Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
1.
Sci Total Environ ; 935: 173249, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38754502

RESUMO

Selenium (Se), a highly beneficial animal feed additive, exhibits remarkable antioxidant and anti-inflammatory properties. Nano­selenium (Nano-Se) is an advanced formulation of Se featuring a specialized drug delivery vehicle, with good bioavailability, higher efficacy, and lower toxicity compared to the traditional form of Se. With the advancement of industry, cadmium (Cd) contamination occurs in different countries and regions and thereby contaminating different food crops, and the degree of pollution is degree increasing year by year. The present investigation entailed the oral administration of CdCl2 and/or Nano-Se to male chickens of the Hy-Line Variety White breed, which are one day old, subsequent to a 7-day adaptive feeding period, for a duration of 90 days. The study aimed to elucidate the potential protective impact of Nano-Se on Cd exposure. The study found that Nano-Se demonstrates potential in mitigating the blood-brain barrier (BBB) dysfunction characterized by impairment of adherens junctions (AJS) and tight junctions (TJS) by inhibiting reactive oxygen species (ROS) overproduction. In addition, the data uncovered that Nano-Se demonstrates a proficient ability in alleviating BBB impairment and inflammatory reactions caused by Cd through the modulation of the Wnt7A/ß-catenin pathway, highlights its potential to maintain brain homeostasis. Hence, this research anticipates that the utilization of Nano-Se effectively mitigate the detrimental impacts associated with Cd exposure on the BBB.

2.
J Adv Res ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38797476

RESUMO

INTRODUCTION: Phthalates exposure is a major public health concern due to the accumulation in the environment and associated with levels of testosterone reduction, leading to adverse pregnancy outcomes. However, the relationship between phthalate-induced testosterone level decline and ferroptosis remains poorly defined. OBJECTIVES: Herein, we aimed to explore the mechanisms of phthalates-induced testosterone synthesis disorder and its relationship to ferroptosis. METHODS: We conducted validated experiments in vivo male mice model and in vitro mouse Leydig TM3 cell line, followed by RNA sequencing and metabolomic analysis. We evaluated the levels of testosterone synthesis-associated enzymes and ferroptosis-related indicators by using qRT-PCR and Western blotting. Then, we analyzed the lipid peroxidation, ROS, Fe2+ levels and glutathione system to confirm the occurrence of ferroptosis. RESULTS: In the present study, we used di (2-ethylhexyl) phthalate (DEHP) to identify ferroptosis as the critical contributor to phthalate-induced testosterone level decline. It was demonstrated that DEHP caused glutathione metabolism and steroid synthesis disorders in Leydig cells. As the primary metabolite of DEHP, mono-2-ethylhexyl phthalate (MEHP) triggered testosterone synthesis disorder accompanied by a decrease in the expression of solute carri1er family 7 member 11 (SLC7A11) protein. Furthermore, MEHP synergistically induced ferroptosis with Erastin through the increase of intracellular and mitochondrial ROS, and lipid peroxidation production. Mechanistically, overexpression of SLC7A11 counteracts the synergistic effect of co-exposure to MEHP-Erastin. CONCLUSION: Our research results suggest that MEHP does not induce ferroptosis but synergizes Erastin-induced ferroptosis. These findings provide evidence for the role of ferroptosis in phthalates-induced testosterone synthesis disorder and point to SLC7A11 as a potential target for male reproductive diseases. This study established a correlation between ferroptosis and phthalates cytotoxicity, providing a novel view point for mitigating the issue of male reproductive disease and "The Global Plastic Toxicity Debt".

3.
Int J Biol Macromol ; 270(Pt 2): 132408, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754683

RESUMO

Porcine Epidemic Diarrhea Virus (PEDV) is a highly contagious virus that causes Porcine Epidemic Diarrhea (PED). This enteric disease results in high mortality rates in piglets, leading to significant financial losses in the pig industry. However, vaccines cannot provide sufficient protection against epidemic strains. Spike (S) protein exposed on the surface of virion mediates PEDV entry into cells. Our findings imply that matrine (MT), a naturally occurring alkaloid, inhibits PEDV infection targeting S protein of virions and biological process of cells. The GLY434 residue in the autodocking site of the S protein and MT conserved based on sequence comparison. This study provides a comprehensive analysis of viral attachment, entry, and virucidal effects to investigate how that MT inhibits virus replication. MT inhibits PEDV attachment and entry by targeting S protein. MT was added to cells before, during, or after infection, it exhibits anti-PEDV activities and viricidal effects. Network pharmacology focuses on addressing causal mechanisms rather than just treating symptoms. We identified the key genes and screened the cell apoptosis involved in the inhibition of MT on PEDV infection in network pharmacology. MT significantly promotes cell apoptosis in PEDV-infected cells to inhibit PEDV infection by activating the MAPK signaling pathway. Collectively, we provide the biological foundations for the development of single components of traditional Chinese medicine to inhibit PEDV infection and spread.


Assuntos
Alcaloides , Antivirais , Apoptose , Sistema de Sinalização das MAP Quinases , Matrinas , Vírus da Diarreia Epidêmica Suína , Quinolizinas , Glicoproteína da Espícula de Coronavírus , Quinolizinas/farmacologia , Quinolizinas/química , Alcaloides/farmacologia , Alcaloides/química , Animais , Vírus da Diarreia Epidêmica Suína/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/metabolismo , Antivirais/farmacologia , Antivirais/química , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Chlorocebus aethiops , Células Vero , Suínos , Replicação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
4.
J Agric Food Chem ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814005

RESUMO

Cadmium (Cd) is a transition metal ion that is extremely harmful to human and animal biological systems. Cd is a toxic substance that can accumulate in the food chain and cause various health issues. Sulforaphane (SFN) is a natural bioactive compound with potent antioxidant properties. In our study, 80 1 day-old chicks were fed with Cd (140 mg/kg BW/day) and/or SFN (50 mg/kg BW/day) for 90 days. The blood-thymus barrier (BTB) is a selective barrier separating T-lymphocytes from blood and cortical capillaries in the thymus cortex. Our research revealed that Cd could destroy the BTB by downregulating Wnt/ß-catenin signaling and induce immunodeficiency, leading to irreversible injury to the immune system. The study emphasizes the health benefits of SFN in the thymus. SFN could ameliorate Cd-triggered BTB dysfunction and pyroptosis in the thymus tissues. SFN modulated the PI3K/AKT/FOXO1 axis, improving the level of claudin-5 (CLDN5) in the thymus to alleviate BTB breakdown. Our findings indicated the toxic impact of Cd on thymus, and BTB could be the specific target of Cd toxicity. The finding also provides evidence for the role of SFN in maintaining thymic homeostasis for Cd-related health issues.

5.
J Agric Food Chem ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820047

RESUMO

Atrazine (ATR) is a widely used herbicide worldwide that can cause kidney damage in humans and animals by accumulation in water and soil. Lycopene (LYC), a carotenoid with numerous biological activities, plays an important role in kidney protection due to its potent antioxidant and anti-inflammatory effects. The current study sought to investigate the role of interactions between mtDNA and the cGAS-STING signaling pathway in LYC mitigating PANoptosis and inflammation in kidneys induced by ATR exposure. In our research, 350 mice were orally administered LYC (5 mg/kg BW/day) and ATR (50 or 200 mg/kg BW/day) for 21 days. Our results reveal that ATR exposure induces a decrease in mtDNA stability, resulting in the release of mtDNA into the cytoplasm through the mPTP pore and the BAX pore and the mobilization of the cGAS-STING pathway, thereby inducing renal PANoptosis and inflammation. LYC can inhibit the above changes caused by ATR. In conclusion, LYC inhibited ATR exposure-induced histopathological changes, renal PANoptosis, and inflammation by inhibiting the cGAS-STING pathway. Our results demonstrate the positive role of LYC in ATR-induced renal injury and provide a new therapeutic target for treating renal diseases in the clinic.

6.
Research (Wash D C) ; 7: 0378, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766643

RESUMO

The accumulation of senescent cells in kidneys is considered to contribute to age-related diseases and organismal aging. Mitochondria are considered a regulator of cell senescence process. Atrazine as a triazine herbicide poses a threat to renal health by disrupting mitochondrial homeostasis. Melatonin plays a critical role in maintaining mitochondrial homeostasis. The present study aims to explore the mechanism by which melatonin alleviates atrazine-induced renal injury and whether parkin-mediated mitophagy contributes to mitigating cell senescence. The study found that the level of parkin was decreased after atrazine exposure and negatively correlated with senescent markers. Melatonin treatment increased serum melatonin levels and mitigates atrazine-induced renal tubular epithelial cell senescence. Mechanistically, melatonin maintains the integrity of mitochondrial crista structure by increasing the levels of mitochondrial contact site and cristae organizing system, mitochondrial transcription factor A (TFAM), adenosine triphosphatase family AAA domain-containing protein 3A (ATAD3A), and sorting and assembly machinery 50 (Sam50) to prevent mitochondrial DNA release and subsequent activation of cyclic guanosine 5'-monophosphate-adenosine 5'-monophosphate synthase pathway. Furthermore, melatonin activates Sirtuin 3-superoxide dismutase 2 axis to eliminate the accumulation of reactive oxygen species in the kidney. More importantly, the antisenescence role of melatonin is largely determined by the activation of parkin-dependent mitophagy. These results offer novel insights into measures against cell senescence. Parkin-mediated mitophagy is a promising drug target for alleviating renal tubular epithelial cell senescence.

7.
Poult Sci ; 103(6): 103730, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631229

RESUMO

Atrazine (ATR) is widely used worldwide as a commercial herbicide, Diaminochlorotriazine (DACT) is the main metabolite of ATR in the organism. Both of them disrupt the production of steroids and induce abnormal reproductive development. The granulosa cells (GCs) are important for growth and reproduction of animals. However, the toxicity of ATR on the GCs of birds is not well clarified. To evaluate the effect of the environmental pollutant ATR on bird GCs. The quail GCs were allotted into 7 groups, C (The medium of M199), A20 (20 µM ATR), A100 (100 µM ATR), A250 (250 µM ATR), D20 (20 µM DACT), D100 (100 µM DACT) and D200 (200 µM DACT). The results demonstrated that ATR reduced the viability of GCs, disrupted mitochondrial structure (including mitochondrial cristae fragmentation and the mitochondrial morphology disappearance) and decreased mitochondrial membrane potential. Meanwhile, ATR interfered with the expression of key factors in the steroid synthesis pathway, inducing the secretion of the sex hormones E2 and P in GCs. which in turn induced apoptosis. Furthermore, the Nrf2/ARE pathway as a potential target to ameliorate ATR-induced endocrine disruption in GCs for proper reproductive functions. Our research provides a new perspective for understanding the effects of ATR on reproductive functions in birds.


Assuntos
Atrazina , Disruptores Endócrinos , Células da Granulosa , Herbicidas , Fator 2 Relacionado a NF-E2 , Animais , Atrazina/toxicidade , Células da Granulosa/efeitos dos fármacos , Feminino , Herbicidas/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Disruptores Endócrinos/toxicidade , Coturnix , Proteínas Aviárias/metabolismo , Proteínas Aviárias/genética , Transdução de Sinais/efeitos dos fármacos
8.
Poult Sci ; 103(5): 103638, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579575

RESUMO

Transport stress (TS) not only weakens poultry performance but also affects animal welfare. Additionally, TS can evoke cardiac damage by triggering sterile inflammation in chicks, but the underlying mechanism is not fully understood. Here, we aimed to elucidate how TS induces sterile inflammation and heart injury and to clarify the antagonism effect of astragalus polysaccharides (APS). We randomly divided 60 chicks (one-day-old female) into 5 groups (n = 12): Control_0h (Con_0h) group (chicks were slaughtered at initiation), Control group (stress-free control), TS group (simulated TS exposure for 8 h), TS plus water (TS+W) group, and TS plus APS (TS+APS) group. Before simulation transport, the chicks of TS+W and TS+APS groups were, respectively, dietary with 100 µL of water or APS (250 µg/mL). H&E staining was employed for cardiac histopathological observation. ELISA assay was used to measure oxidative stress marker levels (GSH, GPX, GST, and MDA). A commercial kit was used to isolate the mitochondrial portion, and qRT-PCR was employed to measure the mitochondrial DNA (mtDNA) levels. Furthermore, we evaluated the activity of mtDNA-mediated NF-κB, NLRP3 inflammasome, and cGAS-STING inflammatory pathways and the expression of downstream inflammatory factors by Western Blotting or qRT-PCR. Our findings revealed that APS notably relieved TS-induced myocardial histopathological lesions and infiltrations. Likewise, the decrease in proinflammatory factors (TNF-α, IL-1ß, and IL-6) and IFN-ß by APS further supported this result. Meanwhile, TS caused severe oxidative stress in the chick heart, as evidenced by decreased antioxidant enzymes and increased MDA. Importantly, APS prevented mtDNA stress and leakage by reducing oxidative stress. Interestingly, TS-induced mtDNA leakage caused a series of inflammation events via mtDNA-PRRs pathways, including TLR21-NF-κB, NLRP3 inflammasome, and cGAS-STING signaling. Encouragingly, all these adverse changes related to inflammation events induced by mtDNA-PRRs activation were all relieved by APS treatment. In summary, our findings provide the first evidence that inhibition of mtDNA-PRRs pathway-mediated sterile inflammation by APS could protect against TS-induced cardiac damage in chicks.


Assuntos
Galinhas , DNA Mitocondrial , Inflamação , Polissacarídeos , Doenças das Aves Domésticas , Animais , Polissacarídeos/farmacologia , Polissacarídeos/administração & dosagem , DNA Mitocondrial/metabolismo , Inflamação/veterinária , Inflamação/induzido quimicamente , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/induzido quimicamente , Feminino , Estresse Fisiológico/efeitos dos fármacos , Astrágalo/química , Distribuição Aleatória , Cardiopatias/veterinária , Cardiopatias/prevenção & controle , Cardiopatias/induzido quimicamente , Cardiopatias/etiologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
9.
J Hazard Mater ; 470: 134126, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554509

RESUMO

Cadmium (Cd) is a well-known testis toxicant. The blood-testis barrier (BTB) is a crucial component of the testis. Cd can disrupt the integrity of the BTB and reproductive function. However, the mechanism of Cd-induced disruption of BTB and testicular damage has not been fully elucidated. Here, our study investigates the effects of Cd on BTB integrity and testicular dysfunction. 80 (aged 1 day) Hy-Line white variety chickens were randomly designed into 4 groups and treated for 90 days, as follows: control group (essential diet), 35 Cd, 70 Cd and 140 Cd groups (35, 70 and 140 mg/kg Cd). The results found that Cd exposure diminished volume of the testes and induced histopathological lesions in the testes. Exposure to Cd induced an inflammatory response, disrupted the structure and function of the FAK/occludin/ZO-1 protein complex and disrupted the tight junction and adherens junction in the BTB. In addition, Cd exposure reduced the expression of steroid-related proteins and inhibited testosterone synthesis. Taken together, these data elucidate that Cd disrupts the integrity of the BTB and further inhibits spermatogenesis by dissociating the FAK/occludin/ZO-1 complex, which provides a basis for further investigation into the mechanisms of Cd-induced impairment of male reproductive function and pharmacological protection.


Assuntos
Barreira Hematotesticular , Cádmio , Galinhas , Testículo , Animais , Masculino , Barreira Hematotesticular/efeitos dos fármacos , Cádmio/toxicidade , Quinase 1 de Adesão Focal/metabolismo , Ocludina/metabolismo , Espermatogênese/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia , Testosterona/sangue , Proteína da Zônula de Oclusão-1/metabolismo
10.
Cell Mol Life Sci ; 81(1): 126, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470510

RESUMO

Stress-induced intestinal epithelial injury (IEI) and a delay in repair in infancy are predisposing factors for refractory gut diseases in adulthood, such as irritable bowel syndrome (IBS). Hence, it is necessary to develop appropriate mitigation methods for mammals when experiencing early-life stress (ELS). Weaning, as we all know, is a vital procedure that all mammalian newborns, including humans, must go through. Maternal separation (MS) stress in infancy (regarded as weaning stress in animal science) is a commonly used ELS paradigm. Drinking silicon-rich alkaline mineral water (AMW) has a therapeutic effect on enteric disease, but the specific mechanisms involved have not been reported. Herein, we discover the molecular mechanism by which silicon-rich AMW repairs ELS-induced IEI by maintaining intestinal stem cell (ISC) proliferation and differentiation through the glucagon-like peptide (GLP)2-Wnt1 axis. Mechanistic study showed that silicon-rich AMW activates GLP2-dependent Wnt1/ß-catenin pathway, and drives ISC proliferation and differentiation by stimulating Lgr5+ ISC cell cycle passage through the G1-S-phase checkpoint, thereby maintaining intestinal epithelial regeneration and IEI repair. Using GLP2 antagonists (GLP23-33) and small interfering RNA (SiWnt1) in vitro, we found that the GLP2-Wnt1 axis is the target of silicon-rich AMW to promote intestinal epithelium regeneration. Therefore, silicon-rich AMW maintains intestinal epithelium regeneration through the GLP2-Wnt1 axis in piglets under ELS. Our research contributes to understanding the mechanism of silicon-rich AMW promoting gut epithelial regeneration and provides a new strategy for the alleviation of ELS-induced IEI.


Assuntos
Experiências Adversas da Infância , Águas Minerais , Recém-Nascido , Humanos , Animais , Suínos , Silício/metabolismo , Privação Materna , Mucosa Intestinal/metabolismo , Mamíferos
11.
J Agric Food Chem ; 72(13): 7411-7422, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38390847

RESUMO

Di-(2-ethylhexyl) phthalate (DEHP), as the most common phthalate, has been extensively used as a plasticizer to improve the plasticity of agricultural products, which pose severe harm to human health. Mitochondrial dynamics and endoplasmic reticulum (ER) homeostasis are indispensable for maintaining mitochondria-associated ER membrane (MAM) integrity. In this study, we aimed to explore the effect of DEHP on the nervous system and its association with the ER-mitochondria interaction. Here, we showed that DEHP caused morphological changes, motor deficits, cognitive impairments, and blood-brain barrier disruption in the brain. DEHP triggered ER stress, which is mainly mediated by protein kinase R-like endoplasmic reticulum kinase (PERK) signaling. Moreover, DEHP-induced mitofusin-2 (Mfn2) downregulation results in imbalance of the mitochondrial dynamics. Interestingly, DEHP exposure impaired MAMs by inhibiting the Mfn2-PERK interaction. Above all, this study elucidates the disruption of the Mfn2-PERK axis-mediated ER-mitochondria interaction as a phthalate-induced neurotoxicity that could be potentially developed as a novel therapy for neurological diseases.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Humanos , Dietilexilftalato/toxicidade , Dietilexilftalato/metabolismo , Mitocôndrias/metabolismo , Ácidos Ftálicos/toxicidade , Ácidos Ftálicos/metabolismo , Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Hidrolases/metabolismo
12.
Sci Total Environ ; 922: 171015, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38369134

RESUMO

Atrazine (ATZ) is the most prevalent herbicide that has been widely used in agriculture to control broadleaf weeds and improve crop yield and quality. The heavy use of ATZ has caused serious environmental pollution and toxicity to human health. Lycopene (LYC), is a carotenoid that exhibits numerous health benefits, such as prevention of cardiovascular diseases and nephropathy. However, it remains unclear that whether ATZ causes cardiorenal injury or even cardiorenal syndrome (CRS) and the beneficial role of LYC on it. To test this hypothesis, mice were treated with LYC and/or ATZ for 21 days by oral gavage. This study demonstrated that ATZ exposure caused cardiorenal morphological alterations, and several inflammatory cell infiltrations mediated by activating NF-κB signaling pathways. Interestingly, dysregulation of MAPK signaling pathways and MAPK phosphorylation caused by ATZ have been implicated in cardiorenal diseases. ATZ exposure up-regulated cardiac and renal injury associated biomarkers levels that suggested the occurrence of CRS. However, these all changes were reverted, and the phenomenon of CAR was disappeared by LYC co-treatment. Based on our findings, we postulated a novel mechanism to elucidate pesticide-induced CRS and indicated that LYC can be a preventive and therapeutic agent for treating CRS by targeting MAPK/NF-κB signaling pathways.


Assuntos
Atrazina , Síndrome Cardiorrenal , Humanos , Camundongos , Animais , Licopeno/metabolismo , Atrazina/toxicidade , NF-kappa B , Síndrome Cardiorrenal/induzido quimicamente , Estresse Oxidativo
13.
Environ Pollut ; 346: 123610, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382728

RESUMO

As the most produced phthalate, di-(2-ethylhexyl) phthalate (DEHP) is a widely environmental pollutant primarily used as a plasticizer, which cause the harmful effects on human health. However, the impact of DEHP on spleen and its underlying mechanisms are still unclear. Pyroptosis is a novel form of cell death induced by activating NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasomes and implicated in pathogenesis of numerous inflammatory diseases. The current study aimed to explore the impact of DEHP on immune inflammatory response in mouse spleen. In this study, the male ICR mice were treated with DEHP (200 mg/kg) for 28 days. Here, DEHP exposure caused abnormal pathohistological and ultrastructural changes, accompanied by inflammatory cells infiltration in mouse spleen. DEHP exposure arouse heat shock response that involves increase of heat shock proteins 60 (HSP60) expression. DEHP also elevated the expressions of toll-like receptor 4 (TLR4) and myeloid differentiation protein 88 (MyD88) proteins, as well as the activation of NF-κB pathway. Moreover, DEHP promoted NLRP3 inflammasome activation and triggered NLRP3 inflammasome-induced pyroptosis. Mechanistically, DEHP drives splenic inflammatory response via activating HSP60/TLR4/NLRP3 signaling axis-dependent pyroptosis. Our findings reveal that targeting HSP60-mediated TLR4/NLRP3 signaling axis may be a promising strategy for inflammatory diseases treatment.


Assuntos
Dietilexilftalato , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ácidos Ftálicos , Humanos , Animais , Camundongos , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Receptor 4 Toll-Like/metabolismo , Chaperonina 60/farmacologia , Piroptose , Dietilexilftalato/toxicidade , Baço/metabolismo , Camundongos Endogâmicos ICR
14.
Anim Nutr ; 16: 174-188, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38357573

RESUMO

Optimal intestinal health and functionality are essential for animal health and performance, and simultaneously intestinal nutrient transporters and intestinal peptides are also involved in appetite and feed intake control mechanisms. Given the potential of essential oil (EO) in improving animal performance and improving feed palatability, we hypothesized that dietary supplementation of cinnamaldehyde and carvacrol could improve performance and appetite of nursery pigs by modulating intestinal health and microbiota. Cinnamaldehyde (100 mg/kg), carvacrol (100 mg/kg), and their mixtures (including 50 mg/kg cinnamaldehyde and 50 mg/kg carvacrol) were supplemented into the diets of 240 nursery pigs for 42 d, and data related to performance were measured. Thereafter, the influence of EO on intestinal health, appetite and gut microbiota and their correlations were explored. EO supplementation increased (P < 0.05) the body weight, average daily gain (ADG) and average daily feed intake (ADFI) of piglets, and reduced (P < 0.05) diarrhea rates in nursery pigs. Furthermore, EO increased (P < 0.05) the intestinal absorption area and the abundance of tight junction proteins, and decreased (P < 0.05) intestinal permeability and local inflammation. In terms of intestinal development and the mucus barrier, EO promoted intestinal development and increased (P < 0.05) the number of goblet cells. Additionally, we found that piglets in the EO-supplemented group had upregulated (P < 0.05) levels of transporters and digestive enzymes in the intestine, which were significantly associated with daily gain and feed utilization. In addition, EO supplementation somewhat improved appetite in nursery pigs, increased the diversity of the gut microbiome and the abundance of beneficial bacteria, and there was a correlation between altered bacterial structure and appetite-related hormones. These findings indicate that EO is effective in promoting growth performance and nutrient absorption as well as in regulating appetite by improving intestinal health and bacterial structure.

15.
Sci Total Environ ; 919: 170724, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38325449

RESUMO

Di(2-ethylhexyl) phthalate (DEHP) is a synthetic chemical applied as a plasticizer. As an environmental toxicant, DEHP poses a serious health threat. Many studies have revealed that DEHP can cause lead to various degrees of damage to the kidney. However, the evidence of DEHP-induced renal ferroptosis has not been reported. The purpose of this work was to probe the specific role of lipophagy in DEHP-induced renal injury and to investigate the relationship between lipophagy and ferroptosis. Quail were treated with DEHP (250 mg/kg BW/day, 500 mg/kg BW/day and 750 mg/kg BW/day) for 45 days. Microstructural and ultrastructural observations showed that DEHP caused damage to glomerular and tubular cells, and autophagy with multilayer structures were observed, suggesting that DEHP can induce lipophagy. The results indicated that the iron homeostasis was abnormal and the lipid peroxidation was increased. SLC7A11 and SLC3A2 were down-regulated. PTGS2, ACSL4 and LPCAT3 were elevated. In conclusion, DEHP could induce lipid peroxidation, lead to ferroptosis, and damage renal cells. Therefore, the relationship between lipophagy and ferroptosis was elucidated, which provided a new basis for intervention and prevention of DEHP increased diseases.


Assuntos
Dietilexilftalato , Ferroptose , Ácidos Ftálicos , Animais , Coturnix , Codorniz , Dietilexilftalato/toxicidade , Rim
16.
Nat Prod Res ; 38(10): 1719-1726, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37265118

RESUMO

A new lignan, named pouzolignan P (1), together with 14 known ones (2 - 15) were isolated from the roots of Pouzolzia zeylanica (L.) Benn. Their structures were deduced based on the detailed spectroscopic analysis. All the isolates were evaluated for their inhibitory activities toward the ATP citrate lyase (ACLY). Among them, four lignans, isopouzolignan K (3), gnemontanins E (5), gnetuhainin I (6), and styraxlignolide D (15) showed excellent ACLY inhibitory effect with IC50 values of 9.06, 0.59, 2.63, and 7.62 µM, respectively. These compounds were further evaluated for their cholesterol-lowing effects on ox-LDL-induced high-cholesterol HepG2 cells. Compound 15 emerges as the most potent ACLY inhibitor, which significantly decreased the TC level in a dose-dependent manner. In addition, molecular docking simulations elucidated that 15 formed a strong hydrogen-bond interaction with Glu599 of ACLY, which was an important site responsible for the enzyme catalytic activity.


Assuntos
ATP Citrato (pro-S)-Liase , Lignanas , ATP Citrato (pro-S)-Liase/química , Simulação de Acoplamento Molecular , Inibidores Enzimáticos/farmacologia , Colesterol
17.
Exp Anim ; 73(1): 61-72, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37574269

RESUMO

Spinal cord injury (SCI) is a devastating disease characterized by neuronal apoptosis. Gli-similar 3 (GLIS3), a transcriptional factor, was involved in cell apoptosis and associated with the transcription of downstream target genes related to neuronal function. However, the function of GLIS3 in SCI remains unknown. Therefore, we used the mouse model of SCI to explore the role of GLIS3 in SCI. The results showed that GLIS3 expression was significantly increased in spinal cord tissues of SCI mice, and GLIS3 overexpression promoted the functional recovery, reserved histological changes, and inhibited neuronal apoptosis after SCI. Through online tools, the potential target genes of GLIS3 were analyzed and we found that Mps one binder kinase activator 1b (Mob1b) had a strong association with SCI among these genes. MOB1b is a core component of Hippo signaling pathway, which was reported to inhibit cell apoptosis. MOB1b expression was significantly increased in mice at 7 days post-SCI and GLIS3 overexpression further increased its expression. Dual-luciferase reporter assay revealed that GLIS3 bound to the promoter of Mob1b and promoted its transcription. In conclusion, our findings reveal that the compensatory increase of GLIS3 promotes functional recovery after SCI through inhibiting neuronal apoptosis by transcriptionally regulating MOB1b. Our study provides a novel target for functional recovery after SCI.


Assuntos
Apoptose , Traumatismos da Medula Espinal , Camundongos , Animais , Apoptose/genética , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia , Neurônios/patologia , Medula Espinal/metabolismo , Recuperação de Função Fisiológica/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
18.
Sci Total Environ ; 912: 168924, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38036146

RESUMO

The global prevalence of Neurological disorders has increased alarmingly in response to environmental and lifestyle changes. Atrazine (ATZ) is a difficult to degrade soil and water pollutant with well-known neurotoxicity. Melatonin (MT), an antioxidant with chemoprotective properties, has a potential therapeutic effect on cerebellar damage caused by ATZ exposure. The aim of this study was to explore the effects and underlying mechanisms of MT on the cerebellar inflammatory response and pyroptosis induced by ATZ exposure. In this study, C57BL/6J mice were treated with ATZ (170 mg/kg BW/day) and MT (5 mg/kg BW/day) for 28 days. Our results revealed that MT alleviated the histopathological changes, ultrastructural damage, oxidative stress and decrease of mitochondrial membrane potential (ΔΨm) in the cerebellum induced by ATZ exposure. ATZ exposure damaged the mitochondria leading to release of mitochondrial DNA (mtDNA) to the cytoplasm, MT activated the cyclic GMP-AMP synthetase interferon gene stimulator (cGAS-STING) axis to alleviate inflammation and pyroptosis caused by ATZ exposure. In general, our study provided new evidence that the cGAS-STING-NLRP3 axis plays an important role in the treatment of ATZ-induced cerebellar injury by MT.


Assuntos
Atrazina , Melatonina , Nucleotídeos Cíclicos , Animais , Camundongos , Atrazina/toxicidade , Atrazina/metabolismo , Melatonina/metabolismo , Piroptose , Interferons/metabolismo , Interferons/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Camundongos Endogâmicos C57BL , Mitocôndrias , DNA Mitocondrial , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/farmacologia
19.
Ecotoxicol Environ Saf ; 269: 115780, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056123

RESUMO

The granulosa cells (GCs) of birds are essential for the reproduction and maintenance of populations in nature. Atrazine (ATR) is a potent endocrine disruptor that can interfere with reproductive function in females and Diaminochlorotriazine (DACT) is the primary metabolite of ATR in the organism. Melatonin (MT) is an endogenous hormone with antioxidant properties that plays a crucial role in development of animal germ cells. However, how ATR causes mitochondrial dysfunction, abnormal secretion of steroid hormones, and whether MT prevents ATR-induced female reproductive toxicity remains unclear. Thus, the purpose of this study is to investigate the protective effect of MT against ATR-induced female reproduction. In the present study, the GCs of quail were divided into 6 groups, as follows: C (Serum-free medium), MT (10 µM MT), A250 (250 µM ATR), MA250 (10 µM MT+250 µM ATR), D200 (200 µM DACT) and MD200 (10 µM MT+200 µM DACT), and were cultured for 24 h. The results revealed that ATR prevented GCs proliferation and decreased cell differentiation. ATR caused oxidative damage and mitochondrial dysfunction, leading to disruption of steroid synthesis, which posed a severe risk to GC's function. However, MT supplements reversed these changes. Mechanistically, our study exhibited that the ROS/SIRT1/STAR axis as a target for MT to ameliorate ATR-induced mitochondrial dysfunction and steroid disorders in GCs, which provides new insights into the role of MT in ATR-induced reproductive capacity and species conservation in birds.


Assuntos
Atrazina , Herbicidas , Melatonina , Doenças Mitocondriais , Animais , Feminino , Atrazina/toxicidade , Atrazina/metabolismo , Células da Granulosa/metabolismo , Herbicidas/toxicidade , Herbicidas/metabolismo , Melatonina/farmacologia , Doenças Mitocondriais/induzido quimicamente , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/efeitos dos fármacos , Sirtuína 1/metabolismo , Esteroides/metabolismo , Codorniz/genética , Codorniz/metabolismo
20.
Environ Toxicol ; 39(3): 1163-1174, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37860879

RESUMO

Cadmium (Cd) as a ubiquitous toxic heavy metal is reported to affect the nervous system. Selenium (Se) has been shown to have antagonistic effects against heavy metal toxicity. In addition, it shows potential antioxidant and anti-inflammatory properties. Thus, the purpose of this study was to determine the possible mechanism of brain injury after high Cd exposure and the mitigation of Nano-selenium (Nano-Se) against Cd-induced brain injury. In this study, the Cd-treated group showed a decrease in the number of neurons in brain tissue, swelling of the endoplasmic reticulum and mitochondria, and the formation of autophagosomes. Nano-Se intervention restored Cd-caused alterations in neuronal morphology, endoplasmic reticulum, and mitochondrial structure, thereby reducing neuronal damage. Furthermore, we found that some differentially expressed genes were involved in cell junction and molecular functions. Subsequently, we selected eleven (11) related differentially expressed genes for verification. The qRT-PCR results revealed the same trend of results as determined by RNA-Seq. Our findings also showed that Nano-Se supplementation alleviated Cx43 phosphorylation induced by Cd exposure. Based on immunofluorescence colocalization it was demonstrated that higher expression of GFAP and lower expressions of Cx43 were restored by Nano-Se supplementation. In conclusion, the data presented in this study establish a direct association between the phosphorylation of Cx43 and the occurrence of autophagy and neuroinflammation. However, it is noteworthy that the introduction of Nano-Se supplementation has been observed to mitigate these alterations. These results elucidate the relieving effect of Nano-Se on Cd exposure-induced brain injury.


Assuntos
Lesões Encefálicas , Cérebro , Selênio , Humanos , Selênio/farmacologia , Cádmio/toxicidade , Conexina 43/metabolismo , Conexinas/metabolismo , Fosforilação , Cérebro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...