Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 254(Pt 1): 127751, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38287593

RESUMO

In order to meet the market demand and avoid the increase of operation amount and cleaning cost in the process of ultrafiltration, it is particularly important to find more practical and efficient methods to control and improve membrane fouling. In this study, the ions in the ultrafiltration process were regulated to affect membrane surface proteins composition (lactoferrin, α-lactalbumin, ß-lactoglobulin A and ß-lactoglobulin B) and delay membrane fouling. It was found that Na+ (21 mmol/L), Zn2+ (0.25 mmol/L) and K+ (44 mmol/L) was added at 4 min, 8 min and 12 min, respectively during ultrafiltration process. The continuous regulation slowed down the decline rate of membrane flux and reduced the content of α-lactalbumin, ß-lactoglobulin A and ß-lactoglobulin B on the membrane surface analyzed by HPLC. This could reduce the irreversible membrane fouling of proteins cake resistance. Furthermore, the ions concentration was also investigated after filtration. The concentration of K+ was increased significantly and other ions concentration was not significantly changed after continuous regulation such Na+, Mg2+, Zn2+ and Ca2+ compared to control. Therefore, dynamic ionic regulation of whey protein ultrafiltration process is a simple and effective method, which provides technical theoretical basis for optimizing and improving membrane technology.


Assuntos
Ultrafiltração , Purificação da Água , Ultrafiltração/métodos , Proteínas do Soro do Leite , Lactalbumina , Cromatografia Líquida de Alta Pressão , Lactoglobulinas , Proteínas de Membrana , Fatores de Transcrição , Íons , Membranas Artificiais , Purificação da Água/métodos
2.
Food Chem X ; 15: 100393, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36211742

RESUMO

The factors affecting membrane fouling are very complex. In this study, the membrane fouling process was revealed from the perspective of ion environment changes, which affected the whey protein structure during ultrafiltration. It was found that the concentrations of Ca2+ and Na+ were overall increased and the concentrations of K+, Mg2+ and Zn2+ were decreased at an ultrafiltration time of 11 min, which made more hydrophilic groups buried inside and increased the content of α-helix, leading to more protein aggregation. The relatively higher K+ ratio in retention could lead to an antiparallel ß-sheet configuration, aspartic acid, glutamic acid and tryptophan increased, which resulted in more protein aggregation and deposition on the membrane surface at 17 min. When the ion concentration and ratio restored the balance and were close to the initial state in retention, the protein surface tension decreased, and the hydrophilic ability increased at 21-24 min.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...