Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 419
Filtrar
1.
Infect Drug Resist ; 17: 1731-1739, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715964

RESUMO

Objective: To compare the epidemiological characteristics and drug resistance of Burkholderia cepacia isolated from blood cultures, and to provide data support and a scientific basis for the clinical treatment and detection of hospital infections. Methods: The Hebei Province Antimicrobial Surveillance Network received 349 B. cepacia strains isolated from blood cultures reported by 83 hospitals, from 2016 to 2021. These strains were identified by MALDI-TOF MS and, the antibiotic sensitivity tests were carried out using the VITEK 2 COMPACT system. The 2023 Institute of Clinical and Laboratory Standardization drug-susceptibility breakpoints were used for drug susceptibility testing and the data were analyzed using WHONET5.6 software. Results: A total of 349 B. cepacia strains were isolated from 2016 to 2021, including 68 strains from secondary hospitals and 281 strains from tertiary hospitals. The ratios of male: female patients with B. cepacia bloodstream infections in all hospitals, secondary hospitals, and tertiary hospitals were 1.49:1 (209/140), 2.09:1 (46/22), and 1.38:1 (163/118), respectively. Most B. cepacia strains were isolated in intensive care units (ICUs), followed by internal medicine departments, accounting for 49.57% (173/349) and 22.92% (80/349), respectively. Regarding the age distribution, most patients were elderly (>65 years, 57.59%, 201/349), with numbers of patients gradually declining with decreasing of age. The resistance rates for levofloxacin, ceftazidime, and sulfamethoxazole decreased over the 6-year period (P<0.05), while there were no significant changes in the resistance rates for meropenem, chloramphenicol, and minocycline (P>0.05). There was no significant difference in drug-resistance rates between secondary and tertiary hospitals (P>0.05). Conclusion: Attention should be paid to bloodstream infections caused by B. cepacia, especially elderly patients and patients admitted to the ICU. The difficult treatment characteristics of B. cepacia bloodstream infections mean that laboratories and clinicians should pay careful attention to drug resistance to provide a basis for their prevention and empirical treatment.

2.
J Colloid Interface Sci ; 669: 258-264, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38718579

RESUMO

For ethylene purification, C2H6-selective metal-organic frameworks (MOFs) show great potential to directly produce polymer-grade C2H4 from C2H6/C2H4 mixtures. Most C2H6-traping MOFs are ultra-microporous structures so as to strengthen multiple supramolecular interactions with C2H6. However, the narrowed pore channels of C2H6-traping MOFs cause large guest diffusion barriers, greatly hampering their practical applications. Herein, we present a feasible strategy by precisely constructing hierarchically porous MOF@COF core-shell structures to address this issue. Additional mesoporous diffusion channels were incorporated between MOF crystals through the construction of the COF shell, thereby enhancing the gas adsorption kinetics. Notably, designing a core-shell MOF@COF structure with an optimal coating amount of mesoporous COF shell will further improve the gas diffusion rate. Breakthrough experiments reveal that the tailored MOF@COF composites can effectively achieve C2H6/C2H4 separation and maintain its separation performance over five continuous measurement cycles. This investigation opens up a new avenue to solve the diffusion/transfer issues and provides more opportunities and potentials for MOF@COF composites in practical separation applications.

3.
Talanta ; 275: 126102, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38692043

RESUMO

High interference and narrow application range are key of bottleneck of recent fluorescence analysis methods, which limit their wide application in the sensing field. Therefore, to overcome these disadvantages, a ratiometric fluorescence sensing system utilizing berberine (BER) and silver nanoclusters protected by dihydrolipoic acid (DHLA-AgNCs) was constructed for the first time in this work, to achieve determination of BER and daunorubicin (Dau). BER aqueous solution (non-planar conformation) has no fluorescence emission. When it was mixed with DHLA-AgNCs, the conformation of BER became planar, producing fluorescence emission at 515 nm besides the fluorescence emission peak of DHLA-AgNCs at 653 nm. With the increase of BER concentration added in system, the fluorescence intensity of BER (planar conformation) at 515 nm increased obviously and the fluorescence intensity of DHLA-AgNCs decreased slightly. Therefore, the dual emission fluorescence sensing system was constructed based on a fluorescence substance and non fluorescence substance, to achieve determination of BER. Meanwhile, based on the bridging effect of BER and fluorescence resonance energy transfer effect from Dau, the altering of two peaks intensity was utilized to achieve determination of Dau. Thus, this dual emission sensing system can not only be used for fluorescence analysis of BER and its analogues, but also based on the bridging effect of BER, allowing the determination of Dau and its analogues that could not be directly measured with silver nanoclusters, expanding the application range of traditional dual emission detection systems. Meanwhile, this system has strong anti-interference ability and low toxicity to the human body and less pollution to the sample and environment. This provides a new direction and universal research strategy for the construction of new fluorescence sensing systems in the future for the analysis of target substances that cannot be directly detected with conventional fluorescence analysis methods.

4.
Anim Sci J ; 95(1): e13946, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38651265

RESUMO

This study explored the effects of a Bacillus subtilis and Lactobacillus acidophilus mixture containing the co-fermented products of the two probiotics on growth performance, serum immunity and cecal microbiota of Cherry Valley ducks. This study included 480 one-day-old Cherry Valley ducks divided into four feeding groups: basal diet (control group) and basal diet supplemented with 300, 500, or 700 mg/kg of the probiotic powder; the ducks were raised for 42 days. Compared with the control group, body weight on day 42 and the average daily gain on days 15-42 significantly increased (p < 0.05), and the feed conversion rate significantly decreased (p < 0.05) in the experimental groups. Furthermore, the serum immunoglobulin (Ig) A, IgG, IgM, and interleukin (IL)-4 levels increased significantly (p < 0.05), and IL-1ß, IL-2, and tumor necrosis factor-α decreased significantly (p < 0.05) in the experimental groups. Finally, Sellimonas, Prevotellaceae NK3B31 group, Lachnospiraceae NK4A136 group and Butyricoccus played an important role in the cecal microbiota of the experimental group. Thus, the probiotic powder has impacts on the growth performance, serum immunity and cecal microbiota of Cherry Valley Ducks.


Assuntos
Bacillus subtilis , Ceco , Patos , Lactobacillus acidophilus , Probióticos , Animais , Probióticos/administração & dosagem , Ceco/microbiologia , Patos/crescimento & desenvolvimento , Patos/microbiologia , Patos/imunologia , Patos/sangue , Microbioma Gastrointestinal , Dieta/veterinária , Ração Animal , Imunoglobulinas/sangue , Suplementos Nutricionais
5.
BMC Microbiol ; 24(1): 130, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643095

RESUMO

BACKGROUND: Mycobacteria bloodstream infections are common in immunocompromised people and usually have disastrous consequences. As the primary phagocytes in the bloodstream, monocytes and neutrophils play critical roles in the fight against bloodstream mycobacteria infections. In contrast to macrophages, the responses of monocytes infected with the mycobacteria have been less investigated. RESULTS: In this study, we first established a protocol for infection of non-adherent monocyte-like THP-1 cells (i.e. without the differentiation induced by phorbol 12-myristate 13-acetate (PMA) by bacillus Calmette-Guérin (BCG). Via the protocol, we were then capable of exploring the global transcriptomic profiles of non-adherent THP-1 cells infected with BCG, and found that NF-κB, MAPK and PI3K-Akt signaling pathways were enhanced, as well as some inflammatory chemokine/cytokine genes (e.g. CCL4, CXCL10, TNF and IL-1ß) were up-regulated. Surprisingly, the Akt-HIF-mTOR signaling pathway was also activated, which induces trained immunity. In this in vitro infection model, increased cytokine responses to lipopolysaccharides (LPS) restimulation, higher cell viability, and decreased Candida albicans loads were observed. CONCLUSIONS: We have first characterized the transcriptomic profiles of BCG-infected non-adherent THP-1 cells, and first developed a trained immunity in vitro model of the cells.


Assuntos
Monócitos , Mycobacterium bovis , Humanos , Vacina BCG , Imunidade Treinada , Proteínas Proto-Oncogênicas c-akt/genética , Células THP-1 , Fosfatidilinositol 3-Quinases , Citocinas
6.
Sci Adv ; 10(14): eadk8093, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578989

RESUMO

Trained immunity is one of the mechanisms by which BCG vaccination confers persistent nonspecific protection against diverse diseases. Genomic differences between the different BCG vaccine strains that are in global use could result in variable protection against tuberculosis and therapeutic effects on bladder cancer. In this study, we found that four representative BCG strains (BCG-Russia, BCG-Sweden, BCG-China, and BCG-Pasteur) covering all four genetic clusters differed in their ability to induce trained immunity and nonspecific protection. The trained immunity induced by BCG was associated with the Akt-mTOR-HIF1α axis, glycolysis, and NOD-like receptor signaling pathway. Multi-omics analysis (epigenomics, transcriptomics, and metabolomics) showed that linoleic acid metabolism was correlated with the trained immunity-inducing capacity of different BCG strains. Linoleic acid participated in the induction of trained immunity and could act as adjuvants to enhance BCG-induced trained immunity, revealing a trained immunity-inducing signaling pathway that could be used in the adjuvant development.


Assuntos
Vacina BCG , Tuberculose , Humanos , Ácido Linoleico , Imunidade Treinada , Multiômica , Adjuvantes Imunológicos/farmacologia
7.
Cancer Invest ; 42(3): 212-225, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38527848

RESUMO

This study aimed to develop prognostic prediction models for patients diagnosed with synchronous thyroid and breast cancer (TBC). Utilizing the SEER database, key predictive factors were identified, including T stage of thyroid cancer, T stage of breast cancer, M stage of breast cancer, patient age, thyroid cancer surgery type, and isotope therapy. A nomogram predicting 5-year and 10-year survival rates was constructed and validated, exhibiting strong performance (C-statistic: 0.79 in the development cohort (95% CI: 0.74-0.84), and 0.82 in the validation cohort (95% CI: 0.77-0.89)). The area under the Receiver Operator Characteristic (ROC) curve ranged from 0.798 to 0.883 for both cohorts. Calibration and decision curve analyses further affirmed the model's clinical utility. Stratifying patients into high-risk and low-risk groups using the nomogram revealed significant differences in survival rates (P < 0.0001). The successful development and validation of this nomogram for predicting 5-year and 10-year survival rates in patients with synchronous TBC hold promise for similar patient populations, contributing significantly to cancer research.


Assuntos
Neoplasias da Mama , Nomogramas , Programa de SEER , Neoplasias da Glândula Tireoide , Humanos , Feminino , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Neoplasias da Glândula Tireoide/mortalidade , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/cirurgia , Pessoa de Meia-Idade , Prognóstico , Idoso , Neoplasias Primárias Múltiplas/mortalidade , Neoplasias Primárias Múltiplas/patologia , Adulto , Masculino , Taxa de Sobrevida , Estadiamento de Neoplasias , Curva ROC
8.
Exp Cell Res ; 437(1): 113997, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38508328

RESUMO

Bronchopulmonary dysplasia (BPD) is characterized by shortened secondary septa and fewer, larger alveoli. Elastin deposition to the distal tips of the secondary septa is critical for elongation of the secondary septa. Alveolar myofibroblasts, which are thought to migrate to the septal tips during alveolarization, are mainly responsible for elastin production and deposition. Antenatal exposure to inflammation induces abnormal elastin deposition, thereby increasing the risk of developing BPD. Here, we found that lipopolysaccharide (LPS) significantly increased the expression of transforming growth factor-α (TGF-α) in an LPS-induced rat model of BPD and in LPS-treated human pulmonary epithelial cells (BEAS-2B). In addition, in vitro experiments suggested that LPS upregulated TGF-α expression via toll-like receptor 4 (TLR4)/tumor necrosis factor α-converting enzyme (TACE) signaling. Increased TGF-α levels via its receptor epidermal growth factor receptor (EGFR)-induced lysyl oxidase (LOX) overactivation and cell division cycle 42 (Cdc42) activity inhibition of myofibroblasts. Similarly, in vivo LOX overactivation and inhibition of Cdc42 activity were observed in the lungs of LPS-exposed pups. LOX overactivation led to abnormal elastin deposition, and inhibition of Cdc42 activity disturbed the directional migration of myofibroblasts and disrupted elastin localization. Most importantly, the EGFR inhibitor erlotinib partially rescued LOX overactivation and Cdc42 activity inhibition, and improved elastin deposition and alveolar development in antenatal LPS-treated rats. Taken together, our data suggest that TGF-α/EGFR signaling is critically involved in the regulation of elastin deposition and represents a novel therapeutic target.


Assuntos
Displasia Broncopulmonar , Lipopolissacarídeos , Animais , Feminino , Humanos , Recém-Nascido , Gravidez , Ratos , Displasia Broncopulmonar/induzido quimicamente , Displasia Broncopulmonar/metabolismo , Elastina , Receptores ErbB/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/metabolismo , Fator de Crescimento Transformador alfa
9.
Cancer Lett ; 587: 216735, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38369001

RESUMO

As the second most prevalent malignant tumor of head and neck, laryngeal squamous cell carcinoma (LSCC) imposes a substantial health burden on patients worldwide. Within recent years, resistance to oxidative stress and N6-methyladenosine (m6A) of RNA have been proved to be significantly involved in tumorigenesis. In current study, we investigated the oncogenic role of m6A modified long non coding RNAs (lncRNAs), specifically HOXA10-AS, and its downstream signaling pathway in the regulation of oxidative resistance in LSCC. Bioinformatics analysis revealed that heightened expression of HOXA10-AS was associated with the poor prognosis in LSCC patients, and N (6)-Methyladenosine (m6A) methyltransferase-like 3 (METTL3) was identified as a factor in promoting m6A modification of HOXA10-AS and further intensify its RNA stability. Mechanistically, HOXA10-AS was found to play as a competitive endogenous RNA (ceRNA) by sequestering miR-29 b-3p and preventing its downregulation of Integrin subunit alpha 6 (ITGA6), ultimately enhancing the oxidative resistance of tumor cells and promoting the malignant progression of LSCC. Furthermore, our research elucidated the mechanism by which ITGA6 accelerates Keap1 proteasomal degradation via enhancing TRIM25 expression, leading to increased Nrf2 stability and exacerbating its aberrant activation. Additionally, we demonstrated that ITGA6 enhances γ-secretase-mediated Notch signaling activation, ultimately promoting RBPJ-induced TRIM25 transcription. The current study provides the evidence supporting the effect of m6A modified HOXA10-AS and its downstream miR-29 b-3p/ITGA6 axis on regulating oxidative resistance and malignant progression in LSCC through the Notch and Keap1/Nrf2 pathways, and proposed that targeting this axis holds promise as a potential therapeutic approach for treating LSCC.


Assuntos
Adenina/análogos & derivados , Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Proteínas Homeobox A10 , Integrina alfa6 , Neoplasias Laríngeas , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , MicroRNAs/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/metabolismo , Neoplasias Laríngeas/patologia , Carcinoma de Células Escamosas/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Estresse Oxidativo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , RNA Longo não Codificante/genética , Metiltransferases/metabolismo
10.
Bioelectrochemistry ; 157: 108665, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38342073

RESUMO

Acetobacter aceti is a microbe that produces corrosive organic acids, causing severe corrosion of industrial equipment. Previous studies have focused on the organic acid corrosion of A. aceti, but neglected the possibility that it has electron transfer corrosion. This study found that electron transfer and organic acids can synergistically promote the corrosion of 2205 duplex stainless steel (DSS). Electrochemical measurement results showed that corrosion of 2205 DSS was more severe in the presence of A. aceti. Surface analysis indicated a thick biofilm formed on the steel surface, with low pH and dissolved oxygen concentrations under the biofilm. Corrosion intensified when A. aceti lacked a carbon source, suggesting that A. aceti can corrode metals by using metallic substrates as electron donors, in addition to its acidic by-products.


Assuntos
Acetobacter , Elétrons , Aço Inoxidável , Corrosão , Transporte de Elétrons , Aço , Biofilmes , Compostos Orgânicos
11.
Phys Chem Chem Phys ; 26(10): 8148-8157, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38380536

RESUMO

Probing the interaction between molecules and protocells is crucial for understanding the passive transport of functional molecules in and out of artificial and real cells. Second-harmonic generation (SHG) has been proven to be a powerful method for analyzing the adsorption and cross-membrane transport of molecules on lipid bilayers. In this study, we used SHG and two-photon fluorescence (TPF) imaging to study the interaction of charged dye molecules (D289) with a lipid vesicle. Unexpectedly, it was observed that the transport of D289 at a relatively high concentration is not as efficient as that at a lower dye concentration. Periodic shrinking of the model protocell and discharging of D289 out from the vesicle were revealed by combined analyses of SHG and TPF images. The response of the vesicle to a surfactant was also analyzed with D289 as a probe. This work demonstrates that the combined SHG and TPF imaging method is a unique approach that can provide detailed information on the interaction of molecules and lipids (both morphology and molecular kinetics). Determining these subtle interfacial kinetics in molecules is important for understanding the mechanism of many biophysical processes occurring on lipids.

12.
Am J Pathol ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38423356

RESUMO

Radiation-induced enteritis, a significant concern in abdominal radiation therapy, is associated closely with gut microbiota dysbiosis. The critical mucus layer plays a pivotal role in preventing the translocation of commensal and pathogenic microbes. Although the significant expression of REGγ in intestinal epithelial cells is well established, its role in modulating the mucus layer and gut microbiota remains enigmatic. The current study revealed notable changes in gut microorganisms and metabolites in irradiated mice lacking REGγ, as opposed to wild-type mice. Concomitant with gut microbiota dysbiosis, REGγ deficiency facilitated the infiltration of neutrophils and macrophages, thereby exacerbating intestinal inflammation after irradiation. Furthermore, fluorescence in situ hybridization assays unveiled an augmented proximity of bacteria to intestinal epithelial cells in REGγ knockout mice after irradiation. Mechanistically, deficiency of REGγ led to diminished goblet cell populations and reduced expression of key goblet cell markers, Muc2 and Tff3, observed in both murine models, minigut organoid systems and human intestinal goblet cells, indicating the intrinsic role of REGγ within goblet cells. Interestingly, although administration of broad-spectrum antibiotics did not impact the alteration of goblet cell numbers and MUC2 secretion, it effectively attenuated inflammation levels in the ileum of irradiated REGγ absent mice, aligning them with their wild-type counterparts. Collectively, these findings highlight the crucial contribution of REGγ in counteracting radiation-triggered microbial imbalances and cell-autonomous regulation of mucin secretion.

13.
Carbohydr Polym ; 330: 121812, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368083

RESUMO

Biomacromolecules based injectable and self-healing hydrogels possessing high mechanical properties have widespread potential in biomedical field. However, dynamic features are usually inversely proportional to toughness. It is challenging to simultaneously endow these properties to the dynamic hydrogels. Here, we fabricated an injectable nanocomposite hydrogel (CS-NPs@OSA-l-Gtn) stimultaneously possessing excellent autonomous self-healing performance and high mechanical strength by doping chitosan nanoparticles (CS-NPs) into dynamic polymer networks of oxidized sodium alginate (OSA) and gelatin (Gtn) in the presence of borax. The synergistic effect of the multiple reversible interactions combining dynamic covalent bonds (i.e., imine bond and borate ester bond) and noncovalent interactions (i.e., electrostatic interaction and hydrogen bond) provide effective energy dissipation to endure high fatigue resistance and cyclic loading. The dynamic hydrogel exhibited excellent mechanical properties like maximum 2.43 MPa compressive strength, 493.91 % fracture strain, and 89.54 kJ/m3 toughness. Moreover, the integrated hydrogel after injection and self-healing could withstand 150 successive compressive cycles. Besides, the bovine serum albumin embedded in CS-NPs could be sustainably released from the nanocomposite hydrogel for 12 days. This study proposes a novel strategy to synthesize an injectable and self-healing hydrogel combined with excellent mechanical properties for designing high-strength natural carriers with sustained protein delivery.


Assuntos
Alginatos , Quitosana , Alginatos/química , Nanogéis , Gelatina/química , Hidrogéis/química , Polímeros , Quitosana/química
14.
Animals (Basel) ; 14(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38396553

RESUMO

The NOTCH signaling pathway plays a pivotal role in diverse developmental processes, including cell proliferation and differentiation. In this study, we investigated whether this signaling molecules also contribute to avian adipogenesis. Using previous mRNA-seq datasets, we examined the expression of 11 signaling members during avian adipocyte differentiation. We found most members are down-regulated throughout differentiation (p < 0.05). As a representative, NOTCH1 was decreased in cultured chicken abdominal adipocytes during adipogenesis at mRNA and protein levels (p < 0.05). Moreover, using an overexpression plasmid for NOTCH1's intracellular domain (NICD1), as well as siRNA and DAPT to activate or deplete NOTCH1 in cells, we investigated the role of NOTCH1 in avian adipogenesis. Our findings illuminate that NOTCH1 activates the expression of HES1 and SOCS3 while it decreases NR2F2 and NUMB (p < 0.05), as well as inhibits oleic acid-induced adipocyte differentiation (p < 0.01). We further demonstrate that HES1, a downstream transcription factor activated by NOTCH1, also significantly inhibits adipogenesis by suppressing PPARγ and C/EBPα (p < 0.01). Collectively, these findings establish NOTCH1 as a negative regulator of avian adipocyte differentiation, unveiling NOTCH signaling as a potential target for regulating avian fat deposition.

15.
Mol Plant ; 17(2): 325-341, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38178576

RESUMO

Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight (BB), a globally devastating disease of rice (Oryza sativa) that is responsible for significant crop loss. Sugars and sugar metabolites are important for pathogen infection, providing energy and regulating events associated with defense responses; however, the mechanisms by which they regulate such events in BB are unclear. As an inevitable sugar metabolite, methylglyoxal (MG) is involved in plant growth and responses to various abiotic stresses, but the underlying mechanisms remain enigmatic. Whether and how MG functions in plant biotic stress responses is almost completely unknown. Here, we report that the Xoo strain PXO99 induces OsWRKY62.1 to repress transcription of OsGLY II genes by directly binding to their promoters, resulting in overaccumulation of MG. MG negatively regulates rice resistance against PXO99: osglyII2 mutants with higher MG levels are more susceptible to the pathogen, whereas OsGLYII2-overexpressing plants with lower MG content show greater resistance than the wild type. Overexpression of OsGLYII2 to prevent excessive MG accumulation confers broad-spectrum resistance against the biotrophic bacterial pathogens Xoo and Xanthomonas oryzae pv. oryzicola and the necrotrophic fungal pathogen Rhizoctonia solani, which causes rice sheath blight. Further evidence shows that MG reduces rice resistance against PXO99 through CONSTITUTIVE DISEASE RESISTANCE 1 (OsCDR1). MG modifies the Arg97 residue of OsCDR1 to inhibit its aspartic protease activity, which is essential for OsCDR1-enhanced immunity. Taken together, these findings illustrate how Xoo promotes infection by hijacking a sugar metabolite in the host plant.


Assuntos
Oryza , Xanthomonas , Oryza/genética , Proteínas de Plantas/metabolismo , Aldeído Pirúvico/metabolismo , Xanthomonas/fisiologia , Resistência à Doença/genética , Açúcares/metabolismo , Peptídeo Hidrolases/genética , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
16.
Animals (Basel) ; 14(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38254347

RESUMO

Enterococcus faecium (E. faecium) and Bacillus subtilis (B. subtilis) are widely used as probiotics to improve performance in animal production, but there have been few reports of their impacts on pigeon milk. In this study, twenty-four pairs of parental pigeons were randomly divided into four groups, with six replicates, and each pair feeding three squabs. The control group drank normal water. The E. faecium group, B. subtilis group, and mixed group drank water supplemented with 3 × 106 CFU/mL E. faecium, 2 × 107 CFU/mL B. subtilis, and a mixture of these two probiotics, respectively. The experiment lasted 19 days. The results demonstrated that the IgA and IgG levels were significantly higher in the milk of Group D pigeons than in the other groups. At the phylum level, Fimicutes, Actinobacteria, and Bacteroidetes were the three main phyla identified. At the genus level, Lactobacillus, Bifidobacterium, Veillonella, and Enterococcus were the four main genera identified. In conclusion, drinking water supplemented with E. faecium and B. subtilis could improve immunoglobulin levels in pigeon milk, and this could increase the ability of squabs to resist disease. E. faecium and B. subtilis could be used as probiotics in the pigeon industry.

17.
Heliyon ; 10(2): e24340, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293540

RESUMO

In recent years, glucagon-like peptide-1 (GLP-1) has demonstrated considerable potential in the treatment of type 2 diabetes (T2D) and obesity. However, the half-life of naturally occurring GLP-1 is quite short in vivo. Two common strategies employed for half-life extension are the use of the Albumin-binding domain (ABD) and XTEN polypeptide, which operate through different mechanisms. In this study, we designed an innovative GLP-1 receptor agonist with an extended duration of action. This new construct incorporated an albumin binding domain (ABD) and an XTEN sequence (either XTEN144 or XTEN288) as carriers. We referred to these fusion proteins as GLP-ABD-XTEN144 and GLP-ABD-XTEN288. In an E. coli system, the said constructs were efficaciously produced in substantial quantity. It was observed from in vitro studies that the fusion protein GLP-ABD-XTEN144 demonstrated a five times stronger affinity towards human serum albumin (HSA), boasting a binding affinity (Kd) of 5.50 nM. This was in contrast to GLP-ABD-XTEN288, whose Kd value was registered at 27.78 nM. Moreover, GLP-ABD-XTEN144 presented a half-life of 12.9 h in mice, thus exceeding the corresponding value for GLP-ABD-XTEN288, 7.32 h in mice. Both these fusion proteins significantly mitigated non-fasting blood sugar levels and overall food consumption for 48 h subsequent to a one-time injection in mice. Notably, GLP-ABD-XTEN144 exhibited more pronounced hypoglycemic activity and food inhibitory effects than GLP-ABD-XTEN288. The designed GLP-ABD-XTEN144 fusion protein shows promising prospects for clinical application in T2D treatment. Our findings also suggest that ABD and XTEN polypeptides synergistically contribute to half-life extension, further enhancing the pharmacokinetic characteristics of a payload.

18.
J Prosthodont ; 33(3): 221-230, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37302066

RESUMO

PURPOSE: To assess the clinical performance of screw-retained, ceramic-veneered, monolithic zirconia partial implant-supported fixed dental prostheses (ISFDP) over 5-10 years and to evaluate implant- and prosthesis-related factors influencing treatment failure and complications. MATERIALS AND METHODS: Partially edentulous patients treated with screw-retained all-ceramic ISFDPs with 2-4 prosthetic units with a documented follow-up of ≥5 years after implant loading were included in this retrospective study. The outcomes analyzed included implant/prosthesis failure and biological/technical complications. Possible risk factors were identified using the mixed effects Cox regression analysis. RESULTS: A screened sample of 171 participants with 208 prostheses (95% of the restorations were splinted crowns without a pontic) supported by 451 dental implants were enrolled in this study. The mean follow-up duration after prosthesis delivery was 82.4 ±17.2 months. By the end of the follow-up period, 431 (95.57%) of the 451 implants remained functional at the implant level. At the prosthesis level, 185 (88.94%) of the 208 partial ISFDPs remained functional. Biological complications were observed in 67 implants (14.86%), and technical complications were observed in 62 ISFDPs (29.81%). Analysis revealed only emergence profiles (over-contoured) as a significant risk factor for implant failure (P<0.001) and biological complications (P<0.001). Full-coverage ceramic-veneered zirconia prostheses had a significantly greater chance of chipping (P<0.001) compared with buccal-ceramic-veneered or monolithic zirconia prostheses. CONCLUSIONS: Screw-retained ceramic-veneered, monolithic partial ISFDPs have a favorable long-term survival rate. Over-contoured emergence profile is a significant risk factor associated with implant failure and biological complications. Buccal-ceramic-veneered and monolithic zirconia partial ISFDPs lower the initial prevalence of chipping compared with a full-coverage veneered design.


Assuntos
Cerâmica , Zircônio , Humanos , Estudos Retrospectivos , Coroas , Parafusos Ósseos , Prótese Dentária Fixada por Implante/efeitos adversos , Falha de Restauração Dentária , Porcelana Dentária , Prótese Parcial Fixa
19.
Immunopharmacol Immunotoxicol ; 46(2): 240-254, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38156770

RESUMO

INTRODUCTION: Ulcerative colitis (UC) is an inflammatory intestine disease characterized by dysfunction of the intestinal mucosal barrier, ferroptosis, and apoptosis. Previous researches suggest that celecoxib, a nonsteroidal anti-inflammatory drug, holds promise in alleviating inflammation in UC. Therefore, this study aims to investigate the effects and mechanisms of celecoxib in UC. METHODS: To identify ferroptosis-related drugs and genes associated with UC, we utilized the Gene Expression Omnibus (GEO), FerrDb databases, and DGIdb database. Subsequently, we established a 2.5% DSS (Dextran sulfate sodium)-induced colitis model in mice and treated them with 10 mg/kg of celecoxib to validate the bioinformatics results. We evaluated histological pathologies, inflammatory response, intestinal barrier function, ferroptosis markers, and apoptosis regulators. RESULTS: Celecoxib treatment significantly ameliorated DSS-induced UC in mice, as evidenced by the body weight change curve, colon length change curve, disease activity index (DAI) score, and histological index score. Celecoxib treatment reduced the level of pro-inflammatory factors and promoted the expressions of intestinal tight junction proteins such as Claudin-1 and Occludin, thereby restoring the integrity of the intestinal mucosal barrier. Furthermore, celecoxib treatment reversed the ferroptosis characteristics in DSS-induced mice by increasing glutathione (GSH), decreasing malondialdehyde (MDA), and increasing the expression of GPX-4 and xCT. Additionally, apoptosis was induced in mice with UC, as evidenced by increased Caspase3, BAD, P53, BAX, Caspase9 and Aifm1 production, and decreased expression of BCL-XL and BCL2. Celecoxib treatment significantly reversed the apoptotic changes in DSS-induced mice. CONCLUSION: Our findings suggest that celecoxib effectively treats DSS-induced UC in mice by inhibiting ferroptosis and apoptosis.


Celecoxib enhancing intestinal barrier functionCelecoxib alleviates ferroptosis in DSS-induces ulcerative colitisCelecoxib effectively alleviates apoptosis signaling pathway.


Assuntos
Colite Ulcerativa , Colite , Ferroptose , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Celecoxib/farmacologia , Colo/patologia , Função da Barreira Intestinal , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Colite/induzido quimicamente , Glutationa/metabolismo , Apoptose , Camundongos Endogâmicos C57BL
20.
Sci Data ; 10(1): 875, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062062

RESUMO

Digital public goods (DPGs), if implemented with effective policies, can facilitate the realization of the United Nations Sustainable Development Goals (SDGs). However, there are ongoing deliberations on how to define DPGs and assure that society can extract the maximum benefit from the growing number of digital resources. The International Research Center of Big Data for Sustainable Development Goals (CBAS) sees DPGs as an important mechanism to facilitate information-driven policy and decision-making processes for the SDGs. This article presents the results of a CBAS survey of 51 respondents from around the world spanning multiple scientific fields, who shared their expert opinions on DPGs and their thoughts about challenges related to their practical implementation in supporting the SDGs. Based on the survey results, the paper presents core principles in a proposed strategy, including establishment of international standards, adherence to open science and open data principles, and scalability in monitoring SDG indicators. A community-driven strategy to develop DPGs is proposed to accelerate DPG production in service of the SDGs while adhering to the core principles identified in the survey.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...