Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biosci ; 14(1): 31, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461242

RESUMO

AIM: To understand how liver sinusoidal endothelial cells (LSECs) respond to nonalcoholic steatohepatitis (NASH). METHODS: We profiled single-LSEC from livers of control and MCD-fed mice. The functions of C-Kit+-LSECs were determined using coculture and bone marrow transplantation (BMT) methods. RESULTS: Three special clusters of single-LSEC were differentiated. C-Kit+-LSECs of cluster 0, Msr1+-LSECs of cluster 1 and Bmp4+Selp+-VECs of cluster 2 were revealed, and these cells with diverse ectopic expressions of genes participated in regulation of endothelial, fibrosis and lipid metabolism in NASH. The number of C-Kit+-primary LSECs isolated from MCD mice was lower than control mice. Immunofluorescence co-staining of CD31 and C-KIT showed C-Kit+-LSECs located in hepatic sinusoid were also reduced in NASH patients and MCD mice, compared to AIH patients and control mice respectively. Interestingly, lipotoxic hepatocytes/HSCs cocultured with C-Kit+-LSECs or the livers of MCD mice receipting of C-Kit+-BMCs (bone marrow cells) showed less steatosis, inflammation and fibrosis, higher expression of prolipolytic FXR and PPAR-α, lower expression of TNF-α and α-SMA. Furthermore, coculturing or BMT of C-Kit+-endothelial derived cells could increase the levels of hepatic mitochondrial LC3B, decrease the degree of mitochondrial damage and ROS production through activating Pink1-mediated mitophagy pathway in NASH. CONCLUSIONS: Hence, a novel transcriptomic view of LSECs was revealed to have heterogeneity and complexity in NASH. Importantly, a cluster of C-Kit+-LSECs was confirmed to recovery Pink1-related mitophagy and NASH progression.

2.
J Inflamm Res ; 16: 4953-4965, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37927960

RESUMO

Background: We established a diquat-induced human kidney-2 cells (HK-2 cells) apoptosis model in this study to identify differentially expressed microRNAs (miRNAs) and signaling pathways involved in diquat poisoning via gene sequencing and bioinformatics analysis and explored the related therapeutic benefits. Methods: The effects of diquat on the viability and apoptosis of HK-2 cells were explored using the CCK-8 and Annexin V-FITC/PI double staining methods. Total RNAs were extracted using the TRizol method and detected by Illumina HiSeq 2500. Bioinformatics analysis was performed to explore differentially expressed (DE) miRNAs, their enriched biological processes, pathways, and potential target genes. The RT-qPCR method was used to verify the reliability of the results. Results: Diquat led to HK-2 cell injury and apoptosis played an important role, hence an HK-2 cell apoptosis model in diquat poisoning was established. Thirty-six DE miRNAs were screened in diquat-treated HK-2 cells. The enriched biological process terms were mainly cell growth, regulation of apoptotic signaling pathway, extrinsic apoptotic signaling pathway, and Ras protein signal transduction. The enriched cellular components were mainly cell-cell junction, cell-substrate junction, ubiquitin ligase complex, and protein kinase complex. The enriched molecular functions were mainly Ras GTPase binding, ubiquitin-like protein transferase activity, DNA-binding transcription factor binding, ubiquitin-protein transferase activity, nucleoside-triphosphatase regulator activity, transcription coactivator activity, and ubiquitin-like protein ligase binding. Signaling pathways such as MAPK, FoxO, Ras, PIK3-Akt, and Wnt were also enriched. Conclusion: These findings aid in understanding the mechanisms of diquat poisoning and the related pathways, where DE miRNAs serve as targets for gene therapy.

3.
Zool Stud ; 62: e9, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168711

RESUMO

Plant communities that colonize high-elevation zones generally have short growing seasons which lead to specialized adaptations in such zones. In montane areas of Taiwan, Yushan bamboo (YB, Yushania niitakayamensis) is dominant at elevations ranging from 2500 to 3300 m and grows in a grassland-like open habitat. In this study, hexapods were collected from YB bimonthly between 2009 and 2012 by using a sweeping net. The composition of and several bioindices for the hexapods were determined, and multivariate analyses were conducted to explore the dynamics and seasonal distribution of the hexapods. A total of 32,000 individuals belonging to 11 orders and 113 families were collected, with adult individuals being collected more frequently in warmer seasons (from June to October). Of the sampled individuals, 90% belonged to the orders Collembola (42%), Hemiptera (35%), and Hymenoptera (13%). The number of individuals belonging to Hemiptera were stable in all seasons, and the number of hymenopteran wasps was influenced by temperature and exhibited a stable dynamic pattern. The number of individuals belonging to Collembola fluctuated dramatically. The multivariate analyses revealed that the collected hexapods could be divided into two major family groups according to survey season (i.e., summer and winter groups). Several families were collected only in summer, but a few were collected only in winter. Eigenvalues obtained from a principal component analysis revealed that the families Chironomidae, Delphacidae, Entomobryidae, Hypogastruridae, Sminthuridae, and Thripidae (all dominant) were the major contributors to the winter group. These families were abundant all year, although some were more abundant during winter. The three dominant orders Collembola, Hemiptera, and Hymenoptera, each of which has a distinct community structure and dynamic pattern, may have their own adaptive mechanisms in the subtropical regions of Taiwan. Hemiptera individuals, which feed on YB, were most abundant in the adult stage in summer and in the nymphal stage in winter. The abundance of parasitic hymenopteran wasps, which had stable dynamic patterns, was associated with that of their host insects and temperature. The drastic fluctuations in the abundance of Collembola may have been caused by abiotic factors, such as precipitation and microhabitat factors. The early onset of spring and the late onset of winter might also affect the dynamics of the studied hexapods.

4.
Inflamm Res ; 72(4): 669-682, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36745210

RESUMO

BACKGROUND: The role of macrophages in the pathogenesis of nonalcoholic steatohepatitis (NASH) is complex and unclear. METHODS: Single-cell RNA sequencing was performed on nonparenchymal cells isolated from NASH and control mice. The expression of Vsig4+ macrophages was verified by qPCR, flow cytometry and immunohistochemistry. Primary hepatic macrophages were cocultured with primary hepatocytes or hepatic stellate cells (LX2) cells by Transwell to detect immunofluorescence and oil red O staining. RESULTS: Two main single macrophage subsets were identified that exhibited a significant change in cell percentage when NASH occurred: resident Kupffer cells (KCs; Cluster 2) and lipid-associated macrophages (LAMs; Cluster 13). Nearly 82% of resident single KCs in Cluster 2 specifically expressed Cd163, and an inhibited subgroup of Cd163+ resident single-KCs was suggested to be protective against NASH. Similar to Cd163, Vsig4 was both enriched in and specific to Cluster 2. The percentage of Vsig4+-KCs was significantly decreased in NASH in vivo and in vitro. Hepatocytes and hepatic stellate cells produced less lipid droplet accumulation, proinflammatory protein (TNF-α) and profibrotic protein (α-SMA) in response to coculture with Vsig4+-KCs than in those cocultured with lipotoxic KCs. CONCLUSIONS: A subgroup of Vsig4+ resident single-KCs was shown to improve hepatic inflammation and fibrosis in NASH.


Assuntos
Células de Kupffer , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Células de Kupffer/metabolismo , Células de Kupffer/patologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatócitos/metabolismo , Fibrose , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo
5.
Neoplasma ; 69(4): 820-831, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35532294

RESUMO

Obesity is closely related to the initiation and development of hepatocellular carcinoma (HCC). The regulatory mechanism of obesity-associated HCC remains unclear. HepG2 cells treated with palmitic acid (PA) and diethylnitrosamine (DEN)-induced HCC mice fed a high-fat diet (HFD) were established. The expression of miR-27a and B-cell translocation gene 2 (BTG2) mRNA and protein were detected via qPCR and western blotting. Prediction software and luciferase assays were employed to verify the miR-27a/BTG2 axis. The biological effects of HepG2 cells were evaluated with ORO staining, MTT assays, Transwell assays, Mito-Timer, and Mito-SOX staining. Significantly upregulated miR-27a and downregulated BTG2 mRNA and protein were observed in HepG2 cells and liver tissues of HCC mice. Overexpressing miR-27a (mi-miR-27a) markedly promoted cellular lipid accumulation, proliferation, and invasion, accompanied by aggravated mitochondrial dysfunction (increased fading and ROS products of mitochondria) in HepG2 cells. Additionally, these effects were further reinforced in HepG2 cells treated with mi-miR-27a and PA. BTG2 was identified as a direct target and was negatively regulated by miR-27a. Similarly, BTG2 knockdown (sh-BTG2) had effects identical to those of mi-miR-27a on HepG2 cells. Additionally, PA evidently enhanced these effects of sh-BTG2 in HepG2 cells. Moreover, BTG2 overexpression effectively reversed the effects of miR-27a, including lipotropic and oncogenic effects, and simultaneously promoted mitochondrial imbalance in HepG2 cells. Thus, obesity-associated miR-27a acts as an oncogene to promote lipid accumulation, proliferation, and invasion by negatively regulating BTG2-mediated mitochondrial dysfunction in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Animais , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Lipídeos , Neoplasias Hepáticas/patologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Mitocôndrias , Obesidade/complicações , Oncogenes , RNA Mensageiro
6.
Biochem Biophys Res Commun ; 610: 35-42, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35436629

RESUMO

BACKGROUND: Increasing evidences have confirmed the relationship between mitophagy and nonalcoholic steatohepatitis (NASH). The exact mechanism of upstream circular RNAs (circRNAs) regulating PTEN-induced putative kinase 1 (PINK1) mediated mitophagy and its contribution to NASH-related liver fibrosis was explored in our study. METHODS: Primary hepatic stellate cells (PHSCs) from C57BL/6 mice transfected with small interfering RNAs against PINK1 (si-PINK1) and negative control (si-NC) were prepared to perform circRNA sequence. Differentially expressed circRNAs, bioinformatic analysis and predicting software were performed to select axis of circ608/miR-222/PINK1. The expressions of circ608/miR-222/PINK1 were verified by RT-qPCR. The mitochondrial function was evaluated by immunofluorescence staining of COX4 and LC3B. RESULTS: PINK1-mediated mitophagy was inhibited in NASH-related liver fibrosis mice. CircRNA sequence revealed there were 37 DE-circRNAs between si-PINK1 PHSCs and si-NC PHSCs. Bioinformatic analysis showed these DE-circRNAs were related to enriched signaling pathways (such as Wnt, Rap1, mTOR, Hippo) regulating liver fibrosis and mitophagy. Circ608 was significantly down-regulated in lipotoxic HSCs and in livers of NASH-related liver fibrosis mice. MiR222 was identified to be the target miRNA of circ608 and was negatively regulated by circ608 in lipotoxic HSCs. MiR222 also had a binding site with PINK1 and could negatively regulate PINK1. So, the axis of circ608-miR222-PINK1 was proved to participate in NASH-related liver fibrosis by regulating mitophagy. These results illustrated that circ608 might promote PINK1-mediated mitophagy though inhibiting miR222 in lipotoxic HSCs. CONCLUSION: Circ608 could promote PINK1-mediated mitophagy of HSCs though inhibiting miR222 in NASH-related liver fibrosis.


Assuntos
MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Proteínas Quinases , RNA Circular , Animais , Fibrose , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Mitofagia/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Quinases/genética , RNA Circular/genética
7.
Yao Xue Xue Bao ; 45(3): 347-52, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21348424

RESUMO

An HPLC-UV method has been developed for the determination of valibose, miglitol, voglibose and acarbose, the four anti-diabetic drugs. The separation was accomplished successfully by using reversed phase chromatography (Prevail carbohydrate column, 250 mm x 4.6 mm, 5 microm) with a gradient acetonitrile-phosphate buffer solution (pH 8.0) at a wavelength of 210 nm. Furthermore, the method of a high-performance liquid chromatography coupled with ESI-MS in positive ionization mode has been established. These two methods were successfully applied to the assay and qualitative detection of four alpha-glucosidase inhibitors in the potential counterfeit anti-diabetic drugs.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Acarbose/análise , Inibidores de Glicosídeo Hidrolases , Inositol/análogos & derivados , alfa-Glucosidases/análise , 1-Desoxinojirimicina/análise , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa , Hipoglicemiantes/química , Inositol/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...