Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(51): e202315185, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37903738

RESUMO

Here we report on an ultra-sensitive colorimetric sensing platform that takes advantage of both the strong amplification power of rolling circle amplification (RCA) and the high efficiency of a simple urease-mediated litmus test. The presence of a target triggers the RCA reaction, and urease-labelled DNA can hybridize to the biotinylated RCA products and be immobilized onto streptavidin-coated magnetic beads. The urease-laden beads are then used to hydrolyze urea, leading to an increase in pH that can be detected by a simple litmus test. We show this sensing platform can be easily integrated with aptamers for sensing diverse targets via the detection of human thrombin and platelet-derived growth factor (PDGF) utilizing structure-switching aptamers as well as SARS-CoV-2 in human saliva using a spike-binding trimeric DNA aptamer. Furthermore, we demonstrate that this colorimetric sensing platform can be integrated into a simple paper-based device for sensing applications.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Humanos , Urease , Colorimetria , DNA/metabolismo , Técnicas de Amplificação de Ácido Nucleico
2.
Adv Mater ; 35(40): e2302641, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37358057

RESUMO

With food production shifting away from traditional farm-to-table approaches to efficient multistep supply chains, the incidence of food contamination has increased. Consequently, pathogen testing via inefficient culture-based methods has increased, despite its lack of real-time capabilities and need for centralized facilities. While in situ pathogen detection would address these limitations and enable individual product monitoring, accurate detection within unprocessed, packaged food products without user manipulation has proven elusive. Herein, "Lab-in-a-Package" is presented, a platform capable of sampling, concentrating, and detecting target pathogens within closed food packaging, without intervention. This system consists of a newly designed packaging tray and reagent-infused membrane that can be paired universally with diverse pathogen sensors. The inclined food packaging tray maximizes fluid localization onto the sensing interface, while the membrane acts as a reagent-immobilizing matrix and an antifouling barrier for the sensor. The platform is substantiated using a newly discovered Salmonella-responsive nucleic acid probe, which enables hands-free detection of 103 colony forming units (CFU) g-1 target pathogen in a packaged whole chicken. The platform remains effective when contamination is introduced with toolsand surfaces, ensuring widespread efficacy. Its real-world use for in situ detection is simulated using a handheld fluorescence scanner with smartphone connectivity.


Assuntos
Galinhas , Microbiologia de Alimentos , Animais , Salmonella , Contaminação de Alimentos/análise , Embalagem de Alimentos
3.
Angew Chem Int Ed Engl ; 62(20): e202300828, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36932982

RESUMO

An Au-on-Au tip sensor is developed for the detection of Salmonella typhimurium (Salmonella), using a new synthetic nucleic acid probe (NAP) as a linker for the immobilization of a DNA-conjugated Au nanoparticle (AuNP) onto a DNA-attached thin Au layer inside a pipette tip. In the presence of Salmonella, RNase H2 from Salmonella (STH2) cleaves the NAP and the freed DNA-conjugated AuNP can be visually detected by a paper strip. This portable biosensor does not require any electronic, electrochemical or optical equipment. It delivers a detection limit of 3.2×103  CFU mL-1 for Salmonella in 1 h without cell-culturing or signal amplification and does not show cross-reactivity with several control bacteria. Further, the sensor reliably detects Salmonella spiked in food samples, such as ground beef and chicken, milk, and eggs. The sensor can be reused and is stable at ambient temperature, showing its potential as a point-of-need device for the prevention of food poisoning by Salmonella.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Animais , Bovinos , Colorimetria , DNA , Ouro , Limite de Detecção , Sondas de Ácido Nucleico , Salmonella typhimurium/genética , Microbiologia de Alimentos
4.
J Am Chem Soc ; 144(51): 23465-23473, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36520671

RESUMO

Our previously discovered monomeric aptamer for SARS-CoV-2 (MSA52) possesses a universal affinity for COVID-19 spike protein variants but is ultimately limited by its ability to bind only one subunit of the spike protein. The symmetrical shape of the homotrimeric SARS-CoV-2 spike protein presents the opportunity to create a matching homotrimeric molecular recognition element that is perfectly complementary to its structural scaffold, causing enhanced binding affinity. Here, we describe a branched homotrimeric aptamer with three-fold rotational symmetry, named TMSA52, that not only possesses excellent binding affinity but is also capable of binding several SARS-CoV-2 spike protein variants with picomolar affinity, as well as pseudotyped lentiviruses expressing SARS-CoV-2 spike protein variants with femtomolar affinity. Using Pd-Ir nanocubes as nanozymes in an enzyme-linked aptamer binding assay (ELABA), TMSA52 was capable of sensitively detecting diverse pseudotyped lentiviruses in pooled human saliva with a limit of detection as low as 6.3 × 103 copies/mL. The ELABA was also used to test 50 SARS-CoV-2-positive and 60 SARS-CoV-2-negative patient saliva samples, providing sensitivity and specificity values of 84.0 and 98.3%, respectively, thus highlighting the potential of TMSA52 for the development of future rapid tests.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Glicoproteína da Espícula de Coronavírus , Bioensaio , Oligonucleotídeos
5.
Anal Sens ; 2(5): e202200035, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35936648

RESUMO

The cover feature image shows nucleic acid aptamers armed and ready for our battle against the monstrous SARS-CoV-2 virus. Often thought of as "chemical antibodies", these molecular recognition elements are equipped with several unique benefits and have thus been a popular research subject worldwide. Many aptamers for recognizing the spike and nucleocapsid proteins of SARS-CoV-2 have been developed and examined as diagnostic and therapeutic weaponry for the war against COVID-19 and future pandemics. More information can be found in the Review by J. D. Brennan, Y. Li, and co-workers.

6.
Anal Sens ; 2(5): e202200012, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35574520

RESUMO

The SARS-CoV-2 virus and COVID-19 pandemic continue to demand effective diagnostic and therapeutic solutions. Finding these solutions requires highly functional molecular recognition elements. Nucleic acid aptamers represent a possible solution. Characterized by their high affinity and specificity, aptamers can be rapidly identified from random-sequence nucleic acid libraries. Over the past two years, many labs around the world have rushed to create diverse aptamers that target two important structural proteins of SARS-CoV-2: the spike (S) protein and nucleocapsid (N) protein. These have led to the identification of many aptamers that show real promise for the development of diagnostic tests and therapeutic agents for SARS-CoV-2. Herein we review all these developments, with a special focus on the development of diverse aptasensors for detecting SARS-CoV-2. These include electrochemical and optical sensors, lateral flow devices, and aptamer-linked immobilized sorbent assays.

7.
ChemMedChem ; 17(13): e202200166, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35491395

RESUMO

Aptamers that can recognize the spike (S) protein of SARS-CoV-2 with high affinity and specificity are useful molecules towards the development of diagnostics and therapeutics to fight COVID-19. However, this S protein is constantly mutating, producing variants of concern (VoCs) that can significantly weaken the binding by aptamers initially engineered to recognize the S protein of the wildtype virus or a specific VoC. One strategy to overcome this problem is to develop universal aptamers that are insensitive to all or most of the naturally emerging mutations in the protein. We have recently demonstrated this concept by subjecting a pool of S protein-binding DNA aptamers for one-round parallel-SELEX experiments targeting 5 different S protein variants for binding-based sequence enrichment, followed by bioinformatic analysis of the enriched pools. This effort has led to the identification of a universal aptamer that recognizes 8 different variants of the spike protein with equally excellent affinity.


Assuntos
Aptâmeros de Nucleotídeos , Tratamento Farmacológico da COVID-19 , Aptâmeros de Nucleotídeos/química , Humanos , SARS-CoV-2 , Técnica de Seleção de Aptâmeros , Glicoproteína da Espícula de Coronavírus/genética
8.
Chemistry ; 28(15): e202200524, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35218097

RESUMO

Invited for the cover of this issue are John Brennan, Yingfu Li, and co-workers at McMaster University. The image depicts MSA52 as a universal DNA aptamer that recognizes spike proteins of diverse SARS-CoV-2 variants of concern. Read the full text of the article at 10.1002/chem.202200078.

9.
Chemistry ; 28(15): e202200078, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35084794

RESUMO

We report on a unique DNA aptamer, denoted MSA52, that displays universally high affinity for the spike proteins of wildtype SARS-CoV-2 as well as the Alpha, Beta, Gamma, Epsilon, Kappa, Delta and Omicron variants. Using an aptamer pool produced from round 13 of selection against the S1 domain of the wildtype spike protein, we carried out one-round SELEX experiments using five different trimeric spike proteins from variants, followed by high-throughput sequencing and sequence alignment analysis of aptamers that formed complexes with all proteins. A previously unidentified aptamer, MSA52, showed Kd values ranging from 2 to 10 nM for all variant spike proteins, and also bound similarly to variants not present in the reselection experiments. This aptamer also recognized pseudotyped lentiviruses (PL) expressing eight different spike proteins of SARS-CoV-2 with Kd values between 20 and 50 pM, and was integrated into a simple colorimetric assay for detection of multiple PL variants. This discovery provides evidence that aptamers can be generated with high affinity to multiple variants of a single protein, including emerging variants, making it well-suited for molecular recognition of rapidly evolving targets such as those found in SARS-CoV-2.


Assuntos
Aptâmeros de Nucleotídeos , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , COVID-19/virologia , Humanos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
10.
Front Chem ; 9: 775220, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34900937

RESUMO

Displaying extremely high peroxidase-like activity and uniform cubic structure enclosed by (100) facets, Pd-Ir nanocubes are an attractive nanomaterial for bioanalysis. However, there exists a great challenge to deposit atomic layers of Ir on the surface of Pd nanocubes due to the relatively low energy barrier of homogeneous nucleation of Ir atoms compared to heterogeneous nucleation. Here, a simple and surfactant-free approach is presented to synthesize Pd-Ir nanocubes with atomic Ir shell thickness in an aqueous solution at room temperature. Biomolecules such as antibodies and nucleic acids have free access to the surface of Pd-Ir nanocubes. Applications of Pd-Ir nanocubes in immunoassays and aptamer-based biosensors are realized, exploiting the excellent peroxidase activity and fluorescence quenching ability of Pd-Ir nanocubes. This work makes a significant step forward towards the practical utility of Pd-Ir nanocubes in bioanalysis.

11.
Angew Chem Int Ed Engl ; 60(45): 24266-24274, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34464491

RESUMO

We report a simple and rapid saliva-based SARS-CoV-2 antigen test that utilizes a newly developed dimeric DNA aptamer, denoted as DSA1N5, that specifically recognizes the spike proteins of the wildtype virus and its Alpha and Delta variants with dissociation constants of 120, 290 and 480 pM, respectively, and binds pseudotyped lentiviruses expressing the wildtype and alpha trimeric spike proteins with affinity constants of 2.1 pM and 2.3 pM, respectively. To develop a highly sensitive test, DSA1N5 was immobilized onto gold electrodes to produce an electrochemical impedance sensor, which was capable of detecting 1000 viral particles per mL in 1:1 diluted saliva in under 10 min without any further sample processing. Evaluation of 36 positive and 37 negative patient saliva samples produced a clinical sensitivity of 80.5 % and specificity of 100 % and the sensor could detect the wildtype virus as well as the Alpha and Delta variants in the patient samples, which is the first reported rapid test that can detect any emerging variant of SARS-CoV-2.


Assuntos
Antígenos Virais/análise , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais , Teste Sorológico para COVID-19 , Técnicas Eletroquímicas , SARS-CoV-2/genética , Humanos , Saliva/química
12.
Nucleic Acids Res ; 49(13): 7267-7279, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34232998

RESUMO

We performed in vitro selection experiments to identify DNA aptamers for the S1 subunit of the SARS-CoV-2 spike protein (S1 protein). Using a pool of pre-structured random DNA sequences, we obtained over 100 candidate aptamers after 13 cycles of enrichment under progressively more stringent selection pressure. The top 10 sequences all exhibited strong binding to the S1 protein. Two aptamers, named MSA1 (Kd = 1.8 nM) and MSA5 (Kd = 2.7 nM), were assessed for binding to the heat-treated S1 protein, untreated S1 protein spiked into 50% human saliva and the trimeric spike protein of both the wildtype and the B.1.1.7 variant, demonstrating comparable affinities in all cases. MSA1 and MSA5 also recognized the pseudotyped lentivirus of SARS-CoV-2 with respective Kd values of 22.7 pM and 11.8 pM. Secondary structure prediction and sequence truncation experiments revealed that both MSA1 and MSA5 adopted a hairpin structure, which was the motif pre-designed into the original library. A colorimetric sandwich assay was developed using MSA1 as both the recognition element and detection element, which was capable of detecting the pseudotyped lentivirus in 50% saliva with a limit of detection of 400 fM, confirming the potential of these aptamers as diagnostic tools for COVID-19 detection.


Assuntos
Aptâmeros de Nucleotídeos , COVID-19/virologia , Biblioteca Gênica , Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Pareamento de Bases , Sequência de Bases , COVID-19/diagnóstico , Colorimetria/métodos , Humanos , Conformação de Ácido Nucleico , Técnica de Seleção de Aptâmeros
13.
Anal Bioanal Chem ; 413(18): 4635-4644, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33735408

RESUMO

Pd-Ir nanocubes are promising peroxidase-mimicking nanozymes for immunoassays, enabled by their excellent stability, relatively high catalytic activity, and reproducible performance. A key step involved in the preparation of Pd-Ir nanocubes is the synthesis of Pd nanocubes. However, the traditional method to synthesize Pd nanocubes requires sophisticated and expensive equipment to precisely control the reaction temperature and highly skilled technicians to achieve satisfactory and reproducible product yields. Herein, we report a simple, cost-effective, high-yield (> 99%) and one-pot strategy to synthesize Pd nanocubes with sizes of 7, 18, and 51 nm for the preparation of Pd-Ir nanocubes. The resulting 18 nm Pd-Ir nanocubes display three orders of magnitude higher peroxidase activity compared to horseradish peroxidase, leading to a significantly increased detection sensitivity when applied in the immunoassay of nucleocapsid protein from SARS-CoV-2. Due to the simplicity in both material synthesis and assaying procedures and the excellent detection sensitivity, our method should allow for the generalized application of Pd-Ir nanocube-based immunoassays for the diagnosis of human diseases.


Assuntos
COVID-19/diagnóstico , Proteínas do Nucleocapsídeo de Coronavírus/química , Imunoensaio/métodos , Irídio/química , Paládio/química , SARS-CoV-2 , Anticorpos Antivirais , Análise Custo-Benefício , Humanos , Imunoensaio/economia , Estrutura Molecular , Nanoestruturas/química , Nanoestruturas/economia , Fosfoproteínas/química
14.
ACS Appl Mater Interfaces ; 13(8): 9464-9471, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33410654

RESUMO

Molecular recognition elements with high specificity are of great importance for the study of molecular interactions, accurate diagnostics, drug design, and personalized medicine. Herein, a highly specific DNA aptamer for RNase H2 from Clostridium difficile (C. difficile) was generated by SELEX and minimized to 40 nucleotides. The aptamer exhibits a dissociation constant (Kd) of 1.8 ± 0.5 nM and an inhibition constant (IC50) of 7.1 ± 0.6 nM for C. difficile RNase H2, both of which are 2 orders of magnitude better for the same enzyme from other control bacteria. The fluorescent version of the aptamer can distinguish C. difficile from several other control bacteria in a cell lysate assay. This work demonstrates that a ubiquitous protein like RNase H2 can still be used as the target for the development of highly specific aptamers and the combination of the protein and the aptamer can achieve the recognition specificity needed for a diagnostic test and drug development.


Assuntos
Aptâmeros de Nucleotídeos/química , Proteínas de Bactérias/análise , Clostridioides difficile/enzimologia , DNA/química , Ribonucleases/análise , Aptâmeros de Nucleotídeos/metabolismo , Proteínas de Bactérias/metabolismo , Biomarcadores/análise , Biomarcadores/metabolismo , DNA/metabolismo , Fluoresceínas/química , Corantes Fluorescentes/química , Ligação Proteica , Ribonucleases/metabolismo , Técnica de Seleção de Aptâmeros
15.
Chembiochem ; 21(11): 1547-1566, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32176816

RESUMO

Circular nucleic acids (CNAs) are nucleic acid molecules with a closed-loop structure. This feature comes with a number of advantages including complete resistance to exonuclease degradation, much better thermodynamic stability, and the capability of being replicated by a DNA polymerase in a rolling circle manner. Circular functional nucleic acids, CNAs containing at least a ribozyme/DNAzyme or a DNA/RNA aptamer, not only inherit the advantages of CNAs but also offer some unique application opportunities, such as the design of topology-controlled or enabled molecular devices. This article will begin by summarizing the discovery, biogenesis, and applications of naturally occurring CNAs, followed by discussing the methods for constructing artificial CNAs. The exploitation of circular functional nucleic acids for applications in nanodevice engineering, biosensing, and drug delivery will be reviewed next. Finally, the efforts to couple functional nucleic acids with rolling circle amplification for ultra-sensitive biosensing and for synthesizing multivalent molecular scaffolds for unique applications in biosensing and drug delivery will be recapitulated.


Assuntos
Técnicas Biossensoriais/métodos , DNA Catalítico/genética , DNA Circular/genética , Engenharia Genética/métodos , RNA Catalítico/genética , RNA Circular/genética , Animais , Aptâmeros de Nucleotídeos/síntese química , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , DNA Catalítico/química , DNA Catalítico/metabolismo , DNA Circular/química , DNA Circular/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Humanos , Nanotecnologia , Técnicas de Amplificação de Ácido Nucleico , Conformação de Ácido Nucleico , Estabilidade de RNA , RNA Catalítico/química , RNA Catalítico/metabolismo , RNA Circular/química , RNA Circular/metabolismo
16.
J Mater Chem B ; 8(16): 3213-3230, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31942914

RESUMO

Recently, portable sensing devices with point of care testing (POCT) capability have attracted great attention due to their inherent affordability and accessibility in low resource areas. Paper sensors possess excellent potential as POCT platforms because of low cost, ease of operation, disposability and high-volume manufacturing. Paper sensors that incorporate functional nucleic acids (FNAs) as recognition elements are particularly attractive given that FNAs can be isolated from random-sequence nucleic acid pools to recognize, or respond to, virtually any target of interest. In this review, the advantages of FNAs, particularly DNA aptamers and DNAzymes, as recognition elements for the design of paper sensors are first discussed. This is followed by reviewing three specific types of FNA based paper sensors: dot blots, lateral flow assays, and microfluidic paper-based analytical devices. Furthermore, advances in the signal reporting methods used by FNA based paper sensors are summarized. Finally, limitations of current FNA based paper sensors are discussed along with considerations of future research directions.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos/análise , Papel , Testes Imediatos , Humanos , Tamanho da Partícula , Propriedades de Superfície
17.
Chemistry ; 26(3): 592-596, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31475757

RESUMO

DNA detection is usually conducted under nondenaturing conditions to favor the formation of Watson-Crick base-paring interactions. However, although such a setting is excellent for distinguishing a single-nucleotide polymorphism (SNP) within short DNA sequences (15-25 nucleotides), it does not offer a good solution to SNP detection within much longer sequences. Here we report on a new detection method capable of detecting SNP in a DNA sequence containing 35-90 nucleotides. This is achieved through incorporating into the recognition DNA sequence a previously discovered DNA molecule that forms a stable G-quadruplex in the presence of 7 molar urea, a known condition for denaturing DNA structures. The systems are configured to produce both colorimetric and fluorescent signals upon target binding.


Assuntos
DNA/química , Desnaturação de Ácido Nucleico/genética , Polimorfismo de Nucleotídeo Único/genética , Colorimetria , DNA/genética , Quadruplex G , Conformação de Ácido Nucleico
18.
Chemistry ; 26(3): 568, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31696988

RESUMO

Invited for the cover of this issue is the group of Yingfu Li at McMaster University. The image depicts a molecular switch for ultra-specific detection of DNA utilizing a guanine-quadruplex (up-right structure) resistant to denaturation by urea (ball-and-stick structures). Read the full text of the article at 10.1002/chem.201903536.


Assuntos
DNA/genética , Guanina/química , Lítio/química , Polimorfismo de Nucleotídeo Único/genética , DNA/química , Guanina/análise
19.
ACS Appl Mater Interfaces ; 10(16): 13390-13396, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29582655

RESUMO

Pressure-based bioassays (PASS) integrate a molecular recognition process with a catalyzed gas generation reaction, enabling sensitive and portable quantitation of biomarkers in clinical samples. Using platinum nanoparticles (PtNPs) as a catalyst has significantly improved the sensitivity of PASS compared with protein enzyme-based detection. However, PtNPs are easily deactivated during storage or after being decorated with antibodies. Moreover, nonspecific adsorption of PtNPs on substrates has been a problem, resulting in significant backgrounds. To solve these problems of PtNP-based detection, we report a robust, simple, stable, and sensitive Pt staining method for PASS. Detection antibody-decorated gold nanoparticles (AuNPs) are used to perform enzyme-linked immunosorbent assay, followed by Pt staining to stain AuNPs with Ag and Pt bimetallic shells (Au@AgPtNPs), which endow AuNPs with catalytic activity. The concentration of targets can be quantitatively determined by measuring the pressure due to O2 gas (g) formed by the decomposition of H2O2 catalyzed by Au@AgPtNPs. C-reactive protein and avian influenza hemagglutinin 5 neuraminidase 1 can be quantitatively detected with detection limits of 0.015 and 0.065 ng/mL, respectively. The simple, stable, and sensitive properties of the Pt staining-based method will largely broaden the applications of PASS in clinical diagnosis and biomedicine.


Assuntos
Bioensaio , Ouro , Peróxido de Hidrogênio , Nanopartículas Metálicas , Platina , Coloração e Rotulagem
20.
Chem Commun (Camb) ; 53(65): 9055-9058, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28707690

RESUMO

A non-enzyme cascade amplification strategy, based on the dissolution of Ag nanoparticles and a Pt nanocube-catalyzed reaction, for colorimetric assay of disease biomarkers was developed. This strategy overcomes the intrinsic limitations of enzymes involved in conventional enzymatic amplification techniques, thanks to the utilization of noble-metal nanostructures with superior properties.


Assuntos
Biomarcadores/análise , Imunoensaio/métodos , Nanopartículas Metálicas/química , Platina/química , Prata/química , Animais , Benzidinas/química , Catálise , Compostos Cromogênicos/química , Colorimetria/métodos , Cabras , Humanos , Peróxido de Hidrogênio/química , Imunoglobulina G/imunologia , Calicreínas/análise , Calicreínas/imunologia , Limite de Detecção , Oxirredução , Tamanho da Partícula , Antígeno Prostático Específico/análise , Antígeno Prostático Específico/imunologia , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...