Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 56(4): 935-941, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28158095

RESUMO

In this work, a genetic algorithm (GA) was employed to select the intensity ratios of the spectral lines belonging to the target and domain matrix elements, then these selected line-intensity ratios were taken as inputs to construct an analysis model based on an artificial neural network (ANN) to analyze the elements copper (Cu) and vanadium (V) in steel samples. The results revealed that the root mean square errors of prediction (RMSEPs) for the elements Cu and V can reach 0.0040 wt. % and 0.0039 wt. %, respectively. Compared to 0.0190 wt. % and 0.0201 wt. % of the conventional internal calibration approach, the reduction rates of the RMSEP values reached 78.9% and 80.6%, respectively. These results indicate that the GA combining ANN can excellently execute the quantitative analysis in laser-induced breakdown spectroscopy for steel samples and further improve analytical accuracy.

2.
Appl Opt ; 55(26): 7406-11, 2016 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-27661382

RESUMO

Liquid surface and liquid aerosol as the traditional liquid forms for laser-induced breakdown spectroscopy (LIBS) and inductively coupled plasma (ICP), respectively, have been used to analyze chromium (Cr) and cadmium (Cd) elements using LIBS in a liquid solution. The spectral differences, the effects of laser energy and laser frequency, the accumulated number of laser pulses, gate delay time, and the quantitative analyses for a liquid surface and a liquid aerosol were compared. The results showed that the liquid surface demonstrated a lower plasma threshold, higher optical emission intensity, and higher single-to-noise ratio. Moreover, the relative standard deviations (RSDs) of the intensities of the liquid aerosol are better than those of the liquid surface. Furthermore, the results of the quantitative analyses of Cr I 357.86 nm and Cd I 361.05 nm of the liquid surface are close to those of the liquid aerosol. The limit of detections of Cr and Cd of the liquid surface were 2.764 and 86.869 µg/mL, which were close to those of liquid aerosol, 2.847 µg/mL of Cr and 97.635 µg/mL of Cd. For both the liquid surface and liquid aerosol, the coefficient of determination R2 of the calibration curve for Cr and Cd were above 0.99, and the average RSDs of Cr and Cd of the liquid surface were 0.027 and 0.054, which were similar to the 0.020 of Cr and 0.042 of Cd of the liquid aerosol. These results suggest that both the liquid surface and aerosol have similar detection abilities for water quality monitoring.

3.
Appl Opt ; 55(26): 7422-7, 2016 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-27661384

RESUMO

To study the characteristics of spectral lines with crater development during laser-induced breakdown spectroscopy, the changes in the spectral line intensities of iron (Fe) and chromium (Cr) during the development of craters were investigated. Images of the plasmas formed during crater development were captured, and the temperatures and electron densities of the plasmas were calculated. The results showed that when a crater developed, the intensities of the ion lines decreased and the intensities of the atomic lines increased. This is because the plasmas generated in the crater have a higher initial emission intensity and experience more rapid cooling as the crater develops. These two effects lead to changes in the rates of decrease of ion and atomic line intensities over time. Therefore, the changes in intensities of ion lines caused by crater development differ from which of atomic lines.

4.
Talanta ; 151: 234-238, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26946032

RESUMO

Cobalt element plays an important role for the properties of magnetism and thermology in steels. In this work, laser-induced breakdown spectroscopy combined with laser-induced fluorescence (LIBS-LIF) was studied to selectively enhance the intensities of Co lines. Two states of Co atoms were resonantly excited by a wavelength-tunable laser. LIBS-LIF with ground-state atom excitation (LIBS-LIFG) and LIBS-LIF with excited-state atom excitation (LIBS-LIFE) were compared. The results show that LIBS-LIFG has analytical performance with LoD of 0.82µg/g, R(2) of 0.982, RMSECV of 86µg/g, and RE of 9.27%, which are much better than conventional LIBS and LIBS-LIFE. This work provided LIBS-LIFG as a capable approach for determining trace Co element in the steel industry.

5.
Appl Radiat Isot ; 66(12): 1898-900, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18650098

RESUMO

The cross sections for the reactions (89)Y(n, 2n) (88m+g)Y and (89)Y(n, alpha) (86m+g)RB induced by 14MeV neutrons have been measured using the activation technique and a coaxial HPGe gamma-ray detector. Spectroscopically pure Y(2)O(3) powder was used. Fast neutrons were produced by the T(d, n) (4)He reaction. The neutron fluencies were determined using the monitor reaction (93)Nb(n, 2n) (92m)Nb.


Assuntos
Análise de Ativação de Nêutrons/métodos , Radiometria/métodos , Radioisótopos de Ítrio/química , Radioisótopos de Ítrio/efeitos da radiação , Relação Dose-Resposta à Radiação , Nêutrons , Doses de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA