Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Nat Commun ; 15(1): 2827, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565528

RESUMO

Phosphorus (P) limitation of ecosystem processes is widespread in terrestrial habitats. While a few auxiliary metabolic genes (AMGs) in bacteriophages from aquatic habitats are reported to have the potential to enhance P-acquisition ability of their hosts, little is known about the diversity and potential ecological function of P-acquisition genes encoded by terrestrial bacteriophages. Here, we analyze 333 soil metagenomes from five terrestrial habitat types across China and identify 75 viral operational taxonomic units (vOTUs) that encode 105 P-acquisition AMGs. These AMGs span 17 distinct functional genes involved in four primary processes of microbial P-acquisition. Among them, over 60% (11/17) have not been reported previously. We experimentally verify in-vitro enzymatic activities of two pyrophosphatases and one alkaline phosphatase encoded by P-acquisition vOTUs. Thirty-six percent of the 75 P-acquisition vOTUs are detectable in a published global topsoil metagenome dataset. Further analyses reveal that, under certain circumstances, the identified P-acquisition AMGs have a greater influence on soil P availability and are more dominant in soil metatranscriptomes than their corresponding bacterial genes. Overall, our results reinforce the necessity of incorporating viral contributions into biogeochemical P cycling.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Ecossistema , Fósforo , Metagenoma/genética , Solo
2.
Sci Total Environ ; 898: 165584, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37467988

RESUMO

The applications of sulphate-reducing microorganisms (SRMs) in acid mine drainage (AMD) treatment systems have received extensive attention due to their ability to reduce sulphate and stabilize metal(loid)s. Despite great phylogenetic diversity of SRMs, only a few have been used in AMD treatment bioreactors. In situ enrichment could be an efficient approach to select new effective SRMs for AMD treatment. Here, we performed in situ enrichment of SRMs in highly stratified AMD sediment cores using different kinds of carbon source mixture. The dsrAB (dissimilatory sulfite reductase) genes affiliated with nine phyla (two archaeal and seven bacterial phyla) and 26 genera were enriched. Remarkably, those genes affiliated with Aciduliprofundum and Vulcanisaeta were enriched in situ in AMD-related environments for the first time, and their relative abundances were negatively correlated with pH. Furthermore, 107 dsrAB-containing metagenome-assembled genomes (MAGs) were recovered from metagenomic datasets, with 14 phyla (two archaeal and 12 bacterial phyla) and 15 genera. The relative abundances of MAGs were positively correlated with total carbon and sulphate contents. Our findings expanded the diversity of SRMs that can be enriched in AMD sediment, and revealed the physiochemical properties that might affect the growth of SRMs, which provided guidance for AMD treatment bioreators.


Assuntos
Microbiota , Sulfatos , Filogenia , Bactérias/genética , Archaea , Ácidos
3.
Acta Pharmacol Sin ; 44(6): 1122-1134, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36627343

RESUMO

Aggregation of α-synuclein, a component of Lewy bodies (LBs) or Lewy neurites in Parkinson's disease (PD), is strongly linked with disease development, making it an attractive therapeutic target. Inhibiting aggregation can slow or prevent the neurodegenerative process. However, the bottleneck towards achieving this goal is the lack of such inhibitors. In the current study, we established a high-throughput screening platform to identify candidate compounds for preventing the aggregation of α-synuclein among the natural products in our in-house compound library. We found that a small molecule, 03A10, i.e., (+)-desdimethylpinoresinol, which is present in the fruits of Vernicia fordii (Euphorbiaceae), modulated aggregated α-synuclein, but not monomeric α-synuclein, to prevent further elongation of α-synuclein fibrils. In α-synuclein-overexpressing cell lines, 03A10 (10 µM) efficiently prevented α-synuclein aggregation and markedly ameliorated the cellular toxicity of α-synuclein fibril seeds. In the MPTP/probenecid (MPTP/p) mouse model, oral administration of 03A10 (0.3 mg· kg-1 ·d-1, 1 mg ·kg-1 ·d-1, for 35 days) significantly alleviated behavioral deficits, tyrosine hydroxylase (TH) neuron degeneration and p-α-synuclein aggregation in the substantia nigra (SN). As the Braak hypothesis postulates that the prevailing site of early PD pathology is the gastrointestinal tract, we inoculated α-synuclein preformed fibrils (PFFs) into the mouse colon. We demonstrated that α-synuclein PFF inoculation promoted α-synuclein pathology and neuroinflammation in the gut and brain; oral administration of 03A10 (5 mg· kg-1 ·d-1, for 4 months) significantly attenuated olfactory deficits, α-synuclein accumulation and neuroinflammation in the olfactory bulb and SN. We conclude that 03A10 might be a promising drug candidate for the treatment of PD. 03A10 might be a novel drug candidate for PD treatment, as it inhibits α-synuclein aggregation by modulating aggregated α-synuclein rather than monomeric α-synuclein to prevent further elongation of α-synuclein fibrils and prevent α-synuclein toxicity in vitro, in an MPTP/p mouse model, and PFF-inoculated mice.


Assuntos
Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Doenças Neuroinflamatórias , Substância Negra/metabolismo , Substância Negra/patologia , Encéfalo/metabolismo
4.
mSystems ; 8(1): e0073622, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36507660

RESUMO

Methylmercury (MeHg) is a notorious neurotoxin, and its production and degradation in the environment are mainly driven by microorganisms. A variety of microbial MeHg producers carrying the gene pair hgcAB and degraders carrying the merB gene have been separately reported in recent studies. However, surprisingly little attention has been paid to the simultaneous investigation of the diversities of microbial MeHg producers and degraders in a given habitat, and no studies have been performed to explore to what extent these two contrasting microbial groups correlate with MeHg accumulation in the habitat of interest. Here, we collected 86 acid mine drainage (AMD) sediments from an area spanning approximately 500,000 km2 in southern China and profiled the sediment-borne putative MeHg producers and degraders using genome-resolved metagenomics. 46 metagenome-assembled genomes (MAGs) containing hgcAB and 93 MAGs containing merB were obtained, including those from various taxa without previously known MeHg-metabolizing microorganisms. These diverse MeHg-metabolizing MAGs were formed largely via multiple independent horizontal gene transfer (HGT) events. The putative MeHg producers from Deltaproteobacteria and Firmicutes as well as MeHg degraders from Acidithiobacillia were closely correlated with MeHg accumulation in the sediments. Furthermore, these three taxa, in combination with two abiotic factors, explained over 60% of the variance in MeHg accumulation. Most of the members of these taxa were characterized by their metabolic potential for nitrogen fixation and copper tolerance. Overall, these findings improve our understanding of the ecology of MeHg-metabolizing microorganisms and likely have implications for the development of management strategies for the reduction of MeHg accumulation in the AMD sediments. IMPORTANCE Microorganisms are the main drivers of MeHg production and degradation in the environment. However, little attention has been paid to the simultaneous investigation of the diversities of microbial MeHg producers and degraders in a given habitat. We used genome-resolved metagenomics to reveal the vast phylogenetic and metabolic diversities of putative MeHg producers and degraders in AMD sediments. Our results show that the diversity of MeHg-metabolizing microorganisms (particularly MeHg degraders) in AMD sediments is much higher than was previously recognized. Via multiple linear regression analysis, we identified both microbial and abiotic factors affecting MeHg accumulation in AMD sediments. Despite their great diversity, only a few taxa of MeHg-metabolizing microorganisms were closely correlated with MeHg accumulation. This work underscores the importance of using genome-resolved metagenomics to survey MeHg-metabolizing microorganisms and provides a framework for the illumination of the microbial basis of MeHg accumulation via the characterization of physicochemical properties, MeHg-metabolizing microorganisms, and the correlations between them.


Assuntos
Compostos de Metilmercúrio , Compostos de Metilmercúrio/análise , Bactérias/genética , Filogenia , Metagenoma , Firmicutes/genética
5.
J Hazard Mater ; 443(Pt B): 130255, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36327844

RESUMO

Mining-impacted environments are distributed globally and have become increasingly recognized as hotspots of antibiotic resistance genes (ARGs). However, there are currently no reports on treatment technologies to deal with such an important environmental problem. To narrow this knowledge gap, we implemented a phytostabilization project in an acidic copper mine tailings pond and employed metagenomics to explore ARG characteristics in the soil samples. Our results showed that phytostabilization decreased the total ARG abundance in 0-10 cm soil layer by 75 %, which was companied by a significant decrease in ARG mobility, and a significant increase in ARG diversity and microbial diversity. Phytostabilization was also found to drastically alter the ARG host composition and to significantly reduce the total abundance of virulence factor genes of ARG hosts. Soil nutrient status, heavy metal toxicity and SO42- concentration were important physicochemical factors to affect the total ARG abundance, while causal mediation analysis showed that their effects were largely mediated by the changes in ARG mobility and microbial diversity. The increase in ARG diversity associated with phytostabilization was mainly mediated by a small subgroup of ARG hosts, most of which could not be classified at the genus level and deserve further research in the future.


Assuntos
Cobre , Lagoas , Cobre/toxicidade , Microbiologia do Solo , Resistência Microbiana a Medicamentos/genética , Solo/química , Antibacterianos/farmacologia
6.
Environ Sci Pollut Res Int ; 30(12): 32337-32347, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36460887

RESUMO

This study evaluated the effect of biochar and compost on physiochemical properties, heavy metal content, microbial biomass, enzyme activities, and plant growth in Pb-Zn mine tailings. In this study, a pot experiment was conducted to evaluate the effects of biochar, compost, and their combination on the availability of heavy metals, physicochemical features, and enzyme activities in mining soil. Compared to separate addition, the combined application of biochar and compost was more effective to improve soil pH, soil organic carbon (SOC), total nitrogen (TN), available phosphorus (AP), and potassium (AK). All amendments significantly decreased CaCl2-extractable Pb, Zn, Cu, and Cd. Soil enzyme activities were activated by biochar and compost. Meanwhile, the addition of biochar and compost decreased heavy metal content in plant tissues and increased plant biomass. Pearson's correlation analysis showed that plant biomass was positively correlated with nutrient levels, microbial biomass, and enzyme activities, whereas it was negatively correlated with CaCl2-extractable heavy metals. These results enhance our understanding of the ecological functions of biochar and compost on the restoration of mining soil and reveal the potential benefit of organic amendments on the improvement of mining soil quality.


Assuntos
Compostagem , Metais Pesados , Poluentes do Solo , Solo/química , Carbono , Chumbo/análise , Cloreto de Cálcio , Poluentes do Solo/análise , Metais Pesados/análise , Carvão Vegetal/química , Zinco/análise
7.
Microb Ecol ; 86(2): 843-858, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36205737

RESUMO

Metalliferous mine tailings ponds are generally characterized by low levels of nutrient elements, sustained acidic conditions, and high contents of toxic metals. They represent one kind of extreme environments that are believed to resemble the Earth's early environmental conditions. There is increasing evidence that the diversity of fungi inhabiting mine tailings ponds is much higher than previously thought. However, little is known about functional guilds, community assembly, and co-occurrence patterns of fungi in such habitats. As a first attempt to address this critical knowledge gap, we employed high-throughput sequencing to characterize fungal communities in 33 mine tailings ponds distributed across 18 provinces of mainland China. A total of 5842 fungal phylotypes were identified, with saprotrophic fungi being the major functional guild. The predictors of fungal diversity in whole community and sub-communities differed considerably. Community assembly of the whole fungal community and individual functional guilds were primarily governed by stochastic processes. Total soil nitrogen and total phosphorus mediated the balance between stochastic and deterministic processes of the fungal community assembly. Co-occurrence network analysis uncovered a high modularity of the whole fungal community. The observed main modules largely consisted of saprotrophic fungi as well as various phylotypes that could not be assigned to known functional guilds. The richness of core fungal phylotypes, occupying vital positions in co-occurrence network, was positively correlated with edaphic properties such as soil enzyme activity. This indicates the important roles of core fungal phylotypes in soil organic matter decomposition and nutrient cycling. These findings improve our understanding of fungal ecology of extreme environments.


Assuntos
Lagoas , Microbiologia do Solo , China , Solo , Fungos/genética
8.
Zhongguo Zhong Yao Za Zhi ; 48(24): 6740-6748, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38212034

RESUMO

This study observed the effects of Guiqi Yiyuan Ointment(GQYY) on the left lung subjecting to bystander effect of right lung injury induced by ~(12)C~(6+) beam in rats and decipher the underlying mechanism from NOD-like receptor protein 3(NLRP3)/apoptosis-associated speck-like protein containing a CARD(ASC)/cysteinyl aspartate specific proteinase-1(caspase-1) pathway. Wistar rats were randomized into 7 groups: blank, model, inhibitor [200 mg·kg~(-1), N-acetylcysteine(NAC)], western drug [140 mg·kg~(-1) amifostine(AMI)], and high-, medium-, and low-dose(4.8, 2.4, and 1.2 g·kg~(-1), respectively) GQYY groups. The model of bystander effect damage was established by 4 Gy ~(12)C~(6+) beam irradiation of the right lung(with the other part shielded by a lead plate). The pathological changes in the lung tissue, the level of reactive oxygen species(ROS) in the lung tissue, and the levels of superoxide dismutase(SOD) and malondialdehyde(MDA) in the serum were observed and measured in each group. Furthermore, the mRNA and protein levels of NLRP3, ASC, caspase-1, and phosphorylated nuclear factor-κB p65(p-NF-κB p65)/nuclear factor-κB p65(NF-κB p65) were determined. Compared with the blank group, the model group showed thickened alveolar wall, narrowed alveolar cavity, and presence of massive red blood cells and inflammatory infiltration in the alveolar wall and alveolar cavity. In addition, the model group showed elevated ROS levels in both left and right lungs, elevated MDA level, lowered SOD level, and up-regulated mRNA and protein levels of NLRP3, ASC, caspase-1, and p-NF-κB p65/NF-κB p65. Compared with the model group, the drug administration in all the groups reduced inflammatory cell infiltration in the lung tissue. The inhibitor group and the western drug group showed enlarged alveolar cavity, thinned interstitium, and reduced inflammation. There was a small amount of alveolar wall rupture in the high-and medium-dose GQYY groups and reduced inflammatory cell infiltration in the low dose GQYY group. Compared with the model group, drug administration lowered level of ROS in the left and right lungs, lowered the MDA level, elevated the SOD level, and down-regulated the mRNA and protein levels of NLRP3, ASC, caspase-1, and p-NF-κB p65/NF-κB p65. GQYY can effectively reduce the damage caused by radiation and bystander effect, which may be associated with the ROS-mediated NLRP3 inflammasome activation.


Assuntos
Lesão Pulmonar , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Inflamassomos/metabolismo , Lesão Pulmonar/etiologia , Lesão Pulmonar/genética , Espécies Reativas de Oxigênio/metabolismo , Efeito Espectador , Pomadas , Ratos Wistar , Pulmão/metabolismo , Caspase 1/metabolismo , RNA Mensageiro , Superóxido Dismutase
9.
Front Pharmacol ; 13: 993498, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506533

RESUMO

Osteoarthritis (OA) is a multifactorial and chronic degenerative joint disease. Due to the adverse effects of currently used drugs, a safer and more effective therapy for treating OA is needed. Peroxisome proliferator-activated receptor-γ (PPARγ) is a key protein protecting cartilage. DNMT1-mediated hypermethylation of PPARγ promoter leads to its suppression. Therefore, DNMT1 might be an effective target for exerting cartilage protective effects by regulating the epigenetic expression of PPARγ. Dabushen decoction (DD) is a representative prescription of Dunhuang ancient medical prescription, which has a potential therapeutic effect on OA. So far, the research of the efficacy and material basis of DD in the treatment of OA remains unclear. In this study, Micro-CT, HE staining, S-O staining, and immunohistochemistry analysis were used to demonstrate that DD increased the expression of PPARγ and collagen synthesis in an OA rat model. Next, the structure of DNMT1 was used to screen the active constituents of DD by molecular docking method for treatment OA. Seven potential active constituents, including isoliquiritigenin, emodin, taxifolin, catalpol, alisol A, zingerone, and schisandrin C were hited. The protective effect of the potential active constituents to chondrocytes were evaluated by protein capillary electrophoresis, immunofluorescence assays, and ex vivo culture of rat knee cartilage. The five constituents, such as alisol A, emodin, taxifolin, isoliquiritigenin, and schisandrin C could promote the expression of PPARγ and ameliorate IL-1ß-induced downregulation of collagen II and the production of MMP-13. Alisol A and Emodin could effectively mitigate cartilage damage. At last, molecular dynamics simulations with MM-GBSA method was applied to investigate the interaction pattern of the active constituents and DNMT1 complexes. The five constituents, such as alisol A, emodin, taxifolin, isoliquiritigenin, and schisandrin C achieved a stable binding pattern with DNMT1, in which alisol A has a relatively high binding free energy. In conclusion, this study elucidates that the active constituents of DD (alisol A, emodin, taxifolin, isoliquiritigenin, and schisandrin C) could ameliorate osteoarthritis via PPARγ preservation by targeting DNMT1.These findings facilitated clinical use of DD and provided a valuable strategy for developing natural epigenetic modulators from Chinese herbal formula.

10.
NPJ Biofilms Microbiomes ; 8(1): 71, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068230

RESUMO

The widespread occurrence of sulfate-reducing microorganisms (SRMs) in temporarily oxic/hypoxic aquatic environments indicates an intriguing possibility that SRMs can prevail in constantly oxic/hypoxic terrestrial sulfate-rich environments. However, little attention has been given to this possibility, leading to an incomplete understanding of microorganisms driving the terrestrial part of the global sulfur (S) cycle. In this study, genome-centric metagenomics and metatranscriptomics were employed to explore the diversity, metabolic potential, and gene expression profile of SRMs in a revegetated acidic mine wasteland under constantly oxic/hypoxic conditions. We recovered 16 medium- to high-quality metagenome-assembled genomes (MAGs) containing reductive dsrAB. Among them, 12 and four MAGs belonged to Acidobacteria and Deltaproteobacteria, respectively, harboring three new SRM genera. Comparative genomic analysis based on seven high-quality MAGs (completeness >90% and contamination <10%; including six acidobacterial and one deltaproteobacterial) and genomes of three additional cultured model species showed that Acidobacteria-related SRMs had more genes encoding glycoside hydrolases, oxygen-tolerant hydrogenases, and cytochrome c oxidases than Deltaproteobacteria-related SRMs. The opposite pattern was observed for genes encoding superoxide reductases and thioredoxin peroxidases. Using VirSorter, viral genome sequences were found in five of the 16 MAGs and in all three cultured model species. These prophages encoded enzymes involved in glycoside hydrolysis and antioxidation in their hosts. Moreover, metatranscriptomic analysis revealed that 15 of the 16 SRMs reported here were active in situ. An acidobacterial MAG containing a prophage dominated the SRM transcripts, expressing a large number of genes involved in its response to oxidative stress and competition for organic matter.


Assuntos
Metagenoma , Metagenômica , Bactérias , Filogenia , Sulfatos/metabolismo
11.
Front Microbiol ; 13: 989272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160214

RESUMO

Arsenic contamination causes numerous health problems for humans and wildlife via bioaccumulation in the food chain. Phytoremediation of arsenic-contaminated soils with the model arsenic hyperaccumulator Pteris vittata provides a promising way to reduce the risk, in which the growth and arsenic absorption ability of plants and the biotransformation of soil arsenic may be greatly affected by rhizosphere microorganisms. However, the microbial community composition in the rhizosphere of P. vittata and its functional role in arsenic phytoremediation are still poorly understood. To bridge this knowledge gap, we carried out a field investigation and pot experiment to explore the composition and functional implications of microbial communities in the rhizosphere of four P. vittata populations with a natural arsenic contamination gradient. Arsenic pollution significantly reduced bacterial and fungal diversity in the rhizosphere of P. vittata (p < 0.05) and played an important role in shaping the microbial community structure. The suitability of soil microbes for the growth of P. vittata gradually decreased following increased soil arsenic levels, as indicated by the increased abundance of pathogenic fungi and parasitic bacteria and the decrease in symbiotic fungi. The analysis of arsenic-related functional gene abundance with AsChip revealed the gradual enrichment of the microbial genes involved in As(III) oxidation, As(V) reduction, and arsenic methylation and demethylation in the rhizosphere of P. vittata following increased arsenic levels (p < 0.05). The regulation of indigenous soil microbes through the field application of fungicide, but not bactericide, significantly reduced the remediation efficiency of P. vittata grown under an arsenic contamination gradient, indicating the important role of indigenous fungal groups in the remediation of arsenic-contaminated soil. This study has important implications for the functional role and application prospects of soil microorganisms in the phytoremediation of arsenic-polluted soil.

12.
ISME J ; 16(9): 2099-2113, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35688988

RESUMO

Mining is among the human activities with widest environmental impacts, and mining-impacted environments are characterized by high levels of metals that can co-select for antibiotic resistance genes (ARGs) in microorganisms. However, ARGs in mining-impacted environments are still poorly understood. Here, we conducted a comprehensive study of ARGs in such environments worldwide, taking advantage of 272 metagenomes generated from a global-scale data collection and two national sampling efforts in China. The average total abundance of the ARGs in globally distributed studied mine sites was 1572 times per gigabase, being rivaling that of urban sewage but much higher than that of freshwater sediments. Multidrug resistance genes accounted for 40% of the total ARG abundance, tended to co-occur with multimetal resistance genes, and were highly mobile (e.g. on average 16% occurring on plasmids). Among the 1848 high-quality metagenome-assembled genomes (MAGs), 85% carried at least one multidrug resistance gene plus one multimetal resistance gene. These high-quality ARG-carrying MAGs considerably expanded the phylogenetic diversity of ARG hosts, providing the first representatives of ARG-carrying MAGs for the Archaea domain and three bacterial phyla. Moreover, 54 high-quality ARG-carrying MAGs were identified as potential pathogens. Our findings suggest that mining-impacted environments worldwide are underexplored hotspots of multidrug resistance genes.


Assuntos
Resistência a Múltiplos Medicamentos , Genes Bacterianos , Genes MDR , Mineração , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Resistência a Múltiplos Medicamentos/genética , Humanos , Metagenoma , Filogenia
13.
Glob Chang Biol ; 28(14): 4459-4471, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35452151

RESUMO

Low soil phosphorus (P) bioavailability causes the widespread occurrence of P-limited terrestrial ecosystems around the globe. Exploring the factors influencing soil P bioavailability at large spatial scales is critical for managing these ecosystems. However, previous studies have mostly focused on abiotic factors. In this study, we explored the effects of microbial factors on soil P bioavailability of terrestrial ecosystems using a country-scale sampling effort. Our results showed that soil microbial biomass carbon (MBC) and acid phosphatase were important predictors of soil P bioavailability of agro- and natural ecosystems across China although they appeared less important than total soil P. The two microbial factors had a positive effect on soil P bioavailability of both ecosystem types and were able to mediate the effects of several abiotic factors (e.g., mean annual temperature). Meanwhile, we revealed that soil phytase could affect soil P bioavailability at the country scale via ways similar to those of soil MBC and acid phosphatase, a pattern being more pronounced in agroecosystems than in natural ecosystems. Moreover, we obtained evidence for the positive effects of microbial genes encoding these enzymes on soil P bioavailability at the country scale although their effect sizes varied between the two ecosystem types. Taken together, this study demonstrated the remarkable effects of microbial factors on soil P bioavailability at a large spatial scale, highlighting the importance to consider microbial factors in managing the widespread P-limited terrestrial ecosystems.


Assuntos
Fósforo , Solo , Fosfatase Ácida , Carbono , Ecossistema , Nitrogênio , Microbiologia do Solo
14.
Ecol Lett ; 25(4): 778-789, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34972253

RESUMO

Elton's biotic resistance hypothesis, which posits that diverse communities should be more resistant to biological invasions, has received considerable experimental support. However, it remains unclear whether such a negative diversity-invasibility relationship would persist under anthropogenic environmental change. By using the common ragweed (Ambrosia artemisiifolia) as a model invader, our 4-year grassland experiment demonstrated consistently negative relationships between resident species diversity and community invasibility, irrespective of nitrogen addition, a result further supported by a meta-analysis. Importantly, our experiment showed that plant diversity consistently resisted invasion simultaneously through increased resident biomass, increased trait dissimilarity among residents, and increased community-weighted means of resource-conservative traits that strongly resist invasion, pointing to the importance of both trait complementarity and sampling effects for invasion resistance even under resource enrichment. Our study provides unique evidence that considering species' functional traits can help further our understanding of biotic resistance to biological invasions in a changing environment.


Assuntos
Espécies Introduzidas , Nitrogênio , Biodiversidade , Biomassa , Ecossistema , Plantas
15.
Front Microbiol ; 12: 705839, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305876

RESUMO

Fungi in acid mine drainage (AMD) environments are of great concern due to their potentials of decomposing organic carbon, absorbing heavy metals and reducing AMD acidity. Based on morphological analysis and ITS/18S high-throughput sequencing technology, previous studies have provided deep insights into the diversity and community composition of fungi in AMD environments. However, knowledge about physiology, metabolic potential and transcriptome profiles of fungi inhabiting AMD environments is still scarce. Here, we reported the physiological, genomic, and transcriptomic characterization of Acidiella bohemica SYSU C17045 to improve our understanding of the physiological, genomic, and transcriptomic mechanisms underlying fungal adaptation to AMD environments. A. bohemica was isolated from an AMD environment, which has been proved to be an acidophilic fungus in this study. The surface of A. bohemica cultured in AMD solutions was covered with a large number of minerals such as jarosite. We thus inferred that the A. bohemica might have the potential of biologically induced mineralization. Taking advantage of PacBio single-molecule real-time sequencing, we obtained the high-quality genome sequences of A. bohemica (50 Mbp). To our knowledge, this was the first attempt to employ a third-generation sequencing technology to explore the genomic traits of fungi isolated from AMD environments. Moreover, our transcriptomic analysis revealed that a series of genes in the A. bohemica genome were related to its metabolic pathways of C, N, S, and Fe as well as its adaptation mechanisms, including the response to acid stress and the resistance to heavy metals. Overall, our physiological, genomic, and transcriptomic data provide a foundation for understanding the metabolic potential and adaptation mechanisms of fungi in AMD environments.

16.
Biol Rev Camb Philos Soc ; 96(6): 2771-2793, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34288351

RESUMO

Phosphate-solubilizing microbes (PSMs) drive the biogeochemical cycling of phosphorus (P) and hold promise for sustainable agriculture. However, their global distribution, overall diversity and application potential remain unknown. Here, we present the first synthesis of their biogeography, diversity and utility, employing data from 399 papers published between 1981 and 2017, the results of a nationwide field survey in China consisting of 367 soil samples, and a genetic analysis of 12986 genome-sequenced prokaryotic strains. We show that at continental to global scales, the population density of PSMs in environmental samples is correlated with total P rather than pH. Remarkably, positive relationships exist between the population density of soil PSMs and available P, nitrate-nitrogen and dissolved organic carbon in soil, reflecting functional couplings between PSMs and microbes driving biogeochemical cycles of nitrogen and carbon. More than 2704 strains affiliated with at least nine archaeal, 88 fungal and 336 bacterial species were reported as PSMs. Only 2.59% of these strains have been tested for their efficiencies in improving crop growth or yield under field conditions, providing evidence that PSMs are more likely to exert positive effects on wheat growing in alkaline P-deficient soils. Our systematic genetic analysis reveals five promising PSM genera deserving much more attention.


Assuntos
Fosfatos , Microbiologia do Solo , Agricultura/métodos , Fósforo , Solo
17.
Sci Total Environ ; 744: 140793, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32688002

RESUMO

Owing to its sustainability and low cost, direct revegetation (DR) has been considered a promising alternative to capped revegetation (CR) for dealing with the serious environmental problem derived from various types of mine wastelands that are widespread in the world. However, a direct comparison of the performance of these two revegetation approaches for reclamation of extremely acidic mine wastelands and the underlying mechanisms is still lacking. To bridge this critical knowledge gap, we established 5000 m2 of vegetation on a highly acidified (pH < 3) Pb/Zn mine tailings pond employing both CR and DR schemes (2500 m2 for each scheme). We then profiled the structure, ecological network and function of soil microbial communities associated with two dominant plant species of the vegetations via high-throughput sequencing. Our results showed that CR and DR achieved a vegetation coverage of 59.7% and 90.5% within two years, respectively. This pattern was accompanied by higher concentrations of plant nutrients and lower acidification potentials in topsoils of the rhizospheres of the vegetation established by DR compared to those of CR. Revegetation approach, rather than plant identity, mostly affected the structure, ecological network and function of soil microbial community in the mine tailings pond. Rhizosphere soils of the vegetation established by DR generally had higher microbial diversity, higher relative abundances of dominant microbial phyla (e.g. Nitrospirae) that can aid plant uptake of nutrients, more complicated microbial interactive networks and more microbial genes responsible for nutrient cycling than those by CR. As the first report on a direct comparison of CR and DR schemes for reclamation of an extremely acidic mine wasteland, our study has important implications for not only the understanding of microbial ecology in revegetated mine wastelands but also the further development of sustainable revegetation schemes.


Assuntos
Microbiota , Poluentes do Solo/análise , Biodegradação Ambiental , Lagoas , Solo , Microbiologia do Solo
18.
ISME J ; 14(6): 1600-1613, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32203124

RESUMO

Little is known about the changes in soil microbial phosphorus (P) cycling potential during terrestrial ecosystem management and restoration, although much research aims to enhance soil P cycling. Here, we used metagenomic sequencing to analyse 18 soil microbial communities at a P-deficient degraded mine site in southern China where ecological restoration was implemented using two soil ameliorants and eight plant species. Our results show that the relative abundances of key genes governing soil microbial P-cycling potential were higher at the restored site than at the unrestored site, indicating enhancement of soil P cycling following restoration. The gcd gene, encoding an enzyme that mediates inorganic P solubilization, was predominant across soil samples and was a major determinant of bioavailable soil P. We reconstructed 39 near-complete bacterial genomes harboring gcd, which represented diverse novel phosphate-solubilizing microbial taxa. Strong correlations were found between the relative abundance of these genomes and bioavailable soil P, suggesting their contributions to the enhancement of soil P cycling. Moreover, 84 mobile genetic elements were detected in the scaffolds containing gcd in the 39 genomes, providing evidence for the role of phage-related horizontal gene transfer in assisting soil microbes to acquire new metabolic potential related to P cycling.


Assuntos
Mineração , Fósforo/metabolismo , Microbiologia do Solo , Bactérias/genética , China , Microbiota , Fosfatos/metabolismo , Plantas/metabolismo , Solo
19.
ISME J ; 13(8): 2044-2057, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30962514

RESUMO

Several abundant but yet uncultivated bacterial groups exist in extreme iron- and sulfur-rich environments, and the physiology, biodiversity, and ecological roles of these bacteria remain a mystery. Here we retrieved four metagenome-assembled genomes (MAGs) from an artificial acid mine drainage (AMD) system, and propose they belong to a new deltaproteobacterial order, Candidatus Acidulodesulfobacterales. The distribution pattern of Ca. Acidulodesulfobacterales in AMDs across Southeast China correlated strongly with ferrous iron. Reconstructed metabolic pathways and gene expression profiles showed that they were likely facultatively anaerobic autotrophs capable of nitrogen fixation. In addition to dissimilatory sulfate reduction, encoded by dsrAB, dsrD, dsrL, and dsrEFH genes, these microorganisms might also oxidize sulfide, depending on oxygen concentration and/or oxidation reduction potential. Several genes with homology to those involved in iron metabolism were also identified, suggesting their potential role in iron cycling. In addition, the expression of abundant resistance genes revealed the mechanisms of adaptation and response to the extreme environmental stresses endured by these organisms in the AMD environment. These findings shed light on the distribution, diversity, and potential ecological role of the new order Ca. Acidulodesulfobacterales in nature.


Assuntos
Biodiversidade , Deltaproteobacteria/genética , Metagenoma/genética , Enxofre/química , Transcriptoma , Adaptação Fisiológica , China , Deltaproteobacteria/fisiologia , Ecologia , Perfilação da Expressão Gênica , Ferro/metabolismo , Metagenômica , Mineração , Fixação de Nitrogênio , Oxirredução , Oxigênio/metabolismo , Estresse Fisiológico , Sulfetos/química
20.
Environ Sci Technol ; 52(21): 11980-11994, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30272967

RESUMO

Hyperaccumulator plants are the material basis for phytoextraction research and for practical applications in decontaminating polluted soils and industrial wastes. China's high biodiversity and substantial mineral resources make it a global hotspot for hyperaccumulator plant species. Intensive screening efforts over the past 20 years by researchers working in China have led to the discovery of many different hyperaccumulators for a range of elements. In this review, we present the state of knowledge on all currently reported hyperaccumulator species from China, including Cardamine hupingshanensis (selenium, Se), Dicranopteris dichotoma (rare earth elements, REEs), Elsholtzia splendens (copper, Cu), Phytolacca americana (manganese, Mn), Pteris vittata (arsenic, As), Sedum alfredii, and Sedum plumbizincicola (cadmium/zinc, Cd/Zn). This review covers aspects of the ecophysiology and molecular biology of tolerance and hyperaccumulation for each element. The major scientific advances resulting from the study of hyperaccumulator plants in China are summarized and synthesized.


Assuntos
Pteris , Sedum , Poluentes do Solo , Biodegradação Ambiental , Cádmio , China , Raízes de Plantas , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...