Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Gastroenterol ; 30(5): 485-498, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38414591

RESUMO

BACKGROUND: Gastric cancer (GC) is associated with high mortality rates. Bile acids (BAs) reflux is a well-known risk factor for GC, but the specific mechanism remains unclear. During GC development in both humans and animals, BAs serve as signaling molecules that induce metabolic reprogramming. This confers additional cancer phenotypes, including ferroptosis sensitivity. Ferroptosis is a novel mode of cell death characterized by lipid peroxidation that contributes universally to malignant progression. However, it is not fully defined if BAs can influence GC progression by modulating ferroptosis. AIM: To reveal the mechanism of BAs regulation in ferroptosis of GC cells. METHODS: In this study, we treated GC cells with various stimuli and evaluated the effect of BAs on the sensitivity to ferroptosis. We used gain and loss of function assays to examine the impacts of farnesoid X receptor (FXR) and BTB and CNC homology 1 (BACH1) overexpression and knockdown to obtain further insights into the molecular mechanism involved. RESULTS: Our data suggested that BAs could reverse erastin-induced ferroptosis in GC cells. This effect correlated with increased glutathione (GSH) concentrations, a reduced GSH to oxidized GSH ratio, and higher GSH peroxidase 4 (GPX4) expression levels. Subsequently, we confirmed that BAs exerted these effects by activating FXR, which markedly increased the expression of GSH synthetase and GPX4. Notably, BACH1 was detected as an essential intermediate molecule in the promotion of GSH synthesis by BAs and FXR. Finally, our results suggested that FXR could significantly promote GC cell proliferation, which may be closely related to its anti-ferroptosis effect. CONCLUSION: This study revealed for the first time that BAs could inhibit ferroptosis sensitivity through the FXR-BACH1-GSH-GPX4 axis in GC cells. This work provided new insights into the mechanism associated with BA-mediated promotion of GC and may help identify potential therapeutic targets for GC patients with BAs reflux.


Assuntos
Ferroptose , Neoplasias Gástricas , Animais , Humanos , Ácidos e Sais Biliares , Transdução de Sinais
2.
Yi Chuan ; 33(4): 293-7, 2011 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-21482517

RESUMO

Artificial chromosomes (ACs) are genetic-engineered vector systems with defined native chromosomal elements. ACs have large carrying capacity and genetic stability without integration into host genome, thus avoiding random insertion and positional effects. ACs were first successfully developed in yeast (Yeast artificial chromosome, YAC), and then in bacterium (Bacterial artificial chromosome, BAC), human (Human artificial chromosome, HAC), and plant (Plant artificial chromosome, PAC). Here, we summarized recent progress on ACs, especially, on PAC. To date, YAC and BAC have been widely applied in genome sequencing and gene isolation, while HAC and PAC have been subjected to gene therapy, protein production, and plant transgenesis, respectively. Recently, American scientists reported a man-made genome of prokaryote Mycoplasma mycoides. However, like ACs, this man-made genome was also genetic-engineered product and can't survive as an independent life without a cellular environment.


Assuntos
Cromossomos Artificiais , Cromossomos Artificiais Bacterianos , Cromossomos Artificiais Humanos , Cromossomos Artificiais de Levedura , Cromossomos de Plantas , Terapia Genética , Humanos
3.
New Phytol ; 179(3): 751-764, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18557819

RESUMO

* Auxin is essential for many aspects of plant growth and development, including the determination of lateral organ shapes. * Here, the characterization of a dominant Arabidopsis thaliana mutant spl-D (SPOROCYTELESS dominant), and the roles of SPL in auxin homeostasis and plant development, are reported. * The spl-D mutant displayed a severe up-curling leaf phenotype caused by increased expression of SPOROCYTELESS/NOZZLE (SPL/NZZ), a putative transcription factor gene that was previously linked to sporocyte formation. The spl-D plants also displayed pleiotropic developmental defects including fewer lateral roots, simpler venation patterns, and reduced shoot apical dominance. The leaf and floral phenotypes of spl-D and SPL over-expression lines were reminiscent of yucca (yuc) triple and quadruple mutants, suggesting that SPL may regulate auxin homeostasis. Consistent with this hypothesis, it was found that over-expression of SPL led to down-regulation of the auxin reporter DR5-GUS, and that many auxin-responsive genes were down-regulated in spl-D leaves. Interestingly, the expression of YUC2 and YUC6, two key genes in auxin biosynthesis, was significantly repressed in spl-D plants. * Taken together with the genetic and phenotypic analysis of spl-D/yuc6-D double mutant, these data suggest that SPL may regulate auxin homeostasis by repressing the transcription of YUC2 and YUC6 and participate in lateral organ morphogenesis.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/fisiologia , Oxigenases/genética , Proteínas Repressoras/fisiologia , Arabidopsis/anatomia & histologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/biossíntese , Clonagem Molecular , Homeostase , Ácidos Indolacéticos/metabolismo , Mutagênese Insercional , Proteínas Nucleares/genética , Oxigenases/biossíntese , Fenótipo , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Proteínas Repressoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...