Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nat Commun ; 15(1): 3891, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719858

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, along with the implementation of public health and social measures (PHSMs), have markedly reshaped infectious disease transmission dynamics. We analysed the impact of PHSMs on 24 notifiable infectious diseases (NIDs) in the Chinese mainland, using time series models to forecast transmission trends without PHSMs or pandemic. Our findings revealed distinct seasonal patterns in NID incidence, with respiratory diseases showing the greatest response to PHSMs, while bloodborne and sexually transmitted diseases responded more moderately. 8 NIDs were identified as susceptible to PHSMs, including hand, foot, and mouth disease, dengue fever, rubella, scarlet fever, pertussis, mumps, malaria, and Japanese encephalitis. The termination of PHSMs did not cause NIDs resurgence immediately, except for pertussis, which experienced its highest peak in December 2023 since January 2008. Our findings highlight the varied impact of PHSMs on different NIDs and the importance of sustainable, long-term strategies, like vaccine development.


Assuntos
COVID-19 , Doenças Transmissíveis , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/prevenção & controle , China/epidemiologia , Doenças Transmissíveis/epidemiologia , Pandemias/prevenção & controle , Incidência , Estações do Ano , Saúde Pública , Controle de Doenças Transmissíveis/métodos
2.
Infect Dis Poverty ; 13(1): 30, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632643

RESUMO

Since the COVID-19 pandemic began, a plethora of modeling studies related to COVID-19 have been released. While some models stand out due to their innovative approaches, others are flawed in their methodology. To assist novices, frontline healthcare workers, and public health policymakers in navigating the complex landscape of these models, we introduced a structured framework named MODELS. This framework is designed to detail the essential steps and considerations for creating a dependable epidemic model, offering direction to researchers engaged in epidemic modeling endeavors.


Assuntos
COVID-19 , Doenças Transmissíveis , Humanos , Pandemias , COVID-19/epidemiologia , Doenças Transmissíveis/epidemiologia , Pessoal de Saúde , Saúde Pública
3.
China CDC Wkly ; 6(12): 225-229, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38633431

RESUMO

What is already known about this topic?: Given the challenges presented by drug-resistant strains of tuberculosis (TB) and the rising mobility of the population, achieving the objective of eradicating TB appears uncertain. What is added by this report?: The examination of TB incidence trends in 10 high-burden countries (HBCs) indicated a steady rise in cases, with India and China jointly accounting for nearly 70% of the burden. Projections for the future show diverse trajectories in these countries, with potential difficulties in reaching the TB elimination target, especially in Nigeria, Congo, and South Africa. What are the implications for public health practice?: The number of TB cases is on the rise. It is crucial to learn from successful strategies to improve TB prevention and control worldwide through collaborative efforts.

5.
Front Cell Infect Microbiol ; 13: 1212473, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637464

RESUMO

Background: Severe acute respiratory syndrome (SARS) is a form of atypical pneumonia which took hundreds of lives when it swept the world two decades ago. The pathogen of SARS was identified as SARS-coronavirus (SARS-CoV) and it was mainly transmitted in China during the SARS epidemic in 2002-2003. SARS-CoV and SARS-CoV-2 have emerged from the SARS metapopulation of viruses. However, they gave rise to two different disease dynamics, a limited epidemic, and an uncontrolled pandemic, respectively. The characteristics of its spread in China are particularly noteworthy. In this paper, the unique characteristics of time, space, population distribution and transmissibility of SARS for the epidemic were discussed in detail. Methods: We adopted sliding average method to process the number of reported cases per day. An SEIAR transmission dynamics model, which was the first to take asymptomatic group into consideration and applied indicators of R 0, Reff, Rt to evaluate the transmissibility of SARS, and further illustrated the control effectiveness of interventions for SARS in 8 Chinese cities. Results: The R 0 for SARS in descending order was: Tianjin city (R 0 = 8.249), Inner Mongolia Autonomous Region, Shanxi Province, Hebei Province, Beijing City, Guangdong Province, Taiwan Province, and Hong Kong. R 0 of the SARS epidemic was generally higher in Mainland China than in Hong Kong and Taiwan Province (Mainland China: R 0 = 6.058 ± 1.703, Hong Kong: R 0 = 2.159, Taiwan: R 0 = 3.223). All cities included in this study controlled the epidemic successfully (Reff<1) with differences in duration. Rt in all regions showed a downward trend, but there were significant fluctuations in Guangdong Province, Hong Kong and Taiwan Province compared to other areas. Conclusion: The SARS epidemic in China showed a trend of spreading from south to north, i.e., Guangdong Province and Beijing City being the central regions, respectively, and from there to the surrounding areas. In contrast, the SARS epidemic in the central region did not stir a large-scale transmission. There were also significant differences in transmissibility among eight regions, with R0 significantly higher in the northern region than that in the southern region. Different regions were able to control the outbreak successfully in differences time.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , SARS-CoV-2 , COVID-19/epidemiologia , China/epidemiologia , Hong Kong/epidemiologia
6.
Int J Infect Dis ; 131: 46-49, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36967039

RESUMO

OBJECTIVES: To evaluate the impact of early implementation of public health and social measures (PHSMs) on contact rates over time and explore contact behavior of asymptomatic versus symptomatic cases. METHODS: We used the largest contact tracing data in China thus far to estimate the mean contacts over time by age groups and contact settings. We used bootstrap with replacement to quantify the uncertainty of contact matrixes. The Pearson correlation was performed to demonstrate the number of contacts over time in relation to the evolution of restrictions. In addition, we analyzed the index cases with a high number of contacts and index cases that produced a high number of secondary cases. RESULTS: Rapidly adapted PHSMs can reduce the mean contact rates in public places while increasing the mean contact rates within households. The mean contact rates were 11.81 (95% confidence interval, 11.61-12.01) for asymptomatic (at the time of investigation) cases and 6.70 (95% confidence interval, 6.54-6.87) for symptomatic cases. The percentage of asymptomatic cases (at the time of investigation) meeting >50 close contacts make up more than 65% of the overall cases. The percentage of asymptomatic cases producing >10 secondary cases account for more than 80% of the overall cases. CONCLUSION: PHSMs may increase the contacts within the household, necessitating the need for pertinent prevention strategies at home. Asymptomatic cases can contribute significantly to Omicron transmission. By making asymptomatic people aware that they are already contagious, hence limiting their social contacts, it is possible to lower the transmission risk.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Saúde Pública , Busca de Comunicante , Surtos de Doenças , China/epidemiologia
7.
Int J Infect Dis ; 134: 78-87, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36736993

RESUMO

OBJECTIVES: The Omicron BA.2 variant is probably the main epidemic strain worldwide at present. Comparing the epidemiological characteristics, transmissibility, and influencing factors of SARS-CoV-2, the results obtained in this paper will help to provide theoretical support for disease control. METHODS: This study was a historical information analysis, using the R programming language and SPSS 24.0 for statistical analysis. The Geoda and Arc GIS were used for spatial autocorrelation analysis. RESULTS: Local spatial autocorrelations of the incidence rate were observed in Delta and Omicron BA.1 outbreaks, whereas Omicron BA.2 outbreaks showed a random distribution in incidence rate. The time-dependent reproduction number of Delta, Omicron BA.1, and Omicron BA.2 were 3.21, 4.29, and 2.96, respectively, and correspondingly, the mean serial interval were 4.29 days (95% confidence interval [CI]: 0.37-8.21), 3.84 days (95% CI: 0-8.37), and 2.77 days (95% CI: 0-5.83). The asymptomatic infection rate of cases in Delta, Omicron BA.1, and Omicron BA.2 outbreaks were 21.71%, 6.25%, and 4.35%, respectively. CONCLUSION: The Omicron BA.2 variant had the greatest serial interval, transmissibility, and transmission speed, followed by BA.1, and then Delta. Compared with Delta and Omicron BA.1 variants, the Omicron BA.2 variant may be less pathogenic and more difficult to control than Omicron BA.1 and Delta.


Assuntos
COVID-19 , Epidemias , Humanos , COVID-19/epidemiologia , Surtos de Doenças , SARS-CoV-2 , Virulência
10.
Front Public Health ; 11: 1269194, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162626

RESUMO

Objective: More than 90% of the Chinese population have completed 2 doses of inactivated COVID-19 vaccines in Mainland China. However, after China government abandoned strict control measures, many breakthrough infections appeared, and vaccine effectiveness against Omicron BA.2 infection was uncertain. This study aims to investigate the real-world effectiveness of widely used inactivated vaccines during the wave of Omicron variants. Methods: Test-negative case-control study was conducted in this study to analyze the vaccine effectiveness against symptomatic disease caused by the Omicron variant (BA.2) in Fujian, China. Conditional logistic regression was selected to estimate the vaccine effectiveness. Results: The study found the vaccine effectiveness against symptomatic COVID-19 is 32.46% (95% CI, 8.08% to 50.37%) at 2 to 8 weeks, and 27.05% (95% CI, 1.23% to 46.12%) at 12 to 24 weeks after receiving booster doses of the inactivated vaccine. Notably, the 3-17 years group had higher vaccine effectiveness after 2 doses than the 18-64 years and over 65 years groups who received booster doses. Conclusion: Inactivated vaccines alone may not offer sufficient protection for all age groups before the summer of 2022. To enhance protection, other types of vaccines or bivalent vaccines should be considered.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas de Produtos Inativados , Vacinas contra COVID-19 , Estudos de Casos e Controles , Eficácia de Vacinas , SARS-CoV-2 , China/epidemiologia , Surtos de Doenças/prevenção & controle
12.
Front Public Health ; 10: 949594, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187650

RESUMO

Background: The epidemiological characteristics and transmissibility of Coronavirus Disease 2019 (COVID-19) may undergo changes due to the mutation of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) strains. The purpose of this study is to compare the differences in the outbreaks of the different strains with regards to aspects such as epidemiological characteristics, transmissibility, and difficulties in prevention and control. Methods: COVID-19 data from outbreaks of pre-Delta strains, the Delta variant and Omicron variant, were obtained from the Chinese Center for Disease Control and Prevention (CDC). Case data were collected from China's direct-reporting system, and the data concerning outbreaks were collected by on-site epidemiological investigators and collated by the authors of this paper. Indicators such as the effective reproduction number (R eff), time-dependent reproduction number (R t), rate of decrease in transmissibility (RDT), and duration from the illness onset date to the diagnosed date (D ID )/reported date (D IR ) were used to compare differences in transmissibility between pre-Delta strains, Delta variants and Omicron variants. Non-parametric tests (namely the Kruskal-Wallis H and Mean-Whitney U tests) were used to compare differences in epidemiological characteristics and transmissibility between outbreaks of different strains. P < 0.05 indicated that the difference was statistically significant. Results: Mainland China has maintained a "dynamic zero-out strategy" since the first case was reported, and clusters of outbreaks have occurred intermittently. The strains causing outbreaks in mainland China have gone through three stages: the outbreak of pre-Delta strains, the outbreak of the Delta variant, and outbreaks involving the superposition of Delta and Omicron variant strains. Each outbreak of pre-Delta strains went through two stages: a rising stage and a falling stage, Each outbreak of the Delta variant and Omicron variant went through three stages: a rising stage, a platform stage and a falling stage. The maximum R eff value of Omicron variant outbreaks was highest (median: 6.7; ranged from 5.3 to 8.0) and the differences were statistically significant. The RDT value of outbreaks involving pre-Delta strains was smallest (median: 91.4%; [IQR]: 87.30-94.27%), and the differences were statistically significant. The D ID and D IR for all strains was mostly in a range of 0-2 days, with more than 75%. The range of duration for outbreaks of pre-Delta strains was the largest (median: 20 days, ranging from 1 to 61 days), and the differences were statistically significant. Conclusion: With the evolution of the virus, the transmissibility of the variants has increased. The transmissibility of the Omicron variant is higher than that of both the pre-Delta strains and the Delta variant, and is more difficult to suppress. These findings provide us with get a more clear and precise picture of the transmissibility of the different variants in the real world, in accordance with the findings of previous studies. R eff is more suitable than R t for assessing the transmissibility of the disease during an epidemic outbreak.


Assuntos
COVID-19 , COVID-19/epidemiologia , China/epidemiologia , Surtos de Doenças , Humanos , Incidência , SARS-CoV-2
13.
PLoS Negl Trop Dis ; 16(5): e0010432, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35533208

RESUMO

BACKGROUND: This study aimed to explore whether the transmission routes of severe fever with thrombocytopenia syndrome (SFTS) will be affected by tick density and meteorological factors, and to explore the factors that affect the transmission of SFTS. We used the transmission dynamics model to calculate the transmission rate coefficients of different transmission routes of SFTS, and used the generalized additive model to uncover how meteorological factors and tick density affect the spread of SFTS. METHODS: In this study, the time-varying infection rate coefficients of different transmission routes of SFTS in Jiangsu Province from 2017 to 2020 were calculated based on the previous multi-population multi-route dynamic model (MMDM) of SFTS. The changes in transmission routes were summarized by collecting questionnaires from 537 SFTS cases in 2018-2020 in Jiangsu Province. The incidence rate of SFTS and the infection rate coefficients of different transmission routes were dependent variables, and month, meteorological factors and tick density were independent variables to establish a generalized additive model (GAM). The optimal GAM was selected using the generalized cross-validation score (GCV), and the model was validated by the 2016 data of Zhejiang Province and 2020 data of Jiangsu Province. The validated GAMs were used to predict the incidence and infection rate coefficients of SFTS in Jiangsu province in 2021, and also to predict the effect of extreme weather on SFTS. RESULTS: The number and proportion of infections by different transmission routes for each year and found that tick-to-human and human-to-human infections decreased yearly, but infections through animal and environmental transmission were gradually increasing. MMDM fitted well with the three-year SFTS incidence data (P<0.05). The best intervention to reduce the incidence of SFTS is to reduce the effective exposure of the population to the surroundings. Based on correlation tests, tick density was positively correlated with air temperature, wind speed, and sunshine duration. The best GAM was a model with tick transmissibility to humans as the dependent variable, without considering lagged effects (GCV = 5.9247E-22, R2 = 96%). Reported incidence increased when sunshine duration was higher than 11 h per day and decreased when temperatures were too high (>28°C). Sunshine duration and temperature had the greatest effect on transmission from host animals to humans. The effect of extreme weather conditions on SFTS was short-term, but there was no effect on SFTS after high temperature and sunshine hours. CONCLUSIONS: Different factors affect the infection rate coefficients of different transmission routes. Sunshine duration, relative humidity, temperature and tick density are important factors affecting the occurrence of SFTS. Hurricanes reduce the incidence of SFTS in the short term, but have little effect in the long term. The most effective intervention to reduce the incidence of SFTS is to reduce population exposure to high-risk environments.


Assuntos
Febre Grave com Síndrome de Trombocitopenia , Carrapatos , Animais , China/epidemiologia , Incidência , Conceitos Meteorológicos
14.
China CDC Wkly ; 3(50): 1071-1074, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34934519

RESUMO

INTRODUCTION: Vaccination booster shots are completely necessary for controlling breakthrough infections of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in China. The study aims to estimate effectiveness of booster vaccines for high-risk populations (HRPs). METHODS: A vaccinated Susceptible-Exposed-Symptomatic-Asymptomatic-Recovered/Removed (SEIAR) model was developed to simulate scenarios of effective reproduction number (R eff ) from 4 to 6. Total number of infectious and asymptomatic cases were used to evaluated vaccination effectiveness. RESULTS: Our model showed that we could not prevent outbreaks when covering 80% of HRPs with booster unless R eff =4.0 or the booster vaccine had efficacy against infectivity and susceptibility of more than 90%. The results were consistent when the outcome index was confirmed cases or asymptomatic cases. CONCLUSIONS: An ideal coronavirus disease 2019 (COVID-19) booster vaccination strategy for HRPs would be expected to reach the initial goal to control the transmission of the Delta variant in China. Accordingly, the recommendation for the COVID-19 booster vaccine should be implemented in HRPs who are already vaccinated and could prevent transmission to other groups.

15.
Front Public Health ; 9: 799536, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35118044

RESUMO

Background: To date, there is a lack of sufficient evidence on the type of clusters in which severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is most likely to spread. Notably, the differences between cluster-level and population-level outbreaks in epidemiological characteristics and transmissibility remain unclear. Identifying the characteristics of these two levels, including epidemiology and transmission dynamics, allows us to develop better surveillance and control strategies following the current removal of suppression measures in China. Methods: We described the epidemiological characteristics of SARS-CoV-2 and calculated its transmissibility by taking a Chinese city as an example. We used descriptive analysis to characterize epidemiological features for coronavirus disease 2019 (COVID-19) incidence database from 1 Jan 2020 to 2 March 2020 in Chaoyang District, Beijing City, China. The susceptible-exposed-infected-asymptomatic-recovered (SEIAR) model was fitted with the dataset, and the effective reproduction number (Reff ) was calculated as the transmissibility of a single population. Also, the basic reproduction number (R0) was calculated by definition for three clusters, such as household, factory and community, as the transmissibility of subgroups. Results: The epidemic curve in Chaoyang District was divided into three stages. We included nine clusters (subgroups), which comprised of seven household-level and one factory-level and one community-level cluster, with sizes ranging from 2 to 17 cases. For the nine clusters, the median incubation period was 17.0 days [Interquartile range (IQR): 8.4-24.0 days (d)], and the average interval between date of onset (report date) and diagnosis date was 1.9 d (IQR: 1.7 to 6.4 d). At the population level, the transmissibility of the virus was high in the early stage of the epidemic (Reff = 4.81). The transmissibility was higher in factory-level clusters (R0 = 16) than in community-level clusters (R0 = 3), and household-level clusters (R0 = 1). Conclusions: In Chaoyang District, the epidemiological features of SARS-CoV-2 showed multi-stage pattern. Many clusters were reported to occur indoors, mostly from households and factories, and few from the community. The risk of transmission varies by setting, with indoor settings being more severe than outdoor settings. Reported household clusters were the predominant type, but the population size of the different types of clusters limited transmission. The transmissibility of SARS-CoV-2 was different between a single population and its subgroups, with cluster-level transmissibility higher than population-level transmissibility.


Assuntos
COVID-19 , SARS-CoV-2 , Número Básico de Reprodução , China/epidemiologia , Cidades , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...