in the nursery and field developed on all the 10 seedlings inoculated with M1 after two days, but not on the control leaves. The pathogenicity tests were repeated for three times. Fungal cultures reisolated from the infected leaves were identical to the original colonies and conidia, completing Koch's postulates. The internal transcribed spacer (ITS, primers ITS1 and ITS4) region of ribosomal DNA (OQ553785), calmodulin (cmdA, primers CAL-228F and CAL2Rd)(OQ559103), RNA polymerase II second largest subunit (rpb2, primers RPB2-5F2 and RPB2-7cR) (OQ559104) and ß-tubulin (tub2, primers Bt2a and Bt2b) (OQ559105) of M1 had 100%, 98.52%, 98.98% and 98.98% identity with the sequences of Paramyrothecium breviseta CBS544.75 (KU846289 for ITS, KU846262 for cmdA, KU846351 for rpb2, and KU846406 for tub2), respectively. In the phylogenic tree based on ITS, cmdA, rpb2 and tub2 gene sequences, the pure culture M1 clustered with P. breviseta CBS544.75, SDBR-CMU387, DRL4 and DRL3, which has been reported as the pathogen of leaf spot of Coffea arabica in China, C. canephora in China and Thailand (Wu et al. 2021; Withee et al. 2022). Molecular and morphological observations showed the pure culture M1 were P. breviseta (Withee et al. 2022), in addition the disease was named as target spot dueing to the typical target symptom on the leaves. To our knowledge, this is the first report of P. breviseta on A. muelleri from Yunnan, China, as well as worldwide. This disease can caused serious economic losses of A. muelleri dueing to that it can result 5-8% death of the plants in the nursery.

7.
ACS Appl Mater Interfaces ; 16(12): 15242-15250, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38485216

RESUMO

A coordination complex, Eu(C12C12dbm)3(phen), with strong emission and a high quantum yield (QY ∼ 51.9%) was synthesized. The EuIII complex, as a fluorescent emitter, was embedded in cholesteric liquid crystal polymer networks (CLCNs). A series of free-standing EuIII-CLCN films were obtained, generating a typical sharp emission band corresponding to the EuIII complex. Tunable handedness of circularly polarized luminescence (CPL) with high |glum| values (up to 0.63) was observed. A series of CPL-active CLCN-coated PET films were also prepared (|glum| values up to 0.63), which can be used for large-area preparations. Moreover, by stacking an emitter-embedded PMMA layer and a CLCN layer, a composite system was built, and a large |glum| value (∼1.42) was achieved. Fluorescence patterns were prepared, and distinct images of CLCN films were recognized under both daylight and UV light. This work not only demonstrated that coordination compounds could be incorporated with CLCN films to prepare CPL-active materials with high |glum| values but also provided a new perspective for emissive CLCN materials used for anticounterfeiting and encryption.

8.
Biosens Bioelectron ; 255: 116258, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38555769

RESUMO

In this work, a spatial-potential resolved bipolar electrode electrochemiluminescence (BPE-ECL) biosensor based on polarity conversion strategy and CuHCF electrocatalyst was constructed for dual-mode detection of miRNA-122 and carcinoembryonic antigen (CEA). ECL technology was firstly used to systematically study the polarity conversion of BPE. It was found that changing the polarity of the driving voltage would cause the polarity change of BPE, and led to the change of the luminescent position of Ru(bpy)32+. As a "proof-of-concept application", we developed a shielded dual-channel BPE-ECL biosensor for dual-mode detection of miRNA-122 and CEA. In order to further improve the detection sensitivity, a non-precious metal electrocatalyst CuHCF with outstanding electrocatalytic reduction activity of H2O2 was firstly introduced to the BPE-ECL biosensor for signal amplification, which could generate high faradaic current under the excitation of negative potential. Based on the charge neutrality principle of BPE, the enhancement of the faradaic current resulted in the ECL signal amplification of Ru(bpy)32+. The targets in the sensing grooves caused the introduction or fall off of CuHCF, which led to the ECL signal change of Ru(bpy)32+ in the signal grooves, and realized the dual-mode detection of miRNA-122 and CEA. This work provided a deeper understanding of the polarity change of BPE. Furthermore, the introduction of non-precious metal electrocatalyst had broadened the application range of BPE-ECL sensors.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Antígeno Carcinoembrionário , Peróxido de Hidrogênio , Medições Luminescentes/métodos , Técnicas Biossensoriais/métodos , Eletrodos , Técnicas Eletroquímicas
9.
Sci Adv ; 10(9): eadk5047, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38416835

RESUMO

Modern synthetic technology generally invokes high temperatures to control the hydration level of ceramics, but even the state-of-the-art technology can still only control the overall hydration content. Magically, natural organisms can produce bioceramics with tailorable hydration profiles and crystallization traits solely from amorphous precursors under physiological conditions. To mimic the biomineralization tactic, here, we report pressure-controlled hydration and crystallization in fabricated ceramics, solely from the amorphous precursors of purely inorganic gels (PIGs) synthesized from biocompatible aqueous solutions with most common ions in organisms (Ca2+, Mg2+, CO32-, and PO43-). Transparent ceramic tablets are directly produced by compressing the PIGs under mild pressure, while the pressure regulates the hydration characteristics and the subsequent crystallization behaviors of the synthesized ceramics. Among the various hydration species, the moderately bound and ordered water appears to be a key in regulating the crystallization rate. This nature-inspired study offers deeper insights into the magic behind biomineralization.

10.
J Am Chem Soc ; 146(8): 5355-5365, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38358943

RESUMO

The twin boundary, a common lattice plane of mirror-symmetric crystals, may have high reactivity due to special atomic coordination. However, twinning platinum and iridium nanocatalysts are grand challenges due to the high stacking fault energies that are nearly 1 order of magnitude larger than those of easy-twinning gold and silver. Here, we demonstrate that Turing structuring, realized by selective etching of superthin metal film, provides 14.3 and 18.9 times increases in twin-boundary densities for platinum and iridium nanonets, comparable to the highly twinned silver nanocatalysts. The Turing configurations with abundant low-coordination atoms contribute to the formation of nanotwins and create a large active surface area. Theoretical calculations reveal that the specific atom arrangement on the twin boundary changes the electronic structure and reduces the energy barrier of water dissociation. The optimal Turing-type platinum nanonets demonstrated excellent hydrogen-evolution-reaction performance with a 25.6 mV overpotential at 10.0 mA·cm-2 and a 14.8-fold increase in mass activity. And the bifunctional Turing iridium catalysts integrated in the water electrolyzer had a mass activity 23.0 times that of commercial iridium catalysts. This work opens a new avenue for nanocrystal twinning as a facile paradigm for designing high-performance nanocatalysts.

11.
Plant Reprod ; 37(1): 47-56, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37758937

RESUMO

KEY MESSAGE: Unreduced megagametophytes via second-division restitution were confirmed through heterozygosity analysis, and four candidate physical centromeres of rubber were located for the first time. The evaluation of maternal heterozygosity restitution (MHR) is vital in identifying the mechanism of 2n gametogenesis and assessing the utilization value of 2n gametes. In this study, three full-sib triploid populations were employed to evaluate the MHR of 2n female gametes of rubber tree clone GT1 and to confirm their genetic derivation. The 2n female gametes of GT1 were derived from second-division restitution (SDR) and transmitted more than half of the parental heterozygosity. In addition, low recombination frequency markers were developed, and four candidate physical centromeres of rubber tree were located for the first time. The confirmation that 2n female gametes of rubber tree clone GT1 are derived from SDR provides insights into the molecular mechanisms of 2n gametogenesis. In addition, the identified centromere location will aid in the development of centromeric markers for the rapid identification of the 2n gametogenesis mechanism.


Assuntos
Hevea , Triploidia , Hevea/genética , Diploide , Células Germinativas , Centrômero/genética
12.
Front Pharmacol ; 14: 1289003, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38099141

RESUMO

BRD4 inhibitors have demonstrated promising potential in cancer therapy. However, their therapeutic efficacy in breast cancer varies depending on the breast cancer subtype, particularly in the treatment of TNBC. In this study, we designed and synthesized 94 derivatives of 4-(3-(3,5-dimethylisoxazol-4-yl)benzyl)phthalazin-1(2H)-one to evaluate their inhibitory activities against BRD4. Notably, compound DDT26 exhibited the most potent inhibitory effect on BRD4, with an IC50 value of 0.237 ± 0.093 µM. DDT26 demonstrated significant anti-proliferative activity against both TNBC cell lines and MCF-7 cells. Intriguingly, the phthalazinone moiety of DDT26 mimicked the PAPR1 substrate, resulting in DDT26 displaying a moderate inhibitory effect on PARP1 with an IC50 value of 4.289 ± 1.807 µM. Further, DDT26 was shown to modulate the expression of c-MYC and γ-H2AX, induce DNA damage, inhibit cell migration and colony formation, and arrest the cell cycle at the G1 phase in MCF-7 cells. Our findings present potential lead compounds for the development of potent anti-breast cancer agents targeting BRD4.

13.
Biosens Bioelectron ; 241: 115704, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37748401

RESUMO

Herein, a novel multifunctional photoelectrochemical (PEC) biosensor based on AgInS2 (AIS)/ZnS quantum dots (QDs) sensitized-WSe2 nanoflowers and DNA nanostructure signal probe was designed to achieve ultra-sensitive "On-Off" detection of human tumor necrosis factor α (TNF-α) and methylase Dam MTase (MTase). AIS/ZnS QDs as an excellent photosensitive material was found to match WSe2 in energy level for the first time, and the photocurrent signal after sensitization was 65 times that of WSe2 nanoflowers and 17.9 times that of AIS/ZnS QDs. Moreover, abundant AIS/ZnS QDs were loaded on the TiO2 nanoparticles with good conductivity by DNA to fabricate a multifunctional probe, which can not only amplify signal but also specifically recognize target. When target TNF-α was present, the AIS/ZnS QDs signal probe was attached to the WSe2 nanoflowers-modified electrode through binding to aptamer, and the amplified PEC signal was generated for "on" assay of TNF-α. Furthermore, Dam MTase as second target induced methylation of hairpin HDam, so it is cleaved by the endonuclease DpnI, resulting in the shedding of AIS/ZnS QDs signal probe for signal "off" detection of MTase. This work opened a new photosensitized probe and developed a promising PEC biosensor for dual-targets assay. By programming the DNA nanostructure, the biosensor can detect versatile targets in a simple and sensitive method, which has good practical application value in human serum.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Pontos Quânticos , Humanos , Fator de Necrose Tumoral alfa , Técnicas Eletroquímicas , Pontos Quânticos/química , Técnicas Biossensoriais/métodos , Nanoestruturas/química , DNA/química , Sondas de DNA
14.
Sci Rep ; 13(1): 12825, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550459

RESUMO

Severe air pollution poses a significant threat to public safety and human health. Predicting future air quality conditions is crucial for implementing pollution control measures and guiding residents' activity choices. However, traditional single-module machine learning models suffer from long training times and low prediction accuracy. To improve the accuracy of air quality forecasting, this paper proposes a ISSA-LSTM model-based approach for predicting the air quality index (AQI). The model consists of three main components: random forest (RF) and mRMR, improved sparrow search algorithm (ISSA), and long short-term memory network (LSTM). Firstly, RF-mRMR is used to select the influential variables affecting AQI, thereby enhancing the model's performance. Next, ISSA algorithm is employed to optimize the hyperparameters of LSTM, further improving the model's performance. Finally, LSTM model is utilized to predict AQI concentrations. Through comparative experiments, it is demonstrated that the ISSA-LSTM model outperforms other models in terms of RMSE and R2, exhibiting higher prediction accuracy. The model's predictive performance is validated across different time steps, demonstrating minimal prediction errors. Therefore, the ISSA-LSTM model is a viable and effective approach for accurately predicting AQI.

15.
Biosens Bioelectron ; 232: 115315, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37068419

RESUMO

In this work, a unique FeMoOv nanozyme-bipolar electrode (NM-BPE) electrochemiluminescence (ECL) biosensing and imaging platform was proposed for the first time to realize sensitive detection of target hydrogen peroxide (H2O2) and prostate specific antigen (PSA). Considering the advantage that the cathode and anode poles of the bipolar electrode (BPE) can be modified respectively, this work was carried out using anode equipped with ECL reagent bipyridine ruthenium (Ru(bpy)32+), and cathode equipped with the Fe-doped molybdenum oxide/Au nanoparticles (FeMoOv/AuNPs) with excellent peroxidase (POD) and catalase (CAT)-like activity. Because FeMoOv/AuNPs show efficient enzyme catalysis effect and can greatly promote the decomposition of H2O2, thus the electron transfer rate in the NM-BPE system would be much accelerated to enhance the ECL signal of Ru(bpy)32+. Based on this principle, this work not only realized sensitive detection of H2O2, but also ingeniously designed an sandwich immunosensor using FeMoOv/AuNPs as recognition probe to mediate the ECL response on the anode, achieving highly sensitive detection of PSA. Furthermore, a unique mobile phone ECL imaging system was developed for assay of PSA at different concentrations, which opened a new portable imaging sensing device for bioassays. This work was the first time to combine nanozymes with bipolar electrodes for ECL analysis and imaging, which not only broadened the applications of nanozymes, but also pioneered the new joint ECL research technique of bipolar electrode and ECL imaging in bioassays, showing great application prospect for multiple detection of proteins, nucleic acids and cancer cells.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Masculino , Antígeno Prostático Específico , Peróxido de Hidrogênio , Medições Luminescentes/métodos , Ouro , Técnicas Biossensoriais/métodos , Imunoensaio , Eletrodos , Técnicas Eletroquímicas/métodos
16.
Life Sci ; 320: 121555, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36878279

RESUMO

BACKGROUND: Matrix metallopeptidases (MMPs) are critical matrix-degrading molecules and they are frequently overexpressed in degenerative discs. This study aimed to investigate the mechanism for MMP upregulation. METHODS: Immunoblot and RT-qPCR were used for detecting protein and gene expression levels. 4-month-old and 24-month-old C57BL/6 mice were used for evaluating intervertebral disc degeneration (IDD). An ubiquitination assay was used to determine protein modification. Immunoprecipitation and mass spectrometry were used for identifying protein complex members. RESULTS: We identified the elevation of 14 MMPs among 23 members in aged mice with IDD. Eleven of these 14 MMP gene promoters contained a Runx2 (runt-related transcription factor 2) binding site. Biochemical analyses revealed that Runx2 recruited a histone acetyltransferase p300 and a coactivator NCOA1 (nuclear receptor coactivator 1) to assemble a complex, transactivating MMP expression. The deficiency of an E3 ligase called HERC3 (HECT and RLD domain containing E3 ubiquitin-protein ligase 3) resulted in the accumulation of NCOA1 in the inflammatory microenvironment. High throughput screening of small molecules that specifically target the NCOA1-p300 interaction identified a compound SMTNP-191, which showed an inhibitory effect on suppressing MMP expression and attenuating the IDD process in aged mice. CONCLUSION: Our data support a model in which deficiency of HERC3 fails to ubiquitinate NCOA1, leading to the assembly of NCOA1-p300-Runx2 and causing the transactivation of MMPs. These findings offer new insight into inflammation-mediated MMP accumulation and also provide a new therapeutic strategy to retard the IDD process.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Camundongos , Animais , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Coativador 1 de Receptor Nuclear , Camundongos Endogâmicos C57BL , Matriz Extracelular/metabolismo , Metaloproteases/metabolismo , Disco Intervertebral/metabolismo
17.
Acta Cardiol Sin ; 39(2): 343-352, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36911542

RESUMO

Background: Circulating memory CD8+ T cells have been shown to be a crucial mediator of chronic inflammation. This study investigated whether the baseline proportion of circulating CD45RO+CD8+ T cells was associated with the coronary slow flow (CSF) phenomenon. Methods: A total of 160 consecutive patients [mean (standard deviation (SD)) age, 67.86 (9.55) years; 51.25% male] who were admitted to our hospital between August 2020 and October 2020 for chest pain and underwent coronary angiography with the absence of coronary stenosis were enrolled in this cross-sectional analysis. The patients' admission CD45RO+ CD8+ T cell plasma levels were measured using flow cytometry. Angiographic CSF was defined as thrombolysis in myocardial infarction (TIMI) flow of ≤ 2 without coronary stenosis, and non-CSF was defined as coronary arteries (< 50% stenosis) with TIMI 3 flow. Results: The incidence of angiographic CSF was 22.5%. Patients with angiographic CSF had higher levels of CD45RO+CD8+ T cells than those without CSF [56.18 (13.93) vs. 45.26 (16.45); p < 0.001]. After multivariable adjustment, the risk of incident CSF was 2.41 [95% confidence interval (CI) 1.46-3.97] per SD change in CD45RO+ CD8+ T cells. Further, coronary microvascular resistance was significantly higher in patients with CSF than in those without CSF. A positive linear relationship between CD45RO+CD8+ T cells and coronary microvascular resistance was observed. Conclusions: The proportion of circulating CD45RO+CD8+ T cells is an independent indicator of CSF. This observation may provide insights into the pathophysiological mechanism of CSF.

18.
Korean J Physiol Pharmacol ; 27(2): 177-185, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36815257

RESUMO

The excessive inflammatory response induced by myocardial infarction exacerbates heart injury and leads to the development of heart failure. Recent studies have confirmed the involvement of multiple transcription factors in the modulation of cardiovascular disease processes. However, the role of KLF9 in the inflammatory response induced by cardiovascular diseases including myocardial infarction remains unclear. Here, we found that the expression of KLF9 significantly increased during myocardial infarction. Besides, we also detected high expression of KLF9 in infiltrated macrophages after myocardial infarction. Our functional studies revealed that KLF9 deficiency prevented cardiac function and adverse cardiac remodeling. Furthermore, the downregulation of KLF9 inhibited the activation of NF-κB and MAPK signaling, leading to the suppression of inflammatory responses of macrophages triggered by myocardial infarction. Mechanistically, KLF9 was directly bound to the TLR2 promoter to enhance its expression, subsequently promoting the activation of inflammation-related signaling pathways. Our results suggested that KLF9 is a pro-inflammatory transcription factor in macrophages and targeting KLF9 may be a novel therapeutic strategy for ischemic heart disease.

19.
Drug Des Devel Ther ; 16: 4399-4409, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36583114

RESUMO

Purpose: To investigate the roles of Notoginsenoside R1 (NG-R1) on the proliferation and osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and explore its possible mechanism. Methods: hPDLSCs were isolated and, then characterized by flow cytometry. Cell-counting kit-8 (CCK-8) and colony assays were used to validate the effect of different NG-R1 concentrations on hPDLSCs proliferation and the optimal concentration was determined. Quantitative detection of alkaline phosphatase (ALP) activity at optimal concentration and the mineralization of the cells was investigated by Alizarin Red S staining. qRT-PCR and Western blot were utilized to examine the factors expression levels of ALP, Runx Family Transcription Factor 2 (RUNX2), Collagen I (Col-1) and catenin beta 1 (CTNNB1; ß-catenin). In addition, the tankyrase inhibitor XAV-939 was used to explore NG-R1's role in canonical Wnt signaling. Results: hPDLSCs were positive for surface antigens CD90 while negative for CD34 and CD45, which indicated that we have successfully isolated the hPDLSCs. Furthermore, a concentration of 20µmol NG-R1 dramatically enhanced hPDLSCs proliferation, ALP activity, and mineral deposition. ALP, RUNX2, COL-1, and ß-catenin expression were all rised in comparison to control group. After XAV-939 was added to disrupt the canonical Wnt signaling, the impact of NG-R1 appeared to be reversed. Conclusion: These findings suggest that NG-R1 can stimulate osteogenic differentiation of hPDLSCs, which is probably attributable to canonical Wnt signaling activation.


Assuntos
Ligamento Periodontal , Via de Sinalização Wnt , Humanos , Osteogênese , beta Catenina/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/farmacologia , Diferenciação Celular , Células-Tronco , Células Cultivadas , Proliferação de Células
20.
Sci Adv ; 8(44): eadd6421, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36332028

RESUMO

Platinum-based catalysts are widely used in hydrogen evolution reactions; however, their applications are restricted because of the cost-efficiency trade-off. Here, we present a thermodynamics-based design strategy for synthesizing an Al73Mn7Ru20 (atomic %) metal catalyst via combinatorial magnetron co-sputtering. The new electrocatalyst is composed of ~2 nanometers of medium-entropy nanocrystals surrounded by ~2 nanometers of amorphous regions. The catalyst exhibits exceptional performance, similar to that of single-atom catalysts and better than that of nanocluster-based catalysts. We use aluminum rather than a noble metal as the principal element of the catalyst and ruthenium, which is cheaper than platinum, as the noble metal component. The design strategy provides an efficient route for the development of electrocatalysts for use in large-scale hydrogen production. Moreover, the superior hydrogen reaction evolution created by the synergistic effect of the nano-dual-phase structure is expected to guide the development of high-performance catalysts in other alloy systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...