Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Nat Commun ; 15(1): 1975, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438356

RESUMO

Imaging flow cytometry (IFC) combines flow cytometry and fluorescence microscopy to enable high-throughput, multiparametric single-cell analysis with rich spatial details. However, current IFC techniques remain limited in their ability to reveal subcellular information with a high 3D resolution, throughput, sensitivity, and instrumental simplicity. In this study, we introduce a light-field flow cytometer (LFC), an IFC system capable of high-content, single-shot, and multi-color acquisition of up to 5,750 cells per second with a near-diffraction-limited resolution of 400-600 nm in all three dimensions. The LFC system integrates optical, microfluidic, and computational strategies to facilitate the volumetric visualization of various 3D subcellular characteristics through convenient access to commonly used epi-fluorescence platforms. We demonstrate the effectiveness of LFC in assaying, analyzing, and enumerating intricate subcellular morphology, function, and heterogeneity using various phantoms and biological specimens. The advancement offered by the LFC system presents a promising methodological pathway for broad cell biological and translational discoveries, with the potential for widespread adoption in biomedical research.


Assuntos
Bioensaio , Pesquisa Biomédica , Citometria de Fluxo , Microfluídica , Análise de Célula Única
2.
Cell Biosci ; 14(1): 6, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183147

RESUMO

BACKGROUND: Hair follicle stem cells (HFSCs) typically remain quiescent and are activated only during the transition from telogen to anagen to ensure that the hair follicle enters a new cycle. The metabolic behavior of stem cells in tissues is regulated by macroautophagy/autophagy, and changes in HFSC metabolism directly affect their activation and maintenance. However, the role of autophagy in the regulation of HFSC metabolism and function remains unclear. METHODS: Back skin samples were obtained from mice at different hair follicle cycle stages, and immunofluorescence staining was used to monitor autophagy in HFSCs. Mouse and human hair follicles were treated with rapamycin (Rapa, an autophagy activator) or 3-methyladenine (3-MA, an autophagy inhibitor). The effects of autophagy on the hair follicle cycle and HFSC were investigated by imaging, cell proliferation staining, and HFSC-specific marker staining. The influence and mechanism of autophagy on HFSC metabolism were explored using RNA sequencing, real-time polymerase chain reaction, immunohistochemical staining, and detection of lactate and glucose concentrations. Finally, the influence of autophagy-induced glycolysis on HFSC and the hair follicle cycle was verified by stem cell characteristics and in vivo functional experiments. RESULTS: Autophagy in HFSC was highest during the transition from telogen to anagen. Inhibiting autophagy with 3-MA led to early entry into catagen and prolonged telogen, whereas Rapa promoted autophagy and hair growth. Autophagy activated HFSC by increasing the expression and activity of HFSC lactate dehydrogenase (Ldha), thereby transforming HFSC metabolism into glycolysis. Inhibition of Ldha expression counteracted the effects of autophagy. CONCLUSIONS: Autophagy activated HFSC by promoting the transition from HFSC metabolism to glycolysis, ultimately initiating the hair follicle cycle and promoting hair growth.

3.
Molecules ; 28(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38067522

RESUMO

Poly(vinyl chloride) (PVC) is widely used in various fields and requires the use of thermal stabilizers to enhance its thermal stability during processing because of its poor thermal stability. Layered double hydroxides (LDHs) are widely considered to be one kind of highly efficient and environmentally friendly PVC thermal stabilizer. To investigate the thermal stabilizing process of layered double hydroxides (LDHs) in PVC resin, PVC and MgAl-LDHs powders with different interlayer anions (CO32-, Cl-, and NO3-) were physically mixed and aged at 180 °C. The structure of LDHs at different aging times was studied using XRD, SEM, and FT-IR. The results show that the thermal stabilizing process of LDHs on PVC mainly has three stages. In the first stage, the layers of LDHs undergo a reaction with HCl, which is released during the thermal decomposition of PVC. Subsequently, the ion exchange process occurs between Cl- and interlayer CO32-, resulting in the formation of MgAl-Cl-LDHs. Finally, the layers of MgAl-Cl-LDHs react with HCl slowly. During the thermal stabilizing process of MgAl-Cl-LDHs, the peak intensity of XRD reduces slightly, and no new XRD peak emerges. It indicates that only the first step happens for MgAl-Cl-LDHs. The TG-DTA analysis of LDHs indicates that the interaction of LDHs with different interlayer anions has the following order: NO3- < CO32- < Cl-, according to the early coloring in the thermal aging test of PVC composites. The results of the thermal aging tests suggest that LDHs with a weak interaction between interlayer anions and layers can enhance the early stability of PVC significantly. Furthermore, the thermal aging test demonstrates that LDHs with high HCl absorption capacities exhibit superior long-term stabilizing effects on PVC resin. This finding provides a valuable hint for designing an LDHs/PVC resin with a novel structure and excellent thermal stability.

4.
JCI Insight ; 8(24)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37917167

RESUMO

Hair loss is a debilitating condition associated with the depletion of dermal papilla cells (DPCs), which can be replenished by dermal sheath cells (DSCs). Hence, strategies aimed at increasing the populations of DPCs and DSCs hold promise for the treatment of hair loss. In this study, we demonstrated in mice that introduced exogenous DPCs and DSCs (hair follicle mesenchymal stem cells) could effectively migrate and integrate into the dermal papilla and dermal sheath niches, leading to enhanced hair growth and prolonged anagen phases. However, the homing rates of DPCs and DSCs were influenced by various factors, including recipient mouse depilation, cell passage number, cell dose, and immune rejection. Through in vitro and in vivo experiments, we also discovered that the CXCL13/CXCR5 pathway mediated the homing of DPCs and DSCs into hair follicle niches. This study underscores the potential of cell-based therapies for hair loss by targeted delivery of DPCs and DSCs to their respective niches and sheds light on the intriguing concept that isolated mesenchymal stem cells can home back to their original niche microenvironment.


Assuntos
Folículo Piloso , Células-Tronco Mesenquimais , Camundongos , Animais , Folículo Piloso/metabolismo , Células Cultivadas , Alopecia/terapia , Alopecia/metabolismo , Terapia Baseada em Transplante de Células e Tecidos
5.
bioRxiv ; 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37645980

RESUMO

Immune checkpoint blockade targeting PD-1 shows great success in cancer therapy. However, the mechanism of how ligand binding initiates PD-1 signaling remains unclear. As prognosis markers of multiple cancers, soluble PD-L1 is found in patient sera and can bind PD-1, but fails to suppress T cell function. This and our previous observations that T cells exert endogenous forces on PD-1-PD-L2 bonds prompt the hypothesis that mechanical force might be critical to PD-1 triggering, which is missing in the soluble ligand case due to the lack of mechanical support afforded by surface-anchored ligand. Here we show that PD-1 function is eliminated or reduced when mechanical support on ligand is removed or dampened, respectively. Force spectroscopic analysis reveals that PD-1 forms catch bonds with both PD-Ligands <7 pN where force prolongs bond lifetime, but slip bonds >8 pN where force accelerates dissociation. Steered molecular dynamics finds PD-1-PD-L2 complex very sensitive to force due to the two molecules' "side-to-side" binding via ß sheets. Pulling causes relative rotation and translation between the two molecules by stretching and aligning the complex along the force direction, yielding new atomic contacts not observed in the crystal structure. Compared to wild-type, PD-1 mutants targeting the force-induced new interactions maintain the same binding affinity but display lower rupture force, shorter bond lifetime, reduced tension, and most importantly, impaired capacity to suppress T cell activation. Our results uncover a mechanism for cells to probe the mechanical support of PD-1-PD-Ligand bonds using endogenous forces to regulate PD-1 triggering.

6.
Nat Commun ; 14(1): 4720, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543603

RESUMO

It remains a great challenge to engineer materials with strong and stable interactions for the simultaneously mechanical-robust and room temperature phosphorescence-efficient materials. In this work, we demonstrate a covalent cross-linking strategy to engineer mechanical-robust room temperature phosphorescence materials through the B-O click reaction between chromophores, polyvinyl alcohol matrix and inorganic layered double hydroxide nanosheets. Through the covalent cross-linkage between the organic polyvinyl alcohol and inorganic layered double hydroxide, a polymeric composite with ultralong lifetime up to 1.45 s is acquired based on the inhibited non-radiative transition of chromophores. Simultaneously, decent mechanical strength of 97.9 MPa can be realized for the composite materials due to the dissipated loading stress through the covalent-bond-accommodated interfacial interaction. These cross-linked composites also exhibit flexibility, processability, scalability and phosphorescence responses towards the mechanical deformation. It is anticipated that the proposed covalent click reaction could provide a platform for the design and modulation of composites with multi-functionality and long-term durability.

7.
Int J Biol Sci ; 19(11): 3307-3323, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37496996

RESUMO

Androgenetic alopecia (AGA) affects more than half of the adult population worldwide and is primarily caused by the binding of dihydrotestosterone (DHT) to androgen receptors (AR). However, the mechanisms by which AR affects hair follicles remain unclear. In our study, we found that miR-221 significantly suppressed hair growth and the proliferation of dermal papilla cells (DPCs) and dermal sheath cells (DSCs) in AGA patients. Interestingly, miR-221 and AR were mainly co-located in the same part of the hair follicle. Mechanistic analysis revealed that AR directly promoted the transcription of miR-221, which in turn suppressed IGF-1 expression, leading to the inactivation of the MAPK pathway in DPCs and the PI3K/AKT pathway in DSCs. In AGA patients, miR-221 expression was positively correlated with AR expression and negatively correlated with IGF-1 expression. Our findings indicate that miR-221, as a direct target of AR, plays a crucial role in the pathogenesis of AGA, making it a novel biomarker and potential therapeutic target for treating AGA.


Assuntos
MicroRNAs , Receptores Androgênicos , Adulto , Humanos , Alopecia/genética , Alopecia/tratamento farmacológico , Fator de Crescimento Insulin-Like I/genética , MicroRNAs/genética , MicroRNAs/uso terapêutico , Fosfatidilinositol 3-Quinases , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
8.
Plast Reconstr Surg ; 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37337324

RESUMO

BACKGROUND: Androgenic alopecia (AGA) is characterized by progressive hair follicle miniaturization, and novel treatments are needed to intervene in the miniaturization process. We aimed to evaluate the efficacy, safety, effectiveness, and effective population of autologous hair follicle mesenchymal stem cell therapy for the treatment of advanced AGA in Chinese people. METHODS: 50 patients ranging from 25 to 45 years old, with an average age of 32 ± 1.24 years were included. None of them had ever used minoxidil, finasteride, or other drugs to promote hair growth. Healthy hair follicles were extracted from the occipital area and treated to obtain hair follicle mesenchymal stem cells suspensions. The recipient sites were divided into two groups. Nine points were injected in a 1 cm 2 area, and 100 µl of solution containing either 1 × 10 5 cells or normal saline was injected at each point. The follow-up duration was 9 months. Observers were blinded to patient groupings and measurements. RESULTS: An increased proportion of terminal hair and hair shaft diameter was observed in the experimental group at 1 month; the effect lasted until 3 months. The hair thickening effect of advanced miniaturized hair follicles with hair shaft diameter less than 60 µm was more notable than that above 60 µm. None of the patients experienced any obvious side effects. CONCLUSIONS: Hair follicle mesenchymal stem cells were effective in the treatment of Chinese advanced AGA, and a hair shaft diameter of 60µm can be used as a key index to predict the effectiveness of the therapy.

9.
Nat Commun ; 14(1): 2616, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147290

RESUMO

The TCR integrates forces in its triggering process upon interaction with pMHC. Force elicits TCR catch-slip bonds with strong pMHCs but slip-only bonds with weak pMHCs. We develop two models and apply them to analyze 55 datasets, demonstrating the models' ability to quantitatively integrate and classify a broad range of bond behaviors and biological activities. Comparing to a generic two-state model, our models can distinguish class I from class II MHCs and correlate their structural parameters with the TCR/pMHC's potency to trigger T cell activation. The models are tested by mutagenesis using an MHC and a TCR mutated to alter conformation changes. The extensive comparisons between theory and experiment provide model validation and testable hypothesis regarding specific conformational changes that control bond profiles, thereby suggesting structural mechanisms for the inner workings of the TCR mechanosensing machinery and plausible explanations of why and how force may amplify TCR signaling and antigen discrimination.


Assuntos
Receptores de Antígenos de Linfócitos T , Transdução de Sinais , Receptores de Antígenos de Linfócitos T/metabolismo , Ativação Linfocitária , Genes MHC da Classe II , Mutagênese , Ligação Proteica
10.
Chem Commun (Camb) ; 59(18): 2652-2655, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36779915

RESUMO

We have developed a fluorescent quantification strategy to evaluate the uniformity and the aggregation degree of inorganic particles in polymers. This proposed strategy has been successfully used for investigating the anti-aging behaviors of composites.

11.
Chem Rev ; 123(6): 3007-3088, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36802560

RESUMO

Polymers have been widely applied in various fields in the daily routines and the manufacturing. Despite the awareness of the aggressive and inevitable aging for the polymers, it still remains a challenge to choose an appropriate characterization strategy for evaluating the aging behaviors. The difficulties lie in the fact that the polymer features from the different aging stages require different characterization methods. In this review, we present an overview of the characterization strategies preferable for the initial, accelerated, and late stages during polymer aging. The optimum strategies have been discussed to characterize the generation of radicals, variation of functional groups, substantial chain scission, formation of low-molecular products, and deterioration in the polymers' macro-performances. In view of the advantages and the limitations of these characterization techniques, their utilization in a strategic approach is considered. In addition, we highlight the structure-property relationship for the aged polymers and provide available guidance for lifetime prediction. This review could allow the readers to be knowledgeable of the features for the polymers in the different aging stages and provide access to choose the optimum characterization techniques. We believe that this review will attract the communities dedicated to materials science and chemistry.

12.
ACS Appl Mater Interfaces ; 15(1): 1610-1618, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36576363

RESUMO

Currently, much attention has been paid to the efforts to stabilize and regulate single atoms through supports to obtain decent electrocatalytic behaviors. However, little concern was given to the effect of single atoms on modulating the electronic structure of supports, despite the catalytic activities and large quantities of supports in the catalytic reactions. Herein, we have localized Ru single atoms onto two-dimensional layered double hydroxide (NiFe-LDH) and studied the role of Ru single atoms in adjusting the electronic structure of the NiFe-LDH support. Spin polarization of 3d electrons for Fe and electron redistribution in NiFe-LDH were effectively modulated through the interaction between Ru single atoms and NiFe-LDH. As a result, the luminol redox reaction and reactive oxygen revolution were simultaneously promoted by Ru single-atom-modulated NiFe-LDH, manifested as boosted electrochemiluminescence (ECL). Therefore, we have provided valid information to reveal the regulation effect of single atoms on the spin state and electronic structure of the supports. It is anticipated that our strategy may arouse wide interest in manipulating single-atom-modulated supports.

13.
Nat Commun ; 13(1): 7055, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36396644

RESUMO

Antigen recognition by the T cell receptor (TCR) of CD4+ T cells can be greatly enhanced by the coreceptor CD4. Yet, understanding of the molecular mechanism is hindered by the ultra-low affinity of CD4 binding to class-II peptide-major histocompatibility complexes (pMHC). Here we show, using two-dimensional (2D) mechanical-based assays, that the affinity of CD4-pMHC interaction is 3-4 logs lower than that of cognate TCR-pMHC interactions, and it is more susceptible to increased dissociation by forces (slip bond). In contrast, CD4 binds TCR-pre-bound pMHC at 3-6 logs higher affinity, forming TCR-pMHC-CD4 tri-molecular bonds that are prolonged by force (catch bond), and modulated by protein mobility on the cell membrane, indicating profound TCR-CD4 cooperativity. Consistent with a tri-crystal structure, using DNA origami as a molecular ruler to titrate spacing between TCR and CD4 we show that 7-nm proximity optimizes TCR-pMHC-CD4 tri-molecular bond formation with pMHC. Our results thus provide deep mechanistic insight into CD4 enhancement of TCR antigen recognition.


Assuntos
Antígenos , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos de Linfócitos T/metabolismo , Complexo Principal de Histocompatibilidade , Antígenos de Histocompatibilidade , Peptídeos/química
14.
Chem Commun (Camb) ; 58(63): 8818-8821, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35848468

RESUMO

To provide lifecycle monitoring for degradable polymers, we have proposed a three-dimensional fluorescence monitoring and quantification method to simultaneously study the thermal and photothermal degradation by combining the intrinsic conjugation and probe-labelled carboxyl of poly(butylene adipate-co-terephthalate) (PBAT).


Assuntos
Poliésteres , Polímeros , Fluorescência
15.
Stem Cell Rev Rep ; 18(6): 2016-2027, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35849252

RESUMO

Mesenchymal stem cells (MSCs) are known for their self-renewal and multi-lineage differentiation potential, with these cells often being evaluated in the regulation and maintenance of specific cellular niches including those of the hair follicle. Most mesenchymal stem cells in the hair follicles are housed in the dermal papilla (DP) and dermal sheath (DS), with both niches characterized by a broad variety of cellular subsets. However, while most previous studies describing the hair follicle mesenchymal niche treated all DP and DS cells as Hair Follicle Mesenchymal Stem Cells (HF-MSCs), the high number of cellular subsets would suggest that these cells are actually too heterogenous for such a broad definition. Given this we designed this study to evaluate the differentiation processes in these cells and used this data to create a new set of classifications for DP and DS cells, dividing them into "hair follicle mesenchymal stem cells (HF-MSCs)", "hair follicle mesenchymal progenitor cells (HF-MPCs)", and "hair follicle mesenchymal functional cells (HF-MFCs)". In addition, those cells that possess self-renewal and differentiation were re-named hair follicle derived mesenchymal multipotent cells (HF-MMCs). This new classification may help to further our understanding of the heterogeneity of hair follicle dermal cells and provide new insights into their evaluation.


Assuntos
Folículo Piloso , Células-Tronco Mesenquimais , Diferenciação Celular , Células Cultivadas , Células Epiteliais
16.
Stem Cell Res Ther ; 13(1): 372, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902892

RESUMO

BACKGROUND: Hair follicle mesenchymal stem cells (HF-MSCs) have great potential for cell therapy. Traditional method to isolate whisker HF-MSC is time-consuming and few in cell numbers. How to quickly and conveniently obtain a large number of HF-MSC for experimental research is a problem worth exploring. METHODS: Two-step Ficoll Density Gradient Sedimentation (FDGS) was performed to isolate pelage HF-MSC from adult mice. The characteristic of the isolated cells was identified and compared with whisker HF-MSC by immunofluorescence staining, flow cytometry, three-lineage differentiation and hair follicle reconstruction. Pelage HF-MSC and exosomes were injected into the dorsal skin of mice as well as hair follicle organ culture to explore its role in promoting hair growth. The cells and exosomes distribution were located by immunofluorescence staining. RESULTS: Isolated pelage HF-MSC expressed similar markers (ALP, Versican, NCAM, Nestin), showed similar growth pattern, possessed similar mesenchymal stem cells function and hair follicle induction ability as whisker HF-MSC. A large number of cells can be obtained with fewer mice compared to traditional method. Injected pelage HF-MSC promoted hair growth by secreting exosomes. CONCLUSION: A large number of Pelage HF-MSC can be isolated by FDGS, which can promote hair growth by secreting exosomes which may target the dermal papilla and hair matrix region of host hair follicle.


Assuntos
Folículo Piloso , Células-Tronco Mesenquimais , Animais , Diferenciação Celular , Ficoll , Camundongos , Pele
17.
Dermatol Surg ; 48(7): 731-736, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35583985

RESUMO

BACKGROUND: The frontal-temporal triangle area (FTTA) hair has a slow growth rate and thin caliber, which are similar to those of eyebrow hair. However, a comparison of cosmetic outcomes between FTTA and other scalp hair grafts in eyebrow transplantation has not been performed. OBJECTIVE: To compare the cosmetic outcomes of FTTA hair and periauricular and occipital area (POA) hair in eyebrow restoration. METHODS: A retrospective analysis of 155 patients with FTTA or POA hair transplants was performed. Comparative variables included patient characteristics, hair density, diameter, percentage of one-hair follicular units (FUs), number of transplanted FUs, harvesting time, transection rate, hair survival rate, frequency of eyebrow trimming, and patient satisfaction. RESULTS: There was a significant difference in hair density, diameter, percentage of one-hair FUs, and harvesting time between the FTTA and POA hair transplants. The FTTA hair grew significantly slower than the POA hair did. The patients in the FTTA group trimmed their postoperative eyebrows at a significantly longer interval than those in the POA group. The percentage of patients who were very satisfied with the surgery results was higher in the FTTA group. CONCLUSION: The FTTA hair grafts can provide aesthetically pleasing cosmetic results in eyebrow restoration.


Assuntos
Sobrancelhas , Cabelo , Sobrancelhas/transplante , Cabelo/transplante , Folículo Piloso/transplante , Humanos , Estudos Retrospectivos , Couro Cabeludo/cirurgia , Resultado do Tratamento
18.
Am J Chin Med ; 50(2): 511-523, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35114912

RESUMO

Activation of the hepatic stellate cell is implicated in pathological vascularization during development of liver fibrosis. MAPK signaling is involved in the activation of hepatic stellate cell. Oxidative stress and inflammation are also involved in the pathogenesis of liver fibrosis. Notoginsenoside R1 is an effective saponin isolated from the roots of Panax notoginseng (Burk) F. H. Chen and exerts anti-oxidant, anti-inflammatory and anti-fibrotic roles in various diseases. However, the role of Notoginsenoside R1 in liver fibrosis has not been investigated yet. First, a rat model with liver fibrosis was established through oral gavage administration with carbon tetrachloride. Data from hematoxylin and eosin (H&E) and Masson's trichrome stainings showed that carbon tetrachloride induced severe hepatic damages, including inflammatory cell infiltration, lipid droplets deposition in hepatocytes and liver centrilobular necrosis. Meanwhile, the rats were also intraperitoneal injected with different concentrations of Notoginsenoside R1. Results demonstrated that Notoginsenoside R1 treatment suppressed the pathological changes in the livers with enhanced levels of ALB and TP, and reduced levels of ALP, AST and ALT. Second, Notoginsenoside R1 also significantly attenuated carbon tetrachloride-induced decrease in PPAR-[Formula: see text] and increase in Coll-a1, [Formula: see text]-SMA and TIMP1 in liver tissues ([Formula: see text][Formula: see text] 0.001). Third, the decrease in GSH, SOD and GST and increase in MDA, IL-1[Formula: see text], IL-6 and TNF-[Formula: see text] induced by carbon tetrachloride were markedly restored by Notoginsenoside R1 ([Formula: see text][Formula: see text] 0.001). Lastly, Notoginsenoside R1 counteracted with the promotive effects of carbon tetrachloride on levels of proteins involved in MAPK signaling, including phosphorylated p65 (p-p65), p-ERK, p-JNK and p-p38. In conclusion, Notoginsenoside R1 suppressed the activation of hepatic stellate cells and exerted anti- oxidant and anti-inflammatory to attenuate carbon tetrachloride-induced liver fibrosis through inactivation of NF-[Formula: see text]B and MAPK signaling.


Assuntos
Panax notoginseng , Animais , Tetracloreto de Carbono/efeitos adversos , Ginsenosídeos , Células Estreladas do Fígado , Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Ratos , Transdução de Sinais
20.
Front Cell Dev Biol ; 9: 724310, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604224

RESUMO

Dermal papillae are a target of androgen action in patients with androgenic alopecia, where androgen acts on the epidermis of hair follicles in a paracrine manner. To mimic the complexity of the dermal papilla microenvironment, a better culture model of human dermal papilla cells (DPCs) is needed. Therefore, we evaluated the inhibitory effect of dihydrotestosterone (DHT)-treated two-dimensional (2D)- and 3D-cultured DPCs on hair follicle growth. 2D- and 3D-cultured DPC proliferation was inhibited after co-culturing with outer root sheath (ORS) cells under DHT treatment. Moreover, gene expression levels of ß-catenin and neural cell adhesion molecules were significantly decreased and those of cleaved caspase-3 significantly increased in 2D- and 3D-cultured DPCs with increasing DHT concentrations. ORS cell proliferation also significantly increased after co-culturing in the control-3D model compared with the control-2D model. Ki67 downregulation and cleaved caspase-3 upregulation in DHT-treated 2D and 3D groups significantly inhibited ORS cell proliferation. Sequencing showed an increase in the expression of genes related to extracellular matrix synthesis in the 3D model group. Additionally, the top 10 hub genes were identified, and the expression of nine chemokine-related genes in DHT-treated DPCs was found to be significantly increased. We also identified the interactions between transcription factor (TF) genes and microRNAs (miRNAs) with hub genes and the TF-miRNA coregulatory network. Overall, the findings indicate that 3D-cultured DPCs are more representative of in vivo conditions than 2D-cultured DPCs and contribute to our understanding of the molecular mechanisms underlying androgen-induced alopecia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...