Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892283

RESUMO

Skeletal muscle grows in response to a combination of genetic and environmental factors, and its growth and development influence the quality of pork. Elucidating the molecular mechanisms regulating the growth and development of skeletal muscle is of great significance to both animal husbandry and farm management. The Jiangquan black pig is an excellent pig breed based on the original Yimeng black pig, importing the genes of the Duroc pig for meat traits, and cultivated through years of scientific selection and breeding. In this study, full-length transcriptome sequencing was performed on three growth stages of Jiangquan black pigs, aiming to study the developmental changes in Jiangquan black pigs at different developmental stages at the molecular level and to screen the key genes affecting the growth of skeletal muscle in Jiangquan black pigs. We performed an enrichment analysis of genes showing differential expression and constructed a protein-protein interaction network with the aim of identifying core genes involved in the development of Jiangquan black pigs. Notably, genes such as TNNI2, TMOD4, PLDIM3, MYOZ1, and MYH1 may be potential regulators of muscle development in Jiangquan black pigs. Our results contribute to the understanding of the molecular mechanisms of skeletal muscle development in this pig breed, which will facilitate molecular breeding efforts and the development of pig breeds to meet the needs of the livestock industry.


Assuntos
Perfilação da Expressão Gênica , Músculo Esquelético , Transcriptoma , Animais , Músculo Esquelético/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Suínos/genética , Suínos/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Muscular/genética , Cruzamento , Mapas de Interação de Proteínas/genética
3.
BMC Plant Biol ; 24(1): 324, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658831

RESUMO

Black rot, caused by Xanthomonas campestris pv. campestris (Xcc) significantly affects the production of cabbage and other cruciferous vegetables. Plant antioxidant system plays an important role in pathogen invasion and is one of the main mechanisms underlying resistance to biological stress. Therefore, it is important to study the resistance mechanisms of the cabbage antioxidant system during the early stages of Xcc. In this study, 108 CFU/mL (OD600 = 0.1) Xcc race1 was inoculated on "zhonggan 11" cabbage using the spraying method. The effects of Xcc infection on the antioxidant system before and after Xcc inoculation (0, 1, 3, and 5 d) were studied by physiological indexes determination, transcriptome and metabolome analyses. We concluded that early Xcc infection can destroy the balance of the active oxygen metabolism system, increase the generation of free radicals, and decrease the scavenging ability, leading to membrane lipid peroxidation, resulting in the destruction of the biofilm system and metabolic disorders. In response to Xcc infection, cabbage clears a series of reactive oxygen species (ROS) produced during Xcc infection via various antioxidant pathways. The activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) increased after Xcc infection, and the ROS scavenging rate increased. The biosynthesis of non-obligate antioxidants, such as ascorbic acid (AsA) and glutathione (GSH), is also enhanced after Xcc infection. Moreover, the alkaloid and vitamin contents increased significantly after Xcc infection. We concluded that cabbage could resist Xcc invasion by maintaining the stability of the cell membrane system and improving the biosynthesis of antioxidant substances and enzymes after infection by Xcc. Our results provide theoretical basis and data support for subsequent research on the cruciferous vegetables resistance mechanism and breeding to Xcc.


Assuntos
Antioxidantes , Brassica , Doenças das Plantas , Xanthomonas campestris , Xanthomonas campestris/fisiologia , Xanthomonas campestris/patogenicidade , Brassica/microbiologia , Brassica/metabolismo , Antioxidantes/metabolismo , Doenças das Plantas/microbiologia , Espécies Reativas de Oxigênio/metabolismo
4.
Plant Physiol Biochem ; 208: 108453, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38417309

RESUMO

Hydrogen sulfide (H2S), as a potential gaseous signaling molecule, is involved in mediating biotic and abiotic stress in plants. Currently, there are no studies investigating the mechanism by which H2S improves photosynthesis under black rot (BR) stress caused by Xanthomonas campestris pv. Campestris (Xcc). In this study, we investigated the effect of exogenous H2S on Xcc induced photosynthetic impairment in cabbage seedlings. BR has an inhibitory effect on the photosynthetic ability of cabbage seedlings. Xcc infection can significantly reduce the chlorophyll content, photosynthetic characteristics, chlorophyll fluorescence, Calvin cycle related enzyme activity and gene expression in cabbage leaves. The use of H2S can alleviate this inhibitory effect, reduce chlorophyll decomposition, improve gas exchange, enhance the activity of Calvin cycle related enzymes, and increase the expression of related genes. Transcriptome analysis showed that all differential genes related to photosynthesis were up regulated under H2S treatment compared to normal inoculation. Therefore, spraying exogenous H2S can improve the photosynthetic capacity of cabbage seedlings, reduce Xcc induced photoinhibition, and improve plant resistance.


Assuntos
Brassica , Sulfeto de Hidrogênio , Brassica/metabolismo , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Fotossíntese , Clorofila/metabolismo , Plântula/metabolismo
5.
Shock ; 61(5): 791-800, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38323918

RESUMO

ABSTRACT: Intestinal ischemia-reperfusion injury (IIRI) is a serious disease with high morbidity and mortality. This study aims to investigate the potential regulatory mechanisms involving protein arginine methyltransferase 6 (PRMT6), Forkhead box O3a (FoxO3a), and Parkin in IIRI and elucidate their roles in mediating cell apoptosis. The IIRI animal model was established and confirmed using hematoxylin and eosin staining. Oxygen-glucose deprivation and reperfusion (OGD/R) cell model was established to mimic ischemic injury in vitro . Transient transfection was used to overexpress or knock down genes. Cell death or apoptosis was assessed by propidium iodide staining, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, and flow cytometry. The expression of proteins was detected by western blot. The histopathology observed by hematoxylin and eosin staining suggested that the IIRI animal model was successfully established. Our findings revealed that IIRI resulted in increased Bax and decreased Bcl-2 levels. In vitro experiments showed that overexpression of Parkin decreased OGD/R injury and suppressed elevation of Bax/Bcl-2. PRMT6 regulated the methylation level of FoxO3a. Moreover, FoxO3a directly binds to Parkin, and FoxO3a overexpression reduced OGD/R-induced cell death and regulation of Parkin. Overexpression of PRMT6 can attenuate the downregulation of Parkin and elevation of Bax/Bcl-2 caused by OGD/R. Knockdown of PRMT6 promoted apoptosis in intestinal epithelial cells of OGD/R group, while PRMT6 overexpression exhibited the opposite effect. Notably, the levels of PRMT6, FoxO3a, and Parkin were decreased in IIRI mouse intestinal tissue. Knocking out PRMT6 causes a significant decrease in the lifespan of mice. Altogether, our results demonstrated that PRMT6 upregulated the expression of Parkin by regulating FoxO3a methylation level, attenuating the apoptosis induced by IIRI.


Assuntos
Apoptose , Proteína Forkhead Box O3 , Intestinos , Proteína-Arginina N-Metiltransferases , Traumatismo por Reperfusão , Animais , Camundongos , Apoptose/genética , Proteína Forkhead Box O3/metabolismo , Intestinos/patologia , Intestinos/lesões , Intestinos/irrigação sanguínea , Camundongos Endogâmicos C57BL , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Regulação para Cima
6.
BMJ Open ; 14(1): e079067, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184312

RESUMO

INTRODUCTION: Postoperative delirium (POD) is the most common acute fluctuating mental state change after hip fractures in older adults. Postoperative pain is a Grade A risk factor for POD and is closely related to the prognosis of patients undergoing hip fracture surgery. The fascia iliac block has a definite analgesic effect and few side effects, and several studies have reported that it reduces the occurrence of POD in patients undergoing general anaesthesia for hip fracture surgery. Liposomal bupivacaine is a local anaesthetic with a long half-life that significantly reduces the use of opioids and is conducive to patient prognosis and recovery. However, whether regional nerve block analgesia can decrease the occurrence of POD in elderly patients undergoing hip fracture surgery has not been reported. METHODS AND ANALYSIS: This is a single-blinded, randomised, parallel-controlled prospective clinical study. Participants will be randomly assigned preoperatively to either the liposomal bupivacaine (ie, Exparel) or ropivacaine groups by block randomisation. Then, the occurrence of POD (primary outcome) and postoperative pain (secondary outcome) will be evaluated. ETHICS AND DISSEMINATION: This research protocol complies with the Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) 2013 guidelines and is approved by the Ethics Committee of Shanghai General Hospital (ID 2023-437). The original data are expected to be released in July 2029 on the ResMan original data-sharing platform (IPD-sharing platform) of the China Clinical Trial Registry, which can be viewed on the following website: http://www.medresman.org.cn. PROSPERO REGISTRATION NUMBER: ChiCTR2300074022.


Assuntos
Delírio , Fraturas do Quadril , Idoso , Humanos , Estudos Prospectivos , China , Fraturas do Quadril/cirurgia , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/prevenção & controle , Anestésicos Locais/uso terapêutico , Bupivacaína/uso terapêutico , Delírio/etiologia , Delírio/prevenção & controle , Ensaios Clínicos Controlados Aleatórios como Assunto
7.
Poult Sci ; 103(2): 103346, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128457

RESUMO

It is a common practice to provide fast-growing broilers with high-fat diets in the context of integrated farms in Northeast China. Therefore, fat digestion, absorption, and utilization efficiency are critical for broiler meat production. Bile acids (BA) promote fat digestion and absorption, but whether and how BA affects muscle growth in broilers remains unclear. In this study, 1-day-old broilers were fed diets containing varying levels of crude fat (low, medium, and high) with or without BA supplementation for 42 d. Chickens fed a high-fat diet supplemented with BA exhibited significantly (P < 0.05) higher body weight (BW) at 21 d and average daily gain (ADG) during the first 21 d compared to the other groups. Throughout the entire experiment, feed conversion rate (FCR) was significantly (P < 0.05) lower in the high-fat group without the addition of BA, which was further decreased (P < 0.05) with BA supplementation. The improved growth performance in the BA-supplemented high-fat group was associated with significantly (P < 0.05) higher lipase activity in the small intestine chyme, a decreased trend (P = 0.06) in abdominal fat ratio, and significantly (P < 0.05) higher breast muscle mass. Histological analysis revealed significant (P < 0.05) increases in myofiber diameter, cross-sectional area, and RNA and DNA concentrations in the breast muscle of BA-supplemented broilers on the high-fat diet. Additional histological analysis further revealed significant (P < 0.05) enhancements in myofiber diameter, cross-sectional area, and RNA and DNA concentrations within the breast muscles of broilers supplemented with BA and a high-fat diet. The increased insulin-like growth factor 2 (IGF2) in the breast muscle of broilers fed a BA-supplemented high-fat diet correlated with significantly (P < 0.05) increased farnesoid X factor (FXR) protein expression and binding to the IGF2 promoter. These results suggest that dietary BA supplementation improves FCR and breast muscle growth in broilers fed a high-fat diet, potentially through the FXR-mediated IGF2 pathway.


Assuntos
Ácidos e Sais Biliares , Galinhas , Animais , Galinhas/fisiologia , Dieta/veterinária , Suplementos Nutricionais/análise , Dieta Hiperlipídica , Músculos Peitorais , DNA , RNA , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA