Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.127
Filtrar
1.
Small ; : e2401972, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770749

RESUMO

Due to the chemical stability of graphene, synthesis of carboxylated graphene still remains challenging during the electrochemical exfoliation of graphite. In this work, a spatially confined radical addition reaction which occurs in the sub-nanometer scaled interlayers of the expanded graphene sheets for the electrochemical synthesis of highly stable carboxylated graphene is reported. Here, formate anions act as both intercalation ions and co-reactant acid for the confinement of electro-generated carboxylic radical (●COOH) in the sub-nanometer scaled interlayers, which facilitates the radical addition reaction on graphene sheets. The controllable carboxylation of graphene is realized by tuning the concentration of formate anions in the electrolyte solution. The high crystallinity of the obtained product indicates the occurrence of spatially confined ●COOH addition reaction between the sub-nanometer interlayers of expanded graphite. In addition, the carboxylated graphene have been used for water desalination and hydrogen/oxygen reduction reaction. Therefore, this work provides a new method for the in situ preparation of functionalized graphene through the electrolysis and its applications in water desalination and hydrogen/oxygen reduction reactions.

2.
Foods ; 13(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731658

RESUMO

Parkinson's disease (PD), the second most common neurodegenerative disorder, is linked to α-synuclein (α-Syn) aggregation. Despite no specific drug being available for its treatment, curcumin, from the spice turmeric, shows promise. However, its application in PD is limited by a lack of understanding of its anti-amyloidogenic mechanisms. In this study, we first reconstructed the liquid-liquid phase separation (LLPS) of α-Syn in vitro under different conditions, which may be an initial step in entraining the pathogenic aggregation. Subsequently, we evaluated the effects of curcumin on the formation of droplets, oligomers, and aggregated fibers during the LLPS of α-synuclein, as well as its impact on the toxicity of aggregated α-synuclein to cultured cells. Importantly, we found that curcumin can inhibit amyloid formation by inhibiting the occurrence of LLPS and the subsequent formation of oligomers of α-Syn in the early stages of aggregation. Finally, the molecular dynamic simulations of interactions between α-Syn decamer fibrils and curcumin showed that van der Waal's interactions make the largest contribution to the anti-aggregation effect of curcumin. These results may help to clarify the mechanism by which curcumin inhibits the formation of α-Syn aggregates during the development of PD.

3.
ACS Appl Mater Interfaces ; 16(19): 24863-24870, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38706443

RESUMO

Water evaporation-induced electricity generators (WEGs) have drawn widespread attention in the field of hydrovoltaic technology, which can convert atmospheric thermal energy into sustainable electric power. However, it is restricted in the wide application of WEGs due to the low power output, complex fabrication process, and high cost. Herein, we present a simple and effective approach to fabricate TiO2-carbon black film-based WEGs (TC-WEGs). A single TC-WEG device can sustainably output an open-circuit voltage of 1.9 V and a maximum power density of 40.9 µW/cm2. Moreover, it has been shown that TC-WEGs exhibit stable electrical energy output when operating in seawater, which can yield a short-circuit current of 1.2 µA. The superior electricity generation performance can be attributed to the intrinsic characteristics of the TC-WEGs, including hydrophilicity, porous structure, and electrical conductivity. This work provides an important reference for the constant harvesting of clean energy.

4.
J Environ Manage ; 359: 121076, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38710148

RESUMO

Cellulose-based adsorbents have been extensively developed in heavy metal capture and wastewater treatment. However, most of the reported powder adsorbents suffer from the difficulties in recycling due to their small sizes and limitations in detecting the targets for the lack of sensitive sensor moieties in the structure. Accordingly, carbon dots (CDs) were proposed to be encapsulated in cellulosic hydrogel beads to realize the simultaneous detection and adsorption of Hg (II) in water due to their excellent fluorescence sensing performance. Besides, the molding of cellulose was beneficial to its recycling and further reduced the potential environmental risk generated by secondary pollution caused by adsorbent decomposition. In addition, the detection limit of the hydrogel beads towards Hg (II) reached as low as 8.8 × 10-8 M, which was below the mercury effluent standard declared by WHO, exhibiting excellent practicability in Hg (II) detection and water treatment. The maximum adsorption capacity of CB-50 % for Hg (II) was 290.70 mg/g. Moreover, the adsorbent materials also had preeminent stability that the hydrogel beads could maintain sensitive and selective sensing performance towards Hg (II) after 2 months of storage. Additionally, only 3.3% of the CDs leaked out after 2 weeks of immersion in water, ensuring the accuracy of Hg (II) evaluation. Notably, the adsorbent retained over 80% of its original adsorption capacity after five consecutive regeneration cycles, underscoring its robustness and potential for sustainable environmental applications.


Assuntos
Carbono , Celulose , Hidrogéis , Mercúrio , Poluentes Químicos da Água , Mercúrio/análise , Celulose/química , Adsorção , Hidrogéis/química , Carbono/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Pontos Quânticos/química
6.
Chemistry ; : e202401234, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712548

RESUMO

1,3-Enynes with the conjugated alkene and alkyne moieties are attractive building blocks in synthetic chemistry. However, neither 4,1-hydrophosphination nor dihydrophosphination of 1,3-enynes has been reported. In this paper, the divalent ytterbium and calcium amide complexes supported by silaimine-functionalized cyclopentadiene ligands (C5Me4-Si(L)=NR) were developed, which successfully catalyzed the efficient single and double hydrophosphination of 1,3-enynes with diarylphosphines. These two hydrophosphination reactions selectively produced homoallenyl phosphines and (E)-propenylene diphosphines, respectively. This work demonstrated the potential of hemilabile silaimine-Cp ligands in supporting the efficient and selective rare- and alkaline-earth catalysts.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38727024

RESUMO

The excess production of reactive oxygen species (ROS) will delay tooth extraction socket (TES) healing. In this study, we developed an injectable thermosensitive hydrogel (NBP@BP@CS) used to treat TES healing. The hydrogel formulation incorporated black phosphorus (BP) nanoflakes, recognized for their accelerated alveolar bone regeneration and ROS-scavenging properties, and dl-3-n-butylphthalide (NBP), a vasodilator aimed at enhancing angiogenesis. In vivo investigations strongly demonstrated that NBP@BP@CS improved TES healing due to antioxidation and promotion of alveolar bone regeneration by BP nanoflakes. The sustained release of NBP from the hydrogel promoted neovascularization and vascular remodeling. Our results demonstrated that the designed thermosensitive hydrogel provided great opportunity not only for ROS elimination but also for the promotion of osteogenesis and angiogenesis, reflecting the "three birds with one stone" concept, and has tremendous potential for rapid TES healing.

8.
Plants (Basel) ; 13(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38592925

RESUMO

Drought-induced stress poses a significant challenge to wheat throughout its growth, underscoring the importance of identifying drought-stable quantitative trait loci (QTLs) for enhancing grain yield. Here, we evaluated 18 yield-related agronomic and physiological traits, along with their drought tolerance indices, in a recombinant inbred line population derived from the XC7 × XC21 cross. These evaluations were conducted under both non-stress and drought-stress conditions. Drought stress significantly reduced grain weight per spike and grain yield per plot. Genotyping the recombinant inbred line population using the wheat 90K single nucleotide polymorphism array resulted in the identification of 131 QTLs associated with the 18 traits. Drought stress also exerted negative impacts on grain formation and filling, directly leading to reductions in grain weight per spike and grain yield per plot. Among the identified QTLs, 43 were specifically associated with drought tolerance across the 18 traits, with 6 showing direct linkages to drought tolerance in wheat. These results provide valuable insights into the genetic mechanisms governing wheat growth and development, as well as the traits contributing to the drought tolerance index. Moreover, they serve as a theoretical foundation for the development of new wheat cultivars having exceptional drought tolerance and high yield potentials under both drought-prone and drought-free conditions.

9.
Nat Mater ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589543

RESUMO

Unconventional 1T'-phase transition metal dichalcogenides (TMDs) have aroused tremendous research interest due to their unique phase-dependent physicochemical properties and applications. However, due to the metastable nature of 1T'-TMDs, the controlled synthesis of 1T'-TMD monolayers (MLs) with high phase purity and stability still remains a challenge. Here we report that 4H-Au nanowires (NWs), when used as templates, can induce the quasi-epitaxial growth of high-phase-purity and stable 1T'-TMD MLs, including WS2, WSe2, MoS2 and MoSe2, via a facile and rapid wet-chemical method. The as-synthesized 4H-Au@1T'-TMD core-shell NWs can be used for ultrasensitive surface-enhanced Raman scattering (SERS) detection. For instance, the 4H-Au@1T'-WS2 NWs have achieved attomole-level SERS detections of Rhodamine 6G and a variety of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike proteins. This work provides insights into the preparation of high-phase-purity and stable 1T'-TMD MLs on metal substrates or templates, showing great potential in various promising applications.

10.
Biomicrofluidics ; 18(2): 024103, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38571910

RESUMO

Solid-state micro/nanopores play an important role in the sensing field because of their high stability and controllable size. Aiming at problems of complex processes and high costs in pore manufacturing, we propose a convenient and low-cost micro/nanopore fabrication technique based on the needle punching method. The thin film is pierced by controlling the feed of a microscale tungsten needle, and the size variations of the micropore are monitored by the current feedback system. Based on the positive correlation between the micropore size and the current threshold, the size-controllable preparation of micropores is achieved. The preparation of nanopores is realized by the combination of needle punching and chemical etching. First, a conical defect is prepared on the film with the tungsten needle. Then, nanopores are obtained by unilateral chemical etching of the film. Using the prepared conical micropores, resistive-pulse detection of nanoparticles is performed. Significant ionic current rectification is also obtained with our conical nanopores. It is proved that the properties of micro/nanopores prepared by our method are comparable to those prepared by the track-etching method. The simple and controllable fabrication process proposed here will advance the development of low-cost micro/nanopore sensors.

11.
Opt Express ; 32(7): 12992-13000, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571105

RESUMO

We present an efficient tunable all-silica-fiber 2nd-order cascaded Raman pulse laser utilizing 2-µm dissipative-soliton-resonance (DSR) rectangular pulses for pumping and highly GeO2-doped silica fiber as Raman gain medium. When pumped at 1966.5 nm, the maximum 1st-order Raman optical conversion efficiency is up to 64.4% at 2153 nm, with 92.4% spectral purity and 0.39-W average power. The maximum 2nd-order Raman optical conversion efficiency is 19.3% at 2370 nm, with 39.2% spectral purity and 0.25-W average power. To our knowledge, these conversion efficiencies and spectral purities represent the highest levels achieved in a mid-infrared all-silica-fiber cascaded pulsed Raman laser. Additionally, by adjusting the central wavelength of the DSR seed pulse, the 2nd-order Raman light can be tuned within a range of 41 nm (2354∼2395 nm). Our system provides a simple and easy-to-implement solution for realizing efficient tunable cascaded pulsed Raman lasers in the 2.4-µm band.

12.
bioRxiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38645048

RESUMO

The multitude of DNA lesion types, and the nuclear dynamic context in which they occur, present a challenge for genome integrity maintenance as this requires the engagement of different DNA repair pathways. Specific 'repair controllers' that facilitate DNA repair pathway crosstalk between double strand break (DSB) repair and base excision repair (BER), and regulate BER protein trafficking at lesion sites, have yet to be identified. We find that DNA polymerase ß (Polß), crucial for BER, is ubiquitylated in a BER complex-dependent manner by TRIP12, an E3 ligase that partners with UBR5 and restrains DSB repair signaling. Here we find that, TRIP12, but not UBR5, controls cellular levels and chromatin loading of Polß. Required for Polß foci formation, TRIP12 regulates Polß involvement after DNA damage. Notably, excessive TRIP12-mediated shuttling of Polß affects DSB formation and radiation sensitivity, underscoring its precedence for BER. We conclude that the herein discovered trafficking function at the nexus of DNA repair signaling pathways, towards Polß-directed BER, optimizes DNA repair pathway choice at complex lesion sites.

13.
Pharmgenomics Pers Med ; 17: 105-123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38623558

RESUMO

Purpose: mRNA vaccines represent a promising and innovative strategy within the realm of cancer immunotherapy. However, their efficacy in treating lower-grade glioma (LGG) requires evaluation. Ferroptosis exhibits close associations with the initiation, evolution, and suppression of cancer. In this study, we explored the landscape of the ferroptosis-associated tumor microenvironment to facilitate the development of mRNA vaccines for LGG patients. Patients and Methods: Genomic and clinical data of the LGG patients was obtained from the Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases. Ferroptosis-related tumor antigens were identified based on differential expression, mutation status, correlation with antigen-presenting cells, and prognosis, relevance to immunogenic cell death (ICD). Antigen expression levels in LGG specimens and cell lines were validated using real time-polymerase chain reaction (RT-PCR). Consensus clustering was employed for patient classification. The immune landscapes of ferroptosis subtypes were further characterized, including immune responses, prognostic ability, tumor microenvironment, and tumor-related signatures. Results: Five tumor antigens, namely, HOTAIR, IDO1, KIF20A, NR5A2, and RRM2 were identified in LGG. RT-PCR demonstrated higher expression of these genes in LGG compared to the control. Twelve gene modules and four ferroptosis subtypes (FS1-FS4) of LGG were defined. FS2 and FS4, characterized as "cold" tumors due to their decreased tumor mutation burden (TMB) and immune checkpoint proteins (ICPs), were deemed appropriate candidates for the mRNA vaccine. Conclusion: HOTAIR, IDO1, KIF20A, NR5A2, and RRM2 were identified as promising candidate antigens for the development of an LGG mRNA vaccine, particularly offering potential benefits to FS2 and FS4 patients.

15.
Membranes (Basel) ; 14(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38668109

RESUMO

Surface modification of membranes is essential for improving flux and resistance to contamination for membranes. This is of great significance for membrane distillation, which relies on the vapor pressure difference across the membrane as the driving force. In recent years, biomimetic mussel-inspired substances have become the research hotspots. Among them, dopamine serves as surface modifiers that would achieve highly desirable and effective membrane applications owing to their unique physicochemical properties, such as universal adhesion, enhanced hydrophilicity, tunable reducibility, and excellent thermal conductivity. The incorporation of a hydrophilic layer, along with the utilization of photothermal properties and post-functionalization capabilities in modified membranes, effectively addresses challenges such as low flux, contamination susceptibility, and temperature polarization during membrane distillation. However, to the best of our knowledge, there is still a lack of comprehensive and in-depth discussions. Therefore, this paper systematically compiles the modification method of dopamine on the membrane surface and summarizes its application and mechanism in membrane distillation for the first time. It is believed that this paper would provide a reference for dopamine-assisted membrane separation during production, and further promote its practical application.

16.
Anal Chem ; 96(17): 6784-6793, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38632870

RESUMO

Hepatitis B virus (HBV) is a major cause of liver cirrhosis and hepatocellular carcinoma, with HBV surface antigen (HBsAg) being a crucial marker in the clinical detection of HBV. Due to the significant harm and ease of transmission associated with HBV, HBsAg testing has become an essential part of preoperative assessments, particularly for emergency surgeries where healthcare professionals face exposure risks. Therefore, a timely and accurate detection method for HBsAg is urgently needed. In this study, a surface-enhanced Raman scattering (SERS) sensor with a sandwich structure was developed for HBsAg detection. Leveraging the ultrasensitive and rapid detection capabilities of SERS, this sensor enables quick detection results, significantly reducing waiting times. By systematically optimizing critical factors in the detection process, such as the composition and concentration of the incubation solution as well as the modification conditions and amount of probe particles, the sensitivity of the SERS immune assay system was improved. Ultimately, the sensor achieved a sensitivity of 0.00576 IU/mL within 12 min, surpassing the clinical requirement of 0.05 IU/mL by an order of magnitude. In clinical serum assay validation, the issue of false positives was effectively addressed by adding a blocker. The final sensor demonstrated 100% specificity and sensitivity at the threshold of 0.05 IU/mL. Therefore, this study not only designed an ultrasensitive SERS sensor for detecting HBsAg in actual clinical serum samples but also provided theoretical support for similar systems, filling the knowledge gap in existing literature.


Assuntos
Antígenos de Superfície da Hepatite B , Análise Espectral Raman , Antígenos de Superfície da Hepatite B/sangue , Análise Espectral Raman/métodos , Humanos , Vírus da Hepatite B/isolamento & purificação , Nanopartículas Metálicas/química , Hepatite B/sangue , Hepatite B/diagnóstico , Propriedades de Superfície , Limite de Detecção
17.
J Neuroimmune Pharmacol ; 19(1): 15, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647743

RESUMO

Acute ischemic stroke (AIS), commonly known as stroke, is a debilitating condition characterized by the interruption of blood flow to the brain, resulting in tissue damage and neurological deficits. Early diagnosis is crucial for effective intervention and management, as timely treatment can significantly improve patient outcomes. Therefore, novel methods for the early diagnosis of AIS are urgently needed. Several studies have shown that bioactive molecules contained in extracellular vesicles, especially circRNAs, could be ideal markers for the diagnosis of many diseases. However, studies on the effects of exosomes and their circRNAs on the development and prognosis of AIS have not been reported extensively. Therefore, we explored the feasibility of using circRNAs in plasma brain-derived exosomes as biomarkers for AIS. By high-throughput sequencing, we first identified 358 dysregulated circRNAs (including 23 significantly upregulated circRNAs and 335 significantly downregulated circRNAs) in the plasma brain-derived exosomes of the brain infarct patient group compared to those of the noninfarct control group. Five upregulated circRNAs (hsa_circ_0007290, hsa_circ_0049637, hsa_circ_0000607, hsa_circ_0004808, and hsa_circ_0000097) were selected for further validation via Real-Time Quantitative Reverse Transcription PCR (qRT‒PCR) in a larger cohort based on the exclusion criteria of log2FC > 1, p < 0.05 and measurable expression. We found that the expression levels of hsa_circ_0007290, hsa_circ_0049637, hsa_circ_0000607, hsa_circ_0004808 and hsa_circ_0000097 were significantly upregulated in AIS patients and could serve as potential biomarkers for AIS with high specificity and sensitivity. Moreover, the expression levels of hsa_circ_0007290, hsa_circ_0049637, hsa_circ_0000607, hsa_circ_0004808 and hsa_circ_0000097 were also found to be positively correlated with National Institutes of Health Stroke Scale (NISS) and modified Rankin scale (mRS) scores, which indicated that the presence of these circRNAs in plasma brain-derived exosomes could also determine the progression of AIS.


Assuntos
Biomarcadores , Exossomos , AVC Isquêmico , RNA Circular , Humanos , Exossomos/genética , Exossomos/metabolismo , RNA Circular/genética , RNA Circular/sangue , AVC Isquêmico/sangue , AVC Isquêmico/genética , AVC Isquêmico/diagnóstico , Biomarcadores/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Encéfalo/metabolismo
18.
Water Res ; 256: 121566, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38598948

RESUMO

Microbial fuel cell (MFC) sensing is a promising method for real-time detection of water biotoxicity, however, the low sensing sensitivity limits its application. This study adopted low temperature acclimation as a strategy to enhance the toxicity sensing performance of MFC biosensor. Two types of MFC biosensors were started up at low (10 °C) or warm (25 °C) temperature, denoted as MFC-Ls and MFC-Ws respectively, using Pb2+ as the toxic substance. MFC-Ls exhibited superior sensing sensitivities towards Pb2+ compared with MFC-Ws at both low (10 °C) and warm (25 °C) operation temperatures. For example, the inhibition rate of voltage of MFC-Ls was 22.81 % with 1 mg/L Pb2+ shock at 10 °C, while that of MFC-Ws was only 5.9 %. The morphological observation showed the anode biofilm of MFC-Ls had appropriate amount of extracellular polymer substances, thinner thickness (28.95 µm for MFC-Ls and 41.58 µm for MFC-Ws) and higher proportion of living cells (90.65 % for MFC-Ls and 86.01 % for MFC-Ws) compared to that of MFC-Ws. Microbial analysis indicated the enrichment of psychrophilic electroactive microorganisms and cold-active enzymes as well as their sensitivity to Pb2+ shock was the foundation for the effective operation and good performance of MFC-Ls biosensors. In conclusion, low temperature acclimation of electroactive microorganisms enhanced not only the sensitivity but also the temperature adaptability of MFC biosensors.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Biofilmes , Temperatura , Aclimatação , Poluentes Químicos da Água , Temperatura Baixa , Chumbo/toxicidade , Eletrodos
19.
Int J Biol Macromol ; 267(Pt 2): 131563, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626837

RESUMO

Excessive exudation from the wound site and the difficulty of determining the state of wound healing can make medical management more difficult and, in extreme cases, lead to wound deterioration. In this study, we fabricated a pH-sensitive colorimetric chronic wound dressing with self-pumping function using electrostatic spinning technology. It consisted of three layers: a polylactic acid-curcumin (PCPLLA) hydrophobic layer, a hydrolyzed polyacrylonitrile (HPAN) transfer layer, and a polyacrylonitrile-purple kale anthocyanin (PAN-PCA) hydrophilic layer. The results showed that the preparation of porous PLLA fiber membrane loaded with 0.2 % Cur was achieved by adjusting the spinning-related parameters, which could ensure that the composite dressing had sufficient anti-inflammatory, antibacterial and antioxidant properties. The HPAN membrane treated with alkali for 30 min had significantly enhanced liquid wetting ability, and the unidirectional transport of liquid could be achieved by simple combination with the 20 um PCPLLA fiber membrane. In addition, the 4 % loaded PCA showed more obvious color difference than the colorimetric membrane. In vivo and ex vivo experiments have demonstrated the potential of multifunctional dressings for the treatment of chronic wounds.


Assuntos
Bandagens , Curcumina , Poliésteres , Cicatrização , Concentração de Íons de Hidrogênio , Poliésteres/química , Porosidade , Animais , Cicatrização/efeitos dos fármacos , Curcumina/química , Curcumina/farmacologia , Resinas Acrílicas/química , Antocianinas/química , Antocianinas/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Ratos , Antibacterianos/farmacologia , Antibacterianos/química , Masculino , Antioxidantes/farmacologia , Antioxidantes/química , Brassica/química
20.
J Am Chem Soc ; 146(18): 12538-12546, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38656110

RESUMO

There is growing acknowledgment that the properties of the electrochemical interfaces play an increasingly pivotal role in improving the performance of the hydrogen evolution reaction (HER). Here, we present, for the first time, direct dynamic spectral evidence illustrating the impact of the interaction between interfacial water molecules and adsorbed hydroxyl species (OHad) on the HER properties of Ni(OH)2 using Au/core-Ni(OH)2/shell nanoparticle-enhanced Raman spectroscopy. Notably, our findings highlight that the interaction between OHad and interfacial water molecules promotes the formation of weakly hydrogen-bonded water, fostering an environment conducive to improving the HER performance. Furthermore, the participation of OHad in the reaction is substantiated by the observed deprotonation step of Au@2 nm Ni(OH)2 during the HER process. This phenomenon is corroborated by the phase transition of Ni(OH)2 to NiO, as verified through Raman and X-ray photoelectron spectroscopy. The significant redshift in the OH-stretching frequency of water molecules during the phase transition confirms that surface OHad disrupts the hydrogen-bond network of interfacial water molecules. Through manipulation of the shell thickness of Au@Ni(OH)2, we additionally validate the interaction between OHad and interfacial water molecules. In summary, our insights emphasize the potential of electrochemical interfacial engineering as a potent approach to enhance electrocatalytic performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...