Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 13(9): e2303394, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38288911

RESUMO

Due to the inherent radiation tolerance, patients who suffered from glioma frequently encounter tumor recurrence and malignant progression within the radiation target area, ultimately succumbing to treatment ineffectiveness. The precise mechanism underlying radiation tolerance remains elusive due to the dearth of in vitro models and the limitations associated with animal models. Therefore, a bioprinted glioma model is engineered, characterized the phenotypic traits in vitro, and the radiation tolerance compared to 2D ones when subjected to X-ray radiation is assessed. By comparing the differential gene expression profiles between the 2D and 3D glioma model, identify functional genes, and analyze distinctions in gene expression patterns. Results showed that 3D glioma models exhibited substantial alterations in the expression of genes associated with the stromal microenvironment, notably a significant increase in the radiation tolerance gene ITGA2 (integrin subunit A2). In 3D glioma models, the knockdown of ITGA2 via shRNA resulted in reduced radiation tolerance in glioma cells and concomitant inhibition of the p-AKT pathway. Overall, 3D bioprinted glioma model faithfully recapitulates the in vivo tumor microenvironment (TME) and exhibits enhanced resistance to radiation, mediated through the ITGA2/p-AKT pathway. This model represents a superior in vitro platform for investigating glioma radiotherapy tolerance.


Assuntos
Glioma , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Glioma/genética , Glioma/radioterapia , Glioma/metabolismo , Transdução de Sinais , Microambiente Tumoral
2.
Heliyon ; 9(11): e21159, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027604

RESUMO

Background: Metal-responsive transcription factor-1 performs a necessary position in a range of cancers. It is unknown, though, how the prognosis of patients with low-grade gliomas is related to immune infiltration. Method: The Cancer Genome Atlas database was used in this investigation to evaluate MTF-1 transcription in low-grade glioma and healthy brain tissues, and immunohistochemistry was used to confirm MTF-1 levels. By using functional enrichment analysis and R software, the putative biological roles and signaling pathways connected to MTF-1 in LGG as well as its prognostic significance were investigated. Further research was done on the connection involving MTF-1 and tumor mutational burden in LGG. Finally, the research evaluated how MTF-1 and immune cell infiltration are related. Results: We noticed that the WHO grade, 1p/19q codeletion, and older age were all substantially linked with MTF-1 overexpression in low-grade gliomas. OS and disease-specific survival were significantly lowered as a result of MTF-1 transcription. MTF-1 was recognized as an independent OS prognostic predictor with a poor prognosis by multifactorial Cox analysis. Functional enrichment analysis revealed that the primary enrichment pathways were chemical carcinogenesis-receptor activation and the generation of miRNAs implicated in gene suppression by miRNA. Additionally, there was a negative correlation between MTF-1 overexpression and the degree of immune cell infiltration in neutrophils and DC. Conclusion: MTF-1 may be a novel prognostic biomarker.

3.
Int J Med Sci ; 20(13): 1732-1743, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928880

RESUMO

The members of the transmembrane emp24 domain-containing protein (TMED) family are summarized in human as four subfamilies, α (TMED 4, 9), ß (TMED 2), γ (TMED1, 3, 5, 6, 7) and δ (TMED 10), with a total of nine members, which are important regulators of intracellular protein transport and are involved in normal embryonic development, as well as in the pathogenic processes of many human diseases. Here we systematically review the composition, structure and function of TMED family members, and describe the progress of TMED family in human diseases, including malignancies (head and neck tumors, lung cancer, breast cancer, ovarian cancer, endometrial cancer, gastrointestinal tumors, urological tumors, osteosarcomas, etc.), immune responses, diabetes, neurodegenerative diseases, and nonalcoholic fatty liver disease, dilated cardiomyopathy, mucin 1 nephropathy (MKD), and desiccation syndrome (SS). Finally, we discuss and prospect the potential of TMED for disease prognosis prediction and therapeutic targeting, with a view to laying the foundation for therapeutic research based on TMED family causative genes.


Assuntos
Proteínas de Membrana , Hepatopatia Gordurosa não Alcoólica , Gravidez , Feminino , Humanos , Proteínas de Membrana/metabolismo , Transporte Proteico , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
4.
J Cancer ; 14(10): 1781-1793, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37476183

RESUMO

S100A10, a member of the S100 protein family, is upregulated in multiple human malignancies and plays a key role in regulating tumor progression. This study aimed to reveal the underlying mechanism by which S100A10 in regulates the proliferation, migration, and invasion of glioma. The expression and clinical information data of S100A10 were downloaded from public databases (TCGA, CGGA, and GEPIA2). S100A10 expression levels in glioma tumor tissues and adjacent nontumor tissues were compared by immunohistochemistry (IHC). The functional roles of S100A10 in glioma were assessed by cell counting kit-8 (CCK-8) cell proliferation assay, wound healing assay, transwell assay, and flow cytometry. miRDB and double luciferase assay were used to predict and identify potential S100A10 mRNA-complementary miRNAs, and the roles of miR-21-5p in glioma cell were examined by targeted knockdown or overexpression miR-21-5p in glioma cell lines. We found that S100A10 was overexpressed in glioma tissues and predicted a worse prognosis. S100A10 knockdown significantly inhibited glioma cell proliferation, invasion, and migration. Furthermore, we demonstrated that miR-21-5p inhibits glioma proliferation, migration, and invasion by targeting S100A10. This study showed S100A10 was a new prognostic predictor among glioma patients and provided new insights into the pathogenesis of gliomas, suggesting that miR-21-5p /S100A10 axis may serve as a valuable therapeutic target for glioma.

5.
Acta Biomater ; 167: 449-462, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37270076

RESUMO

During the past few years, bacterial infection and oxidative stress have become important issues for wound healing. However, the emergence of numerous drug-resistant superbugs has had a serious impact on the treatment of infected wounds. Presently, the development of new nanomaterials has become one of the most important approaches to the treatment of drug-resistant bacterial infections. Herein, coordination polymer copper-gallic acid (Cu-GA) nanorods with multi-enzyme activity is successfully prepared for efficient wound treatment of bacterial infection, which can effectively promote wound healing. Cu-GA can be efficiently prepared by a simple solution method and had good physiological stability. Interestingly, Cu-GA shows enhanced multienzyme activity (peroxidase, glutathione peroxidase, and superoxide dismutase), which can produce a large number of reactive oxygen species (ROS) under acidic conditions while scavenging ROS under neutral conditions. In acidic environment, Cu-GA possesses POD (peroxidase)-like and glutathione peroxidase (GSH-Px)-like catalytic activities that is capable of killing bacteria; but in neutral environment, Cu-GA exhibits superoxide dismutase (SOD)-like catalytic activity that can scavenge ROS and promote wound healing. In vivo studies show that Cu-GA can promote wound infection healing and have good biosafety. Cu-GA contributes to the healing of infected wounds by inhibiting bacterial growth, scavenging reactive oxygen species, and promoting angiogenesis. STATEMENT OF SIGNIFICANCE: Cu-GA-coordinated polymer nanozymes with multienzyme activity were successfully prepared for efficient wound treatment of bacterial infection, which could effectively promote wound healing. Interestingly, Cu-GA exhibited enhanced multienzyme activity (peroxidase, glutathione peroxidase, and superoxide dismutase), which could produce a large number of reactive oxygen species (ROS) under acidic conditions and scavenge ROS under neutral conditions. In vitro and in vivo studies demonstrated that Cu-GA was capable of killing bacteria, controlling inflammation, and promoting angiogenesis.


Assuntos
Infecções Bacterianas , Cobre , Humanos , Cobre/farmacologia , Ácido Gálico/farmacologia , Espécies Reativas de Oxigênio , Desinfecção , Superóxido Dismutase/farmacologia , Cicatrização , Peroxidases/farmacologia , Peroxidase , Glutationa Peroxidase/farmacologia , Antibacterianos/farmacologia
6.
Int J Bioprint ; 9(2): 659, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065654

RESUMO

The present study aimed to combine extrusion-based three-dimensional (3D) bioprinting and polymer nanofiber electrospinning technology to fabricate tissue-like structures with neurosecretory function in vitro. Using neurosecretory cells as cell resources, sodium alginate/gelatin/fibrinogen as matrix, polylactic acid/gelatin electrospun nanofibers as diaphragm, and neurosecretory cells-loaded 3D hydrogel scaffolds were bioprinted and then covered with electrospun nanofibers layer-by-layer. The morphology was observed by scanning electron microscopy and transmission electron microscopy (TEM), and the mechanical characteristics and cytotoxicity of the hybrid biofabricated scaffold structure were evaluated. The 3D-bioprinted tissue activity, including cell death and proliferation, was verified. Western blotting and ELISA experiments were used to confirm the cell phenotype and secretory function, while animal in vivo transplantation experiments confirmed the histocompatibility, inflammatory reaction, and tissue remodeling ability of the heterozygous tissue structures. Neurosecretory structures with 3D structures were successfully prepared by hybrid biofabrication in vitro. The mechanical strength of the composite biofabricated structures was significantly higher than that of the hydrogel system (P < 0.05). The survival rate of PC12 cells in the 3D-bioprinted model was 92.849 ± 2.995%. Hematoxylin and eosin-stained pathological sections showed that the cells grew in clumps, and there was no significant difference in the expression of MAP2 and tubulin-ß between 3D organoids and PC12 cells. The results of ELISA showed that the PC12 cells in 3D structures retained the ability to continuously secrete noradrenaline and met-enkephalin, and the secretory vesicles around and within the cells could be observed by TEM. In in vivo transplantation, PC12 cells gathered and grew in clusters, maintained high activity, neovascularization, and tissue remodeling in 3D structures. The neurosecretory structures were biofabricated by 3D bioprinting and nanofiber electrospinning in vitro, which had high activity and neurosecretory function. In vivo transplantation of neurosecretory structures showed active proliferation of cells and potential for tissue remodeling. Our research provides a new method for biological manufacture of neurosecretory structures in vitro, which maintains neurosecretory function and lays the foundation for the clinical application of neuroendocrine tissues.

7.
Clin Immunol ; 251: 109333, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37088298

RESUMO

Interactions between immunocytes and Neural Stem Cells (NSCs) in glioblastoma multiforme still remains unclear. Here, microglial cells and NSCs in peri-tumoral tissue were analyzed via single-cell whole-transcriptome sequencing. Results showed that two clusters of putative NSCs (the EGFR+BCAN+ cell cluster, and the FABPT+H19+ cell cluster) exhibited immune-related functions. Two clusters of putative microglia (the XIST+PDK4+ and APOC1+CCL3+ cell clusters) exhibited the function of glial cell activation. The results of ligand receptor network analysis disclosed significant interactions between the APOC1+CCL3+ microglia and the NSCs. Correlation analysis on the overall survival (OS) and relapse-free survival (RFS) with 102 potential molecular targets in the TCGA database showed that a much larger number of molecules were correlated with RFS than with OS (34.31% vs. 8.82%), nine of them were validated in clinical specimens. In conclusion, crosstalk between APOC1+CCL3+ microglia and multiple molecule-labeled NSCs distal to the tumor core play certain roles on the recurrence of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Células-Tronco Neurais , Humanos , Glioblastoma/patologia , Microglia/patologia , Neoplasias Encefálicas/patologia , Recidiva Local de Neoplasia , Células-Tronco Neurais/patologia , Microambiente Tumoral
8.
Transl Neurosci ; 12(1): 273-281, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34178387

RESUMO

Nicotine withdrawal symptoms, mainly anxiety, cause high level of relapse rate after quitting smoking. Vitamin D supplementation has shown its potential for the prevention and treatment of anxiety disorders; however, neurobiological studies about the effect of vitamin D on nicotine withdrawal-induced anxiety are limited. To investigate the effect and molecular mechanism of vitamin D3 supplement by dietary on anxiety-like behavior during nicotine withdrawal, male C57/BL6 mice were divided into four groups: vehicle, nicotine only, vitamin D3 only, and nicotine plus vitamin D3. Mice were administrated with nicotine in drinking water (200 µg/mL), and vitamin D3 in feed for 6 weeks. During nicotine withdrawal, vitamin D3-treated mice showed significantly less anxiety-like behavior by an open-field test and marble buried test that performed an increase in the duration of the central zone and a decrease buried marble, respectively. Moreover, vitamin D3 supplementation attenuated the hippocampal NR2A expression on both protein and mRNA levels in nicotine and vitamin D3-treated mice. Our data showed that dietary supplementation with vitamin D3 ameliorated nicotine withdrawal-induced anxiety, which may be related to downregulation of NR2A expression in hippocampus. Vitamin D3 may provide a new dietary intervention with the easy access for smoking cessation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...