Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 108(1): 30-38, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31433913

RESUMO

Niclosamide is an antihelminthic drug. Recent studies show that niclosamide exerts antitumor activity through inhibiting multiple signals including Wnt/ß-catenin, mTORC1, signal transducer and activator of transcription 3, NF-κB, notch signals; however, the insolubility and poor bioavailability limits its potential clinic use, the aim of the present work is to synthesize an injectable pegylated niclosamide (polyethylene glycol-modified niclosamide) and investigate its antitumor activity in vitro and in vivo. The pegylated niclosamide (mPEG5000-Nic) was synthesized and the chemical structure was identified by Fourier transform infrared spectra and 1 H nuclear magnetic resonance spectra. The antitumor activity was evaluated in CT26 and HCT116 colon cancer cells in vitro and nude mouse xenograft model of CT26 cells in vivo. The water solubility of niclosamide in mPEG5000-Nic was significantly increased. Niclosamide could be released from mPEG5000-Nic nanoparticles in PBS solution. mPEG5000-Nic inhibited the cell viability of CT26 and HCT116 cells in vitro. No animal death was observed in mice with intraperitoneal injection of mPEG5000-Nic (equivalent to 1000 mg/kg niclosamide) within 24 hr, indicating that mPEG5000-Nic was less toxic. In nude mouse, xenograft model of CT26 colon carcinoma, intraperitoneal injection of mPEG5000-Nic (equivalent to niclosamide 50 mg/kg) inhibited tumor growth but had no effect on animal body weight and heart, liver, kidney, and lung weight in vivo. Meanwhile, in the same model, intraperitoneal injection of the positive clinic drug 5-fluorouracil not only inhibited the tumor growth, but also reduced the animal body weight. Our study demonstrates that pegylated niclosamide is novel niclosamide delivery system with clinical perspective for cancer therapy.


Assuntos
Injeções , Neoplasias/tratamento farmacológico , Niclosamida/uso terapêutico , Polietilenoglicóis/química , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Humanos , Injeções Intraperitoneais , Camundongos Endogâmicos BALB C , Camundongos Nus , Niclosamida/química , Niclosamida/farmacologia , Polietilenoglicóis/síntese química , Espectroscopia de Prótons por Ressonância Magnética , Fator de Transcrição STAT3/metabolismo , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Front Cell Neurosci ; 13: 19, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30778288

RESUMO

Inflammatory responses contribute to the pathogenesis of various neurological diseases, and microglia plays an important role in the process. Activated microglia can differentiate into the pro-inflammatory, tissue-damaging M1 phenotype or the anti-inflammatory, tissue-repairing M2 phenotype. Regulating microglia differentiation, hence limiting a harmful response, might help improve the prognosis of inflammation-related nervous system diseases. The present study aimed 1. to observe the anti-inflammatory effect of lipoxin A4 (LXA4) on the inflammatory response associated to lipopolysaccharide (LPS)-induced microglia activation, 2. to clarify that LXA4 modulates the activation and differentiation of microglia induced by LPS stimulation, 3. to determine whether LXA4 regulates the activation and differentiation of microglia through the Notch signaling pathway, 4. to provide a foundation for the use of LXA4 for the treatment of inflammatory related neurological diseases. To construct a model of cellular inflammation, immortalized murine BV2 microglia cells were provided 200 ng/ml LPS. To measure the mRNA and protein levels of inflammatory factors (interleukin [IL]-1ß, IL-10, and tumor necrosis factor [TNF]-α) and M1 and M2 microglia markers (inducible nitric oxide synthase [iNOS], cluster of differentiation [CD]32, arginase [Arg]1, and CD206), we performed quantitative reverse transcription polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), immunofluorescence, or flow cytometry. To determine the mRNA and protein levels of Notch signaling components (Notch1, Hes1, and Hes5), we performed qRT-PCR and western blot. LXA4 inhibits the expression of Notch1 and Hes1 associated with M1 type microglial differentiation and decreases the M1 type microglia marker iNOS and related inflammatory factors IL-1ß and TNF-α. Moreover, LXA4 upregulates the expression of the M2-associated Hes5, as well as the expression of the M2 microglia marker Arg1 and the associated inflammatory factor IL-10. These effects are blocked by the administration of the γ-secretase inhibitor DAPT, a specific blocker of the Notch signaling pathway. LXA4 inhibits the microglia activation induced by LPS and the differentiation into M1 type with pro-inflammatory effect, while promoting the differentiation to M2 type with anti-inflammatory effect. LXA4 downregulates the inflammatory mediators IL-1ß, TNF-α, and iNOS, while upregulating the anti-inflammatory mediator IL-10, which acts through the Notch signaling pathway.

3.
Front Neurol ; 9: 682, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30177908

RESUMO

Intracerebral hemorrhage (ICH) is a fatal acute cerebrovascular disease, with a high morbidity and mortality. Following ICH, erythrocytes release heme and several of its metabolites, thereby contributing to brain edema and secondary brain damage. Heme oxygenase is the initial and rate-limiting enzyme of heme catabolism, and the expression of heme oxygenase-1 (HO-1) is rapidly induced following acute brain injury. As HO-1 exerts it effects via various metabolites, its role during ICH remains complex. Therefore, in-depth studies regarding the role of HO-1 in secondary brain damage following ICH may provide a theoretical basis for neuroprotective function after ICH. The present review aims to summarize recent key studies regarding the effects of HO-1 following ICH, as well as its influence on ICH prognosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA