Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
BMC Genomics ; 25(1): 449, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714914

RESUMO

BACKGROUND: Previous studies have shown that protein kinase MoKin1 played an important role in the growth, conidiation, germination and pathogenicity in rice blast fungus, Magnaporthe oryzae. ΔMokin1 mutant showed significant phenotypic defects and significantly reduced pathogenicity. However, the internal mechanism of how MoKin1 affected the development of physiology and biochemistry remained unclear in M. oryzae. RESULT: This study adopted a multi-omics approach to comprehensively analyze MoKin1 function, and the results showed that MoKin1 affected the cellular response to endoplasmic reticulum stress (ER stress). Proteomic analysis revealed that the downregulated proteins in ΔMokin1 mutant were enriched mainly in the response to ER stress triggered by the unfolded protein. Loss of MoKin1 prevented the ER stress signal from reaching the nucleus. Therefore, the phosphorylation of various proteins regulating the transcription of ER stress-related genes and mRNA translation was significantly downregulated. The insensitivity to ER stress led to metabolic disorders, resulting in a significant shortage of carbohydrates and a low energy supply, which also resulted in severe phenotypic defects in ΔMokin1 mutant. Analysis of MoKin1-interacting proteins indicated that MoKin1 really took participate in the response to ER stress. CONCLUSION: Our results showed the important role of protein kinase MoKin1 in regulating cellular response to ER stress, providing a new research direction to reveal the mechanism of MoKin1 affecting pathogenic formation, and to provide theoretical support for the new biological target sites searching and bio-pesticides developing.


Assuntos
Estresse do Retículo Endoplasmático , Proteínas Fúngicas , Oryza , Proteômica , Oryza/microbiologia , Oryza/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Doenças das Plantas/microbiologia , Regulação Fúngica da Expressão Gênica , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Mutação , Multiômica , Ascomicetos
2.
J Ovarian Res ; 17(1): 107, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762721

RESUMO

Abnormal granulosa cell (GC) death contributes to cyclophosphamide (CTX) induced primary ovarian insufficiency (POI). To investigate the contribution of GCs to POI, gene profiles of GCs exposed to CTX were assessed using RNA-Seq and bioinformatics analysis. The results showed the differentially expressed genes (DEGs) were enriched in the ferroptosis-related pathway, which is correlated with upregulated heme oxygenase 1 (HO-1) and downregulated glutathione peroxidase-4 (GPX4). Using CTX-induced cell culture (COV434 and KGN cells), the levels of iron, reactive oxygen species (ROS), lipid peroxide, mitochondrial superoxide, mitochondrial morphology and mitochondrial membrane potential (MMP) were detected by DCFDA, MitoSOX, C11-BODIPY, MitoTracker, Nonylacridine Orange (NAO), JC-1 and transmission electron microscopy respectively. The results showed iron overload and disrupted ROS, including cytoROS, mtROS and lipROS homeostasis, were associated with upregulation of HO-1 and could induce ferroptosis via mitochondrial dysfunction in CTX-induced GCs. Moreover, HO-1 inhibition could suppress ferroptosis induced GPX4 depletion. This implies a role for ROS in CTX-induced ferroptosis and highlights the effect of HO-1 modulators in improving CTX-induced ovarian damage, which may provide a theoretical basis for preventing or restoring GC and ovarian function in patients with POI.


Assuntos
Ciclofosfamida , Ferroptose , Células da Granulosa , Heme Oxigenase-1 , Mitocôndrias , Espécies Reativas de Oxigênio , Ferroptose/efeitos dos fármacos , Feminino , Células da Granulosa/metabolismo , Células da Granulosa/efeitos dos fármacos , Ciclofosfamida/farmacologia , Ciclofosfamida/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Potencial da Membrana Mitocondrial/efeitos dos fármacos
3.
Front Plant Sci ; 15: 1326387, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38807783

RESUMO

Rehmannia glutinosa is an economically significant medicinal plant. Yet, the structure and sequence of its mitochondrial genome has not been published, which plays a crucial role in evolutionary analysis and regulating respiratory-related macromolecule synthesis. In this study, the R. glutinosa mitogenome was sequenced employing a combination of Illumina short reads and Nanopore long reads, with subsequent assembly using a hybrid strategy. We found that the predominant configuration of the R. glutinosa mitogenome comprises two circular chromosomes. The primary structure of the mitogenome encompasses two mitochondrial chromosomes corresponding to the two major configurations, Mac1-1 and Mac1-2. The R. glutinosa mitogenome encoded an angiosperm-typical set of 24 core genes, nine variable genes, three rRNA genes, and 15 tRNA genes. A phylogenetic analysis using the 16 shared protein-coding genes (PCG) yielded a tree consistent with the phylogeny of Lamiales species and two outgroup taxa. Mapping RNA-seq data to the coding sequences (CDS) of the PCGs revealed 507 C-to-U RNA editing sites across 31 PCGs of the R. glutinosa mitogenome. Furthermore, one start codon (nad4L) and two stop codons (rpl10 and atp6) were identified as products of RNA editing events in the R. glutinosa mitogenome.

4.
AAPS J ; 26(3): 41, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570436

RESUMO

Small interfering RNA (siRNA) is gaining momentum as a therapeutic modality with six approved products. Since siRNA has the potential to elicit undesired immune responses in patients, immunogenicity assessment is required during clinical development by regulatory authorities. In this study, anti-siRNA polyclonal antibodies were generated through animal immunization. These cross-reactive polyclonal antibodies recognized mostly the N-acetylgalactosamine (GalNAc) moiety with a small fraction against sequence-independent epitopes. We demonstrate that the polyclonal antibodies can be utilized as immunogenicity assay positive controls for the same class of GalNAc-conjugated siRNAs. In addition, anti-GalNAc mAbs showed desired sensitivity and drug tolerance, supporting their use as alternative surrogate positive controls. These findings can guide positive control selection and immunogenicity assay development for GalNAc-conjugated siRNAs and other oligonucleotide therapeutics.


Assuntos
Acetilgalactosamina , Oligonucleotídeos , Animais , Humanos , RNA Interferente Pequeno/genética , Anticorpos Monoclonais
5.
BMC Genomics ; 25(1): 422, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684976

RESUMO

Brasenia schreberi, a plant species traditionally utilized in Chinese medicine and cuisine, represents an early evolutionary stage among flowering plants (angiosperms). While the plastid genome of this species has been published, its mitochondrial genome (mitogenome) has not been extensively explored, with a notable absence of thorough comparative analyses of its organellar genomes. In our study, we had assembled the entire mitogenome of B. schreberi utilizing the sequencing data derived from both Illumina platform and Oxford Nanopore. The B. schreberi mitogenome mostly exists as six circular DNA molecules, with the largest being 628,257 base pairs (bp) and the smallest 110,220 bp, amounting to 1.49 megabases (Mb). Then we annotated the mitogenome of B. schreberi. The mitogenome encompasses a total of 71 genes: 40 of these are coding proteins genes (PCGs), 28 are genes for transfer RNA (tRNA), and the remaining 3 are genes for ribosomal RNA (rRNA). In the analysis of codon usage, we noted a unique codon preference specific to each amino acid. The most commonly used codons exhibited an average RSCU of 1.36, indicating a noticeable bias in codon selection. In the repeat sequence analysis, a total of 553 simple sequence repeats (SSRs) were identified, 1,822 dispersed repeats (comprising 1,015 forward and 807 palindromic repeats), and 608 long terminal repeats (LTRs). Additionally, in the analysis of homologous sequences between organelle genomes, we detected 38 homologous sequences derived from the plastid genome, each exceeding 500 bp, within the B. schreberi mitochondrial genome. Notably, ten tRNA genes (trnC-GCA, trnM-CAU, trnI-CAU, trnQ-UUG, trnN-GUU, trnT-GGU, trnW-CCA, trnA-UGC, trnI-GAU, and trnV-GAC) appear to have been completely transferred from the chloroplast to the mitogenome. Utilizing the Deepred-mt to predict the RNA editing sites in the mitogenome, we have identified 675 high-quality RNA editing sites in the 40 mitochondrial PCGs. In the final stage of our study, we performed an analysis of colinearity and inferred the phylogenetic relationship of B. schreberi with other angiosperms, utilizing the mitochondrial PCGs as a basis. The results showed that the non-coding regions of the B. schreberi mitogenome are characterized by an abundance of repetitive sequences and exogenous sequences, and B. schreberi is more closely related with Euryale ferox.


Assuntos
Genoma Mitocondrial , RNA de Transferência/genética , Uso do Códon , Anotação de Sequência Molecular , Cromossomos de Plantas/genética , Genoma de Planta , Códon/genética , Filogenia , RNA Ribossômico/genética
6.
Gene ; 912: 148349, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38460806

RESUMO

Ardisia S.W. (Primulaceae), naturally distributed in tropical and subtropical regions, has edible and medicinal values and is prevalent in clinical and daily use in China. More genetic information for distinct species delineation is needed to support the development and utilization of the genus Ardisia. We sequenced, annotated, and compared the chloroplast genomes of five Ardisia species: A. brunnescens, A. pusilla, A. squamulosa, A. crenata, and A. brevicaulis in this study. We found a typical quadripartite structure in all five chloroplast genomes, with lengths ranging from 155,045 to 156,943 bp. Except for A. pusilla, which lacked the ycf15 gene, the other four Ardisia species contained 114 unique genes, including 79 protein-coding genes, 30 tRNAs, and four rRNAs. In addition, the rps19 pseudogene gene was present only in A. brunnescens. Five highly variable DNA barcodes were identified for five Ardisia species, including trnT-GGU-psbD, trnT-UGU-trnL-UAA, rps4-trnT-UGU, rpl32-trnL-UAG, and rpoB-trnC-GAA. The RNA editiing sites of protein-coding genes in the five Ardisia plastome were characterized and compared, and 274 (A. crenata)-288 (A. brevicaulis) were found. The results of the phylogenetic analysis were consistent with the morphological classification. Sequence alignment and phylogenetic analysis showed that ycf15 genes were highly divergent in Primulaceae. Reconstructions of ancestral character states indicated that leaf margin morphology is critical for classifying the genus Ardisia, with a rodent-like character being the most primitive. These results provide valuable information on the taxonomy and evolution of Ardisia plants.


Assuntos
Ardisia , Genoma de Cloroplastos , Filogenia , China , Folhas de Planta
7.
Mol Ecol Resour ; 24(5): e13952, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38523350

RESUMO

Tools for visualizing genomes are essential for investigating genomic features and their interactions. Currently, tools designed originally for animal mitogenomes and plant plastomes are used to visualize the mitogens of plants but cannot accurately display features specific to plant mitogenomes, such as nonlinear exon arrangement for genes, the prevalence of functional noncoding features and complex chromosomal architecture. To address these problems, a software package, plant mitochondrial genome map (PMGmap), was developed using the Python programming language. PMGmap can draw genes at exon levels; draw cis- and trans-splicing gene maps, noncoding features and repetitive sequences; and scale genic regions by using the scaling of the genic regions on the mitogenome (SAGM) algorithm. It can also draw multiple chromosomes simultaneously. Compared with other state-of-the-art tools, PMGmap showed better performance in visualizing 405 plant mitogenomes, showing potential as an invaluable tool for plant mitogenome research. The web and container versions and the source code of PMGmap can be accessed through the following link: http://www.1kmpg.cn/pmgmap.


Assuntos
Genoma Mitocondrial , Software , Genoma Mitocondrial/genética , Biologia Computacional/métodos , Genoma de Planta/genética , Plantas/genética , Plantas/classificação
8.
Food Funct ; 15(8): 4246-4261, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38526064

RESUMO

The gut and skin microbiota are microbial barriers, resisting harmful foreign microorganisms and maintaining internal homeostasis. Dysbiosis of the gut and skin microbiota is involved in aging progression. However, interventions targeting facial skin wellness taking into account the gut-skin axis are scarce. In this study, the impact of an eight-week intervention with oral (O), topical (T), and both oral and topical (OT) xylo-oligosaccharides (XOS) by regulating gut and skin microbiota on facial cutaneous aging was investigated in a double-blind placebo-controlled trial in females. An increase in the proportion of participants with skin rejuvenation was observed, along with a significant reduction in facial pores after OT intervention. The reduction of cutaneous Cutibacterium by OT intervention was greater than that in the O and T groups. These interventions can change the skin microbial structure. Intestinal Bifidobacterium was enriched only by dual treatment with oral and topical XOS. Function prediction analysis revealed a decrease in K02770 encoding fructose-1-phosphate kinase involved in de novo lipid synthesis from fructose with dual intervention, suggesting that inhibition of lipophilic Cutibacterium may contribute to reducing facial pores. Overall, the dual XOS intervention approach is most effective for improving both gut and skin microbiota, as well as facial skin aging.


Assuntos
Microbioma Gastrointestinal , Envelhecimento da Pele , Pele , Humanos , Feminino , Envelhecimento da Pele/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Pele/microbiologia , Adulto , Método Duplo-Cego , Pessoa de Meia-Idade , Face , Microbiota/efeitos dos fármacos , Oligossacarídeos/farmacologia , Bactérias/classificação , Bactérias/efeitos dos fármacos
9.
Nat Commun ; 15(1): 1535, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378822

RESUMO

The growth and sustainable development of humanity is heavily dependent upon molecular nitrogen (N2) fixation. Herein we discover ambient catalyst-free disproportionation of N2 by water plasma which occurs via the distinctive HONH-HNOH+• intermediate to yield economically valuable nitroxyl (HNO) and hydroxylamine (NH2OH) products. Calculations suggest that the reaction is prompted by the coordination of electronically excited N2 with water dimer radical cation, (H2O)2+•, in its two-center-three-electron configuration. The reaction products are collected in a 76-needle array discharge reactor with product yields of 1.14 µg cm-2 h-1 for NH2OH and 0.37 µg cm-2 h-1 for HNO. Potential applications of these compounds are demonstrated to make ammonia (for NH2OH), as well as to chemically react and convert cysteine, and serve as a neuroprotective agent (for HNO). The conversion of N2 into HNO and NH2OH by water plasma could offer great profitability and reduction of polluting emissions, thus giving an entirely look and perspectives to the problem of green N2 fixation.

10.
Inflamm Res ; 73(3): 433-446, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38345634

RESUMO

BACKGROUND: B cells were believed to act as antigen-presenting cells (APCs) to promote T helper type 2 (Th2) cell responses. However, the role of lung B cells and its subpopulations in Th2 cell responses in asthma remains unclear. OBJECTIVE: We leveraged an anti-CD20 monoclonal antibody (mAb) treatment that has been shown to selectively deplete B cells in mice and investigated whether this treatment modulates Th2 cell responses and this modulation is related to lung follicular mature (FM) B cells in a murine model of asthma. METHODS AND RESULTS: We used a house dust mite (HDM)-induced asthma mouse model and found that anti-CD20 mAb treatment attenuates Th2 cell responses. Meanwhile, anti-CD20 mAb treatment did dramatically reduce the number of B cells, especially FM B cells in the lungs, but did not impact the frequency of other immune cell types, including lung T cells, dendritic cells, natural killer cells, and regulatory T cells in wild-type mice. Moreover, we found that the suppressive effect of anti-CD20 mAb treatment on Th2 cell responses could be reversed upon adoptive transfer of lung FM B cells, but not lung CD19+ B cells without FM B cells in asthmatic mice. CONCLUSIONS: These findings reveal that anti-CD20 mAb treatment alleviates Th2 cell responses, possibly by depleting lung FM B cells in a Th2-driven asthma model. This implies a potential therapeutic approach for asthma treatment through the targeting of lung FM B cells.


Assuntos
Asma , Células Th2 , Camundongos , Animais , Asma/tratamento farmacológico , Pulmão , Linfócitos B , Pyroglyphidae , Células Dendríticas , Modelos Animais de Doenças
11.
Genes (Basel) ; 15(2)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38397228

RESUMO

Paeonia lactiflora (P. lactiflora), a perennial plant renowned for its medicinal roots, provides a unique case for studying the phylogenetic relationships of species based on organelle genomes, as well as the transference of DNA across organelle genomes. In order to investigate this matter, we sequenced and characterized the mitochondrial genome (mitogenome) of P. lactiflora. Similar to the chloroplast genome (cpgenome), the mitogenome of P. lactiflora extends across 181,688 base pairs (bp). Its unique quadripartite structure results from a pair of extensive inverted repeats, each measuring 25,680 bp in length. The annotated mitogenome includes 27 protein-coding genes, 37 tRNAs, 8 rRNAs, and two pseudogenes (rpl5, rpl16). Phylogenetic analysis was performed to identify phylogenetic trees consistent with Paeonia species phylogeny in the APG Ⅳ system. Moreover, a total of 12 MTPT events were identified and 32 RNA editing sites were detected during mitogenome analysis of P. lactiflora. Our research successfully compiled and annotated the mitogenome of P. lactiflora. The study provides valuable insights regarding the taxonomic classification and molecular evolution within the Paeoniaceae family.


Assuntos
Genoma Mitocondrial , Paeonia , Saxifragales , Humanos , Filogenia , Genoma Mitocondrial/genética , Paeonia/genética , Saxifragales/genética , Cloroplastos/genética
12.
Heliyon ; 10(1): e23779, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38223705

RESUMO

As implantable materials, titanium, and its alloys have garnered enormous interest from researchers for dental and orthopedic procedures. Despite their success in wide clinical applications, titanium, and its alloys fail to stimulate osteogenesis, resulting in poor bonding strength with surrounding bone tissue. Optimizing the surface topology and altered compositions of titanium and titanium-based alloys substantially promotes peri-implant bone regeneration. This review summarizes the utilization and importance of various osteogenesis components loaded onto titanium and its alloys. Further, different surface-modification methods and the release efficacy of loaded substances are emphasized. Finally, we summarize the article with prospects. We believe that further investigation studies must focus on identifying novel loading components, exploring various innovative, optimized surface-modification methods, and developing a sustained-release system on implant surfaces to improve peri-implant bone formation.

13.
Planta ; 258(5): 98, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37831319

RESUMO

MAIN CONCLUSION: In this study, we assembled the complete plastome and mitogenome of Caragana spinosa and explored the multiple configurations of the organelle genomes. Caragana spinosa belongs to the Papilionoidea subfamily and has significant pharmaceutical value. To explore the possible interaction between the organelle genomes, we assembled and analyzed the plastome and mitogenome of C. spinosa using the Illumina and Nanopore DNA sequencing data. The plastome of C. spinosa was 129,995 bp belonging to the inverted repeat lacking clade (IRLC), which contained 77 protein-coding genes, 29 tRNA genes, and four rRNA genes. The mitogenome was 378,373 bp long and encoded 54 unique genes, including 33 protein-coding, three ribosomal RNA (rRNA), and 18 transfer RNA (tRNA) genes. In addition to the single circular conformation, alternative conformations mediated by one and four repetitive sequences in the plastome and mitogenome were identified and validated, respectively. The inverted repeat (PDR12, the 12th dispersed repeat sequence in C. spinosa plastome) of plastome mediating recombinant was conserved in the genus Caragana. Furthermore, we identified 14 homologous fragments by comparing the sequences of mitogenome and plastome, including eight complete tRNA genes. A phylogenetic analysis of protein-coding genes extracted from the plastid and mitochondrial genomes revealed congruent topologies. Analyses of sequence divergence found one intergenic region, trnN-GUU-ycf1, exhibiting a high degree of variation, which can be used to develop novel molecular markers to distinguish the nine Caragana species accurately. This plastome and mitogenome of C. spinosa could provide critical information for the molecular breeding of C. spinosa and be used as a reference genome for other species of Caragana. In this study, we assembled the complete plastome and mitogenome of Caragana spinosa and explored the multiple configurations of the organelle genomes.


Assuntos
Caragana , Genoma Mitocondrial , Genomas de Plastídeos , Genoma Mitocondrial/genética , Caragana/genética , Filogenia , Plastídeos/genética , RNA de Transferência/genética
14.
BMC Plant Biol ; 23(1): 487, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821817

RESUMO

BACKGROUND: Viburnum chinshanense is an endemic species found exclusively in the North-Central and South-Central regions of China. This species is a lush garden ornamental tree and is extensively utilized for vegetation restoration in rocky desertification areas. RESULTS: In this study, we obtained 13.96 Gb of Oxford Nanopore data for the whole genome, and subsequently, by combining Illumina short-reads, we successfully assembled the complete mitochondrial genome (mitogenome) of the V. chinshanense using a hybrid assembly strategy. The assembled genome can be described as a circular genome. The total length of the V. chinshanense mitogenome measures 643,971 bp, with a GC content of 46.18%. Our annotation efforts have revealed a total of 39 protein-coding genes (PCGs), 28 tRNA genes, and 3 rRNA genes within the V. chinshanense mitogenome. The analysis of repeated elements has identified 212 SSRs, 19 long tandem repeat elements, and 325 pairs of dispersed repeats in the V. chinshanense mitogenome. Additionally, we have investigated mitochondrial plastid DNAs (MTPTs) and identified 21 MTPTs within the mitogenome and plastidial genome. These MTPTs collectively span a length of 9,902 bp, accounting for 1.54% of the mitogenome. Moreover, employing Deepred-mt, we have confidently predicted 623 C to U RNA editing sites across the 39 protein-coding genes. Furthermore, extensive genomic rearrangements have been observed between V. chinshanense and the mitogenomes of related species. Interestingly, we have also identified a bacterial-derived tRNA gene (trnC-GCA) in the V. chinshanense mitogenome. Lastly, we have inferred the phylogenetic relationships of V. chinshanense with other angiosperms based on mitochondrial PCGs. CONCLUSIONS: This study marks the first report of a mitogenome from the Viburnum genus, offering a valuable genomic resource for exploring the evolution of mitogenomes within the Dipsacales order.


Assuntos
Genoma Mitocondrial , Viburnum , Genoma Mitocondrial/genética , Viburnum/genética , Filogenia , Genômica , RNA de Transferência/genética
15.
Mitochondrial DNA B Resour ; 8(10): 1071-1076, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842007

RESUMO

With its nearly 200 species, the Mammillaria genus is the most species-rich within the Cactaceae family, yet surprisingly, few of its chloroplast genomes have been studied. We focused on the species Mammillaria elongata DC. 1828, a petite cactus native to Mexico and favored by horticulturists, yet whose phylogenetic relationships remain uncertain due to a lack of genomic data. We extracted the DNA from a sample obtained in China, sequenced it using the NovaSeq 6000 platform, and assembled the chloroplast genome using GetOrganelle software. Our assembly resulted in a chloroplast genome of 110,981 base pairs with an overall GC content of 36.28%, which included 100 genes (95 unique). Notably, several protein-coding genes were absent. Phylogenetic analysis using 59 shared genes across nine Mammillaria species and one Obregonia species revealed that M. elongata and M. gracilis are closely related, suggesting a recent common ancestor and possible shared evolutionary pressures or ecological niches. This study provides crucial genomic data for M. elongata and hints at intriguing phylogenetic relationships within the Mammillaria genus.

16.
Front Plant Sci ; 14: 1261012, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37885664

RESUMO

Background: Coffea arabica L. is one of the most important crops widely cultivated in 70 countries across Asia, Africa, and Latin America. Mitochondria are essential organelles that play critical roles in cellular respiration, metabolism, and differentiation. C. arabica's nuclear and chloroplast genomes have been reported. However, its mitochondrial genome remained unreported. Here, we intended to sequence and characterize its mitochondrial genome to maximize the potential of its genomes for evolutionary studies, molecular breeding, and molecular marker developments. Results: We sequenced the total DNA of C. arabica using Illumina and Nanopore platforms. We then assembled the mitochondrial genome with a hybrid strategy using Unicycler software. We found that the mitochondrial genome comprised two circular chromosomes with lengths of 867,678 bp and 153,529 bp, encoding 40 protein-coding genes, 26 tRNA genes, and three rRNA genes. We also detected 270 Simple Sequence Repeats and 34 tandem repeats in the mitochondrial genome. We found 515 high-scoring sequence pairs (HSPs) for a self-to-self similarity comparison using BLASTn. Three HSPs were found to mediate recombination by the mapping of long reads. Furthermore, we predicted 472 using deep-mt with the convolutional neural network model. Then we randomly validated 90 RNA editing events by PCR amplification and Sanger sequencing, with the majority being non-synonymous substitutions and only three being synonymous substitutions. These findings provide valuable insights into the genetic characteristics of the C. arabica mitochondrial genome, which can be helpful for future study on coffee breeding and mitochondrial genome evolution. Conclusion: Our study sheds new light on the evolution of C. arabica organelle genomes and their potential use in genetic breeding, providing valuable data for developing molecular markers that can improve crop productivity and quality. Furthermore, the discovery of RNA editing events in the mitochondrial genome of C. arabica offers insights into the regulation of gene expression in this species, contributing to a better understanding of coffee genetics and evolution.

17.
Int J Biol Macromol ; 252: 126359, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619687

RESUMO

Panax notoginseng is one of the most valuable medicinal species. However, its mitochondrial genome has not been reported yet. We aimed to determine the mitogenome sequence of P. notoginseng. We de novo assembled the mitogenome with Illumina short reads and Nanopore long reads. The mitochondrial genome of P. notoginseng has a multipartite structure consisting of interconversion between a "master circle" and numerous "subgenomic circles" through recombinations mediated by 64 pairs of repetitive sequences. Among the multipartite structure, seven subgenomic circles were best supported. Six of the seven subgenomic circles shared an 852 bp conserved fragment. The complete mitogenome of P. notoginseng was 662,479 bp long including 34 mitochondrial protein-coding genes (PCGs), three rRNA, and 19 tRNA genes. We identified 166 microsatellite repeats and 26 long-tandem repeats. Phylogenetic analysis resolved a tree that was mostly congruent with the phylogeny of Apiales species described in the APG IV system and the tree built with the chloroplast genome sequences. A total of 12 mitochondrial plastid DNA fragments were identified. Lastly, we predicted 591C-to-U RNA editing sites in the coding regions of mitochondrial PCGs. The mitochondrial genome will lay the foundation for understanding the evolution of Panax species.


Assuntos
Genoma Mitocondrial , Panax notoginseng , Panax notoginseng/genética , Análise de Sequência de DNA , Genoma Mitocondrial/genética , Filogenia , DNA Mitocondrial/genética , Recombinação Genética/genética , Replicação do DNA
18.
Int J Biol Macromol ; 251: 126257, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573900

RESUMO

Mentha spicata L. is a valuable plant that yields spearmint oil, widely utilized in the pharmaceutical, chemical, and cosmetic industries. The mitochondrial genome (mitogenome) is an essential material for molecular breeding and evolution studies. Here, the mitogenome of M. spicata was assembled by combining Nanopore and Illumina reads. It consisted of a linear chromosome (Ch1) and two circular chromosomes (Ch2 and Ch3). Furthermore, we showed two pairs of repeats (R1 and R2) mediated recombinations resulting in multiple chromosomal configurations. The R1-mediated-recombination generated a large molecule formed by joining Ch2 and Ch1. Similarly, the R2-mediated-recombination generated a large molecule formed by joining Ch3 and Ch1. Then, we identified 17 mitochondrial plastid DNAs (MTPTs) by comparing the mitogenome and cpgenome. The MTPT14 was conserved in multiple species, which has undergone the same evolutionary process as the two organellar genomes among M. spicata, Hesperelaea palmeri and Castilleja paramensis. Based on the RNA-seq reads, 246 RNA editing sites were predicted, resulting in the conversion of cytosine to uracil bases. Furthermore, we successfully validated 40 out of 43 predicted sites. This project reported a complex structure of the M. spicata mitogenome resulting from repeat-mediated recombinations, which will provide valuable information for gene function study and the breeding of different varieties.

19.
Front Plant Sci ; 14: 1180417, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37416891

RESUMO

Introduction: Amorphophallus albus is an herbaceous, cormous, perennial plant used as a food source and traditional medicine in Asia. Methods: In this study, we assembled and annotated the complete mitochondrial genome (mitogenome) of A. albus. Then we analyzed the repeated elements and mitochondrial plastid sequences (MTPTs), predicted RNA editing sites in mitochondrial protein-coding genes (PCGs). Lastly, we inferred the phylogenetic relationships of A. albus and other angiosperms based on mitochondrial PCGs, and designed two molecular markers based on mitochondrial DNA. Results and discussion: The complete mitogenome of A. albus consists of 19 circular chromosomes. And the total length of A. albus mitogenome is 537,044 bp, with the longest chromosome measuring 56,458 bp and the shortest measuring 12,040 bp. We identified and annotated a total of 36 protein-coding genes (PCGs), 21 tRNA genes, and 3 rRNA genes in the mitogenome. Additionally, we analyzed mitochondrial plastid DNAs (MTPTs) and identified 20 MTPTs between the two organelle genomes, with a combined length of 22,421 bp, accounting for 12.76% of the plastome. Besides, we predicted a total of 676 C to U RNA editing sites on 36 protein-coding genes of high confidence using Deepred-mt. Furthermore, extensive genomic rearrangement was observed between A. albus and the related mitogenomes. We conducted phylogenetic analyses based on mitochondrial PCGs to determine the evolutionary relationships between A. albus and other angiosperms. Finally, we developed and validated two molecular markers, Ai156 and Ai976, based on two intron regions (nad2i156 and nad4i976) respectively. The discrimination success rate was 100 % in validation experiments for five widely grown konjac species. Our results reveal the multi-chromosome mitogenome of A. albus, and the developed markers will facilitate molecular identification of this genus.

20.
Molecules ; 28(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298787

RESUMO

The transformations of physicochemical properties on manganese oxides during peroxymonosulfate (PMS) activation are vital factors to be concerned. In this work, Mn3O4 nanospheres homogeneously loaded on nickel foam are prepared, and the catalytic performance for PMS activation is evaluated by degrading a target pollutant, Acid Orange 7, in aqueous solution. The factors including catalyst loading, nickel foam substrate, and degradation conditions have been investigated. Additionally, the transformations of crystal structure, surface chemistry, and morphology on the catalyst have been explored. The results show that sufficient catalyst loading and the support of nickel foam play significant roles in the catalytic reactivity. A phase transition from spinel Mn3O4 to layered birnessite, accompanied by a morphological change from nanospheres to laminae, is clarified during the PMS activation. The electrochemical analysis reveals that more favorable electronic transfer and ionic diffusion occur after the phase transition so as to enhance catalytic performance. The generated SO4•- and •OH radicals through redox reactions of Mn are demonstrated to account for the pollutant degradation. This work will provide new understandings of PMS activation by manganese oxides with high catalytic activity and reusability.


Assuntos
Nanosferas , Níquel , Manganês , Óxidos/química , Peróxidos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...