Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(9): 7253-7266, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38380803

RESUMO

Pseudomonas aeruginosa (P. aeruginosa), a drug-resistant Gram-negative pathogen, is listed among the "critical" group of pathogens by the World Health Organization urgently needing efficacious antibiotics in the clinics. Nanomaterials especially silver nanoparticles (AgNPs) due to the broad-spectrum antimicrobial activity are tested in antimicrobial therapeutic applications. Pathogens rapidly develop resistance to AgNPs; however, the health threat from antibiotic-resistant pathogens remains challenging. Here we present a strategy to prevent bacterial resistance to silver nanomaterials through imparting chirality to silver nanoclusters (AgNCs). Nonchiral AgNCs with high efficacy against P. aeruginosa causes heritable resistance, as indicated by a 5.4-fold increase in the minimum inhibitory concentration (MIC) after 9 repeated passages. Whole-genome sequencing identifies a Rhs mutation related to the wall of Gram-negative bacteria that possibly causes morphology changes in resistance compared to susceptible P. aeruginosa. Nevertheless, AgNCs with laevorotary chirality (l-AgNCs) induce negligible resistance even after 40 repeated passages and maintain a superior antibacterial efficiency at the MIC. l-AgNCs also show high cytocompatibility; negligible cytotoxicity to mammalian cells including JB6, H460, HEK293, and RAW264.7 is observed even at 30-fold MIC. l-AgNCs thus are examined as an alternative to levofloxacin in vivo, healing wound infections of P. aeruginosa efficaciously. This work provides a potential opportunity to confront the rising threat of antimicrobial resistance by developing chiral nanoclusters.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Animais , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Prata/farmacologia , Prata/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Células HEK293 , Pseudomonas aeruginosa , Testes de Sensibilidade Microbiana , Mamíferos
2.
J Hazard Mater ; 464: 132954, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-37972496

RESUMO

Short chain chlorinated paraffins (SCCPs) are ubiquitous persistent organic pollutants. They have been widely detected in plant-based foods and might cause adverse impacts on humans. Nevertheless, uptake and accumulation mechanisms of SCCPs in plants remain unclear. In this study, the soil culture data indicated that SCCPs were strongly absorbed by roots (root concentration factor, RCF>1) yet limited translocated to shoots (translocation factor<1). The uptake mechanism was explored by hydroponic exposure, showing that hydrophobicity and molecular size influenced the root uptake and translocation of SCCPs. RCFs were significantly correlated with logKow values and molecular weights in a parabolic curve relationship. Besides, it was extremely difficult for SCCPs to translocate from shoots back to roots via phloem. An active energy-dependent process was proposed to be involved in the root uptake of SCCPs, which was supported by the uptake inhibition by the low temperature and metabolic inhibitor. Though SCCPs at environmentally relevant concentrations had no negative impacts on root morphology and chlorophyll contents, it caused obvious changes in cellular ultrastructure of root tip cells and induced a significant increase in superoxide dismutase activity. This information may be beneficial to moderate crop contamination by SCCPs, and to remedy soils polluted by SCCPs with plants.


Assuntos
Hidrocarbonetos Clorados , Triticum , Humanos , Parafina/química , Monitoramento Ambiental , Hidrocarbonetos Clorados/análise , Transporte Biológico , Solo/química , China
3.
J Environ Sci (China) ; 139: 170-181, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105045

RESUMO

The nanoscale zinc oxide (n-ZnO) was used in food packages due to its superior antibacterial activity, resulting in potential intake of n-ZnO through the digestive system, wherein n-ZnO interacted with saliva. In recent, facet engineering, a technique for controlling the exposed facets, was applied to n-ZnO, whereas risk of n-ZnO with specific exposed facets in saliva was ignored. ZnO nanoflakes (ZnO-0001) and nanoneedles (ZnO-1010) with the primary exposed facets of {0001} and {1010} respectively were prepared in this study, investigating stability and toxicity of ZnO-0001 and ZnO-1010 in synthetic saliva. Both ZnO-0001 and ZnO-1010 partially transformed into amorphous Zn3(PO4)2 within 1 hr in the saliva even containing orgnaic components, forming a ZnO-Zn3(PO4)2 core-shell structure. Nevertheless, ZnO-1010 relative to ZnO-0001 would likely transform into Zn3(PO4)2, being attributed to superior dissolution of {1010} facet due to its lower vacancy formation energy (1.15 eV) than {0001} facet (3.90 eV). The toxicity of n-ZnO to Caco-2 cells was also dependent on the primary exposed facet; ZnO-0001 caused cell toxicity through oxidative stress, whereas ZnO-1010 resulted in lower cells viability than ZnO-0001 through oxidative stress and membrane damage. Density functional theory calculations illustrated that ·O2- was formed and released on {1010} facet, yet O22- instead of ·O2- was generated on {0001} facet, leading to low oxidative stress from ZnO-0001. All findings demonstrated that stability and toxicity of n-ZnO were dependent on the primary exposed facet, improving our understanding of health risk of nanomaterials.


Assuntos
Óxido de Zinco , Humanos , Óxido de Zinco/toxicidade , Óxido de Zinco/química , Células CACO-2 , Saliva , Estresse Oxidativo
4.
Phys Chem Chem Phys ; 25(38): 25899-25924, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37746773

RESUMO

Semiconductor photocatalysis has become an increasing area of interest for use in water treatment methods. This review systematically presents the recent developments of emerging semiconductor photocatalysis system and their application in the removal of water pollutants. A brief overview of the semiconductor photocatalysis mechanism involved with the generation of reactive oxygen species (ROS) is provided first. Then a detailed explanation of the development of TiO2-based, g-C3N4-based, and bismuth-based semiconductor materials and their applications in the degradation of water pollutants are highlighted with recent illustrative examples. Furthermore, the future prospects of semiconductor photocatalysis for water treatment are critically analyzed.

5.
ACS Nano ; 17(10): 8851-8865, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37145866

RESUMO

Oral exposure is known as the primary way for silver nanoparticles (AgNPs), which are commonly used as food additives or antibacterial agents in commercial products, to enter the human body. Although the health risk of AgNPs has been a concern and extensively researched over the past few decades, there are still numerous knowledge gaps that need to be filled to disclose what AgNPs experience in the gastrointestinal tract (GIT) and how they cause oral toxicity. In order to gain more insight into the fate of AgNPs in the GIT, the main gastrointestinal transformation of AgNPs, including aggregation/disaggregation, oxidative dissolution, chlorination, sulfuration, and corona formation, is first described. Second, the intestinal absorption of AgNPs is presented to show how AgNPs interact with epithelial cells and cross the intestinal barrier. Then, more importantly, we make an overview of the mechanisms underlying the oral toxicity of AgNPs in light of recent advances as well as the factors affecting the nano-bio interactions in the GIT, which have rarely been thoroughly elaborated in published literature. At last, we emphatically discuss the issues that need to be addressed in the future to answer the question "How does oral exposure to AgNPs cause detrimental effects on the human body?".


Assuntos
Nanopartículas Metálicas , Prata , Humanos , Nanopartículas Metálicas/toxicidade , Trato Gastrointestinal , Aditivos Alimentares
6.
Environ Sci Technol ; 57(47): 18462-18472, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36633968

RESUMO

Per- and polyfluoroalkyl substances (PFASs), including perfluorohexanesulfonic acid (PFHxS), as emerging persistent organic pollutants widely detected in drinking water, have drawn increasing concern. The PFHxS contamination of drinking water always results from direct and indirect sources, especially the secondary generations through environmental transformations of precursors. However, the mechanism of the transformation of precursors to PFHXS during the drinking water treatment processes remains unclear. Herein, the potential precursors and formation mechanisms of PFHxS were explored during drinking water disinfection. Simultaneously, the factors affecting PFHxS generation were also examined. This study found PFHxS could be generated from polyfluoroalkyl sulfonamide derivatives during chlorination and chloramination. The fate and yield of PFHxS varied from different precursors and disinfection processes. In particular, monochloramine more favorably formed PFHxS. Several perfluoroalkyl oxidation products and decarboxylation intermediates were detected and identified in the chloraminated samples using Fourier-transform ion cyclotron resonance mass spectrometry. Combined with density functional theory calculations, the results indicated that the indirect oxidation via the attack of the nitrogen atom in sulfonamide groups might be the dominant pathway for generating PFHxS during chloramination, and the process could be highly affected by the monochloramine dose, pH, and temperature. This study provides important evidence of the secondary formation of PFHxS during drinking water disinfection and scientific support for chemical management of PFHxS and PFHxS-related compounds.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Água Potável/análise , Poluentes Químicos da Água/análise , Desinfecção , Sulfonamidas/análise , Halogenação , Purificação da Água/métodos , Sulfanilamida/análise , Desinfetantes/análise
7.
Nanomaterials (Basel) ; 12(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36364621

RESUMO

Along with the development of nanotechnology, nanomaterials have been gradually applied to agriculture in recent years, such as Cu(OH)2-nanorods-based nanopesticide, an antibacterial agrochemical with a high efficacy. Nevertheless, knowledge about physical stability of Cu(OH)2 nanopesticide in soil solutions is currently scarce, restricting comprehensive understanding of the fate and risk of Cu(OH)2 nanopesticide in the soil environment. Herein we investigated aggregation, sedimentation and dissolution of Cu(OH)2 nanopesticide in soil solutions extracted from three different soil samples, wherein commercial Cu(OH)2 nanopesticide formulation (NPF), as well as its active ingredient (AI) and laboratory-prepared Cu(OH)2 nanorods (NR) with similar morphology as AI, were used as model Cu(OH)2 nanopesticides. We found that NPF compared to AI showed less extents of aggregation in ultrapure water due to the presence of dispersing agent in NPF. Yet, moderated aggregation and sedimentation were observed for Cu(OH)2 nanopesticide irrespective of NPF, AI or NR when soil solutions were used instead of ultrapure water. The sedimentation rate constants of AI and NPF were 0.023 min-1 and 0.010 min-1 in the ultrapure water, whereas the rate constants of 0.003-0.021 min-1 and 0.002-0.007 min-1 were observed for AI and NPF in soil solutions, respectively. Besides aggregation and sedimentation, dissolution of Cu(OH)2 nanopesticide in soil solutions was highly dependent on soil type, wherein pH and organic matter played important roles in dissolution. Although the final concentrations of dissolved copper (1.08-1.37 mg/L) were comparable among different soil solutions incubating 48 mg/L of AI, NPF or NR for 96 h, a gradual increase followed by an equilibrium was only observed in the soil solution from acidic soil (pH 5.16) with the low content of organic matter (1.20 g/kg). This work would shed light on the fate of Cu(OH)2 nanopesticide in the soil environment, which is necessary for risk assessment of the nanomaterials-based agrochemical.

8.
Ecotoxicol Environ Saf ; 246: 114187, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36244173

RESUMO

The use of nanoscale zinc oxide (n-ZnO) in the personal care products would cause interactions between n-ZnO and human sweat. Facet engineering has been applied to n-ZnO to improve its activity. Nevertheless, it is not clear whether the exposed facet would affect transformation of n-ZnO in sweat. Herein, we prepared ZnO nanoneedles with the dominant (1010) non-polar facet (i.e., ZnO-1010) and ZnO nanoflakes with the dominant (0001) polar facet (i.e., ZnO-0001), respectively. We found that n-ZnO can undergo chemical transformation in the simulated sweat within 168 h or 24 h, transforming into amorphous materials and Zn3(PO4)20.4 H2O and/or Na(ZnPO4)·H2O. Given the rate constant (e.g., 0.093 h-1 for ZnO-0001 vs. 0.033 h-1 for ZnO-1010) of ZnO depletion and components of the precipitate from the simulated sweat, nevertheless, the transformation is highly dependent on the dominant exposed facet of n-ZnO. The ZnO-0001 relative to ZnO-1010 would likely undergo chemical transformation, demonstrating that the (0001) polar facet compared to (1010) non-polar facet had a superior activity to the dihydrogen phosphate anions in the simulated sweat, which is supported by density functional theory calculations. The chemical transformation can affect the antibacterial activity of n-ZnO to E. coli, moderating the toxicity due to a great decrease in the concentration of the dissolved zinc. In total, our findings provided insights into the facet-dependent transformation for n-ZnO in the simulated sweat, improving our understanding of potential risk of n-ZnO.


Assuntos
Óxido de Zinco , Humanos , Óxido de Zinco/toxicidade , Escherichia coli , Suor , Antibacterianos/farmacologia , Fosfatos/farmacologia
9.
Environ Sci Technol ; 56(12): 8338-8349, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35675530

RESUMO

The outbreak of the novel coronavirus 2019 (COVID-19) pandemic has resulted in the increased human consumption of medicines. Antibiotics are of great concern due to their adverse effects, such as increased bacterial resistance and dysbiosis of gut microbiota. Nevertheless, very little is known about the changes in self-medication with antibiotics during the COVID-19 pandemic and the resultant potential health risks. Herein, we examined the concentration profiles of some commonly used antibiotics in human urine collected from several geographical regions in China between 2020 and 2021. Antibiotics were found in 99.2% of the urine samples at concentrations ranging from not detected (nd) to 357 000 (median: 10.2) ng/mL. During the COVID-19 pandemic, concentrations of urinary antibiotics were remarkably higher than those found either before the pandemic or in the smooth period of the pandemic. Moreover, elevated levels of antibiotics were determined in urine samples from the regions with more confirmed cases. The exposure assessment showed that hazard index values >1 were determined in 35.2% of people. These findings show that human exposure to antibiotics increased during the COVID-19 pandemic, and further research is imperative to identify the public health risks.


Assuntos
COVID-19 , Pandemias , Antibacterianos , COVID-19/epidemiologia , China/epidemiologia , Humanos , SARS-CoV-2
10.
Sci Total Environ ; 831: 154988, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35378177

RESUMO

Poly- and perfluoroalkyl substances (PFAS) are harmful chemicals to humans and widely detected in water bodies including tap water. PFAS cannot be efficiently removed from water through conventional treatment processes used in full-scale drinking water treatment plants, posing a latent risk to human health via drinking tap water. Here in-field investigations show that the household point-of-use (POU) water purifiers constituted with coconut shell activated carbon can achieve 21%-99% removal for 14 legacy and emerging PFAS in tap water based on the ratio of influent and effluent. Extensive characterizations combine with chemical analyses demonstrate that physical adsorption based on Van der Waals force can remove 23 PFAS from tap water, wherein the hydrophobicity of PFAS is the crucial factor. Density functional theory calculations together with the quantitative structure-activity relationship model confirm that both topological structures as well as hydrophobicity of PFAS and electrostatic interactions between the strong electronegative F atoms and the adsorbent surface are the most critical factors controlling the PFAS adsorption to activated carbon. Overall, our results offer insights into the molecular mechanisms that enable the adsorption of PFAS in POU filters.


Assuntos
Água Potável , Fluorocarbonos , Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Vegetal/análise , Água Potável/análise , Fluorocarbonos/análise , Humanos , Poluentes Químicos da Água/análise
11.
Sci Total Environ ; 796: 148974, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34271378

RESUMO

Nanosized agrochemicals like nanofertilizers are being applied to soils. Adverse impacts of nanofertilizers on soil microflora were reported in past studies, but only considering a single application. Repeated applications are however more likely to occur in agriculture. We investigated effects of single versus repeated applications of a copper hydroxide nanofertilizer formulation (NFF) on soil enzyme activity and bacterial community. One or three applications were performed within 21 days to achieve same final level of Cu in soil (48 mg(Cu)/kg: the recommended dose of NFF). Besides, the active ingredient (i.e., copper hydroxide nanotubes (NT)) and dispersing agent (DA) of NFF, and an ionic fertilizer (i.e., CuSO4) were examined. Fluorescein diacetate hydrolase (FDAse), N-acetylglucosaminidase (NAG), leucine aminopeptidase (LAP), and urease (URE) showed negligible changes in the activities between the control and DA treatment. Bacterial community abundance, composition and diversity exhibited similar phenomena. Exposures to copper hydroxide NFF and NT or CuSO4 enhanced the activities of FDAse and NAG, weakened the activity of URE, and showed negligible changes in the LAP activity irrespective of single and repeated applications. Concentrations of NO3--N and NH4+-N in soil were also affected by the application mode of NFF. More importantly, responses of soil bacterial community to copper hydroxide NFF were highly dependent on its application mode, whereas similar responses were observed in the CuSO4 treatment regardless of single or repeated applications. This study provided new insights into environmental risk of copper hydroxide NFF that were ignored in previous studies using a single exposure.


Assuntos
Poluentes do Solo , Solo , Cobre/análise , Cobre/toxicidade , Hidróxidos , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
12.
Anal Chem ; 93(4): 1962-1968, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33439629

RESUMO

Nanoscale silver (n-Ag) including silver nanoparticles (Ag-NPs), silver chloride nanoparticles (AgCl-NPs), and silver sulfide nanoparticles (Ag2S-NPs) and their corresponding ionic counterpart, namely, dissolved Ag, may coexist in soils. X-ray absorption near edge spectroscopy (XANES) is used to elucidate the speciation of n-Ag in soils, whereas it possesses drawbacks like high costs, rare availability of the instrument, and providing semiquantitative data. We developed a new method for the identification and speciation of n-Ag in soils and sediments based on a sequential extraction technique coupled with inductively coupled plasma optical emission spectrometry. Extraction conditions were first evaluated, establishing the optimal extraction procedure; Ag-NPs, AgCl-NPs, and dissolved Ag in soil were simultaneously extracted by using an aqueous solution of 10 mM tetrasodium pyrophosphate, followed by selective isolation and quantification via AgCl-NPs dissolution (4.45 M aqueous ammonia), centrifugation (Ag-NPs), and detection. The Ag2S-NPs remaining in the soil were then extracted with Na2S solution at pH 7.0 through selective complexation. Optimal recoveries of Ag-NPs, AgCl-NPs, Ag2S-NPs, and dissolved Ag were 99.1 ± 2.4%, 112.0 ± 3.4%, 96.4 ± 4.0%, and 112.2 ± 4.1%, respectively. The method was validated to investigate the speciation of n-Ag in soils and sediments, exhibiting the distribution of Ag-NPs, AgCl-NPs, Ag2S-NPs, and dissolved Ag in each sample, wherein Ag2S-NPs, the major species of n-Ag, accounted for 35.42-68.87% of the total Ag. The results of n-Ag speciation in soil are comparable to those obtained through the linear combination fitting of XANES. This method thus is a powerful, yet convenient, substitute for XANES to understand the speciation of n-Ag in complex solid matrices.

13.
J Hazard Mater ; 410: 124568, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33229268

RESUMO

Nanoscale zinc oxide (n-ZnO) is widely used in personal care products and textiles, thus, it would likely be released into human sweat. To better evaluate the potential human health risks of n-ZnO, it is essential to understand its chemical transformations in physiological solutions, such as human sweat, and the resulting changes in the n-ZnO bioavailability. Here, two types of n-ZnO, ZnO nanoparticles (ZnO-NPs) and nanorod-based ZnO nanospheres (ZnO-NSs) were synthesized and incubated in 3 types of simulated sweat with different pH values and phosphate concentrations. The content of Zn3(PO4)2 in the transformed n-ZnO was quantified by selective dissolution of Zn3(PO4)2 in 0.35 M ammonia solution where 100% and 5.5% of Zn3(PO4)2 and ZnO were dissolved, respectively. The kinetics analysis indicated that by 24-48 h the content of Zn3(PO4)2 reached the maximum, being 15-21% at pH 8.0 and 45-70% at pH 5.5 or 4.3. Interestingly, no correlation was observed between the rate constants of Zn3(PO4)2 formation and the specific surface areas of n-ZnO, implying that chemical transformations from n-ZnO to Zn3(PO4)2 in the simulated sweat might not be simply attributed to dissolution and precipitation. Using a variety of characterization techniques, we demonstrated the formation of a ZnO‒Zn3(PO4)2 core-shell structure with the shell consisting of amorphous Zn3(PO4)2 at pH 8.0 and additionally of crystalline Zn3(PO4)2 and Zn3(PO4)2•4H2O at pH 5.5 or 4.3. The phosphate-induced transformation of n-ZnO in the simulated sweat at pH 5.5 and 4.3 greatly reduced the antibacterial efficacy of n-ZnO through moderating the nanoparticle dissolution, indicating limited bioavailability of the NPs upon transformation. The results improve the understanding of the fate and hazards of n-ZnO.


Assuntos
Nanopartículas , Nanosferas , Óxido de Zinco , Antibacterianos , Humanos , Fosfatos , Suor
14.
Food Chem ; 343: 128490, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33158673

RESUMO

Dendrobium officinale Kimura et Migo (D. officinale) is a dual-use plant with both botanical medicine and food applications, drawing increasing attentions. Pesticides are inevitably applied on D. officinale in commercial artificial-sheltered cultivation, yet little is known about pesticide residue levels in D. officinale. A modified high through-put QuEChERS method coupled with HPLC-MS/MS was developed and validated to detect 76 pesticides in D. officinale. Graphitized multi-wall carbon nanotubes (g-MWCNTs) was selected as the clean-up sorbent, showing relative weak affinity to triazole fungicide having planar structure in their molecular and low matrix effects of pesticides in D. officinale samples compared to MWCNTs and pesticarb. The validated method was applied to analyze pesticide residues in 86 real D. officinale samples collected from three main producing provinces. 43 different pesticides were detected with highest residue of 6.11 mg/kg for dimethomorph. Given possible health risks related to pesticide residues, accordingly, risk assessment of human exposure to pesticides via intake of D. officinale was thus performed, indicating that the pesticide residue in fresh or dry D. officinale would not cause potential risk to human health either in the long-term or short-term. This work improved our understanding of potential exposure risk of pesticide multi-residues in D. officinale.


Assuntos
Dendrobium/química , Exposição Dietética/análise , Análise de Alimentos/métodos , Resíduos de Praguicidas/análise , Contaminação de Alimentos/análise , Humanos , Nanotubos de Carbono/química , Medição de Risco
15.
J Hazard Mater ; 401: 123406, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-32653797

RESUMO

Engineered silver sulfide nanoparticles (e-Ag2S-NPs) are used in industry and can be released into the environment. Besides e-Ag2S-NPs, transformed silver sulfide nanoparticles (t-Ag2S-NPs) from silver nanoparticles are more likely to be the form that is widely distributed in the environment. Both e-Ag2S-NPs and t-Ag2S-NPs may be ingested and get into human gastrointestinal tract (GIT) through trophic transfer, posing a potential threat to human health. Nevertheless, knowledge of chemical stability of t-Ag2S-NPs and e-Ag2S-NPs in the human GIT is very limited. Herein e-Ag2S-NPs and a series of t-Ag2S-NPs with different degrees of sulfidation were selected as models for exposure to the simulated human GIT including mouth, stomach and small intestine phases under fed and fasted conditions. Silver ions were detected in the simulated saliva, gastric and small intestine fluids when t-Ag2S-NPs or e-Ag2S-NPs were incubated in the simulated GIT, but the amount (e.g., < 20 µg) of silver ion in each phase accounted for < 0.2‰ (w/w) of the silver added (i.e., 100 mg). Silver species of the residual particulate from each phase of the simulated GIT with t-Ag2S-NPs or e-Ag2S-NPs were thus analyzed through a developed analytical method that could selectively, successively and efficiently dissolve and quantify AgCl, Ag(0), and Ag2S in particulates. Both e-Ag2S-NPs and fully sulfidized t-Ag2S-NPs were shown to be highly stable in the simulated human GIT. Conversely, partially sulfidized t-Ag2S-NPs primarily underwent transformations in the mouth phase relative to stomach and small intestine phases regardless of fed or fasted status, wherein AgCl and Ag2S were observed besides Ag(0). The amount of Ag2S in the mouth phase negatively (r = -0.99, p < 0.001) correlated with the sulfidation degree of initial t-Ag2S-NPs. This work improved our understanding of potential transformations of t-Ag2S-NPs in the simulated human GIT, providing valuable information for future researches on evaluating health risks of ingested Ag2S-NPs.


Assuntos
Nanopartículas Metálicas , Prata , Trato Gastrointestinal , Humanos , Sulfetos
16.
Environ Res ; 189: 109892, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32678737

RESUMO

Microplastics (MPs) as a type of emerging contaminant in the environment have attracted extensive attentions in recent years, and understanding the impacts of MPs on soil biodiversity and functioning are thus increasingly urgent. Nevertheless, few studies were performed to investigate potential effects of MPs on decay of soil organic pollutants in particular pesticides and enzyme activities. Herein, three types of MPs including polystyrene fragments (PS-50) and polyvinyl chloride beads (PVC-42000 and PVC-10) were added to soil at environmentally relevant concentrations (0.2 and 1.0%) to study their impacts on dissipation of thiacloprid and activities of urease, acid phosphatase, invertase and catalase. MPs exhibited negligible impacts on thiacloprid dissipation regardless of MPs type and content, being probably attributed to the unaltered bioavailability of thiacloprid in soil even after an addition of MPs, which was documented by using the hydroxypropyl-ß- cyclodextrin (HPCD) extraction method. Batch sorption experiments also exhibited the comparable adsorption capacity of thiacloprid to soil with and without MPs, along with Kf valuses of 3.44-3.77. Besides, MPs exerted negligible effects on enzyme activities of soil. Taken together, this study showed negligible impacts of MPs at environmentally relevant concentrations on thiacloprid dissipation and enzyme activity, expanding our knowledge on impacts of MPs at the environmentally relevant concentrations on pesticide dissipation in soil.


Assuntos
Poluentes do Solo , Solo , Microplásticos , Neonicotinoides , Plásticos , Poluentes do Solo/análise , Tiazinas
17.
Sci Total Environ ; 741: 140415, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32599405

RESUMO

Nanoscale zinc oxide (n-ZnO) with different morphology and sizes has been used in personal care products due to their antibacterial properties, resulting in discharge of n-ZnO into the environment with potential toxic effect to ecological systems. Sulfidation is one of pathways of transformation of n-ZnO, but a very limited information on the conversion of n-ZnO under sulfidic environment with special morphology such as sea urchin-like zinc oxide nanospheres (ZnO-NSs) is available to know the potential environmental risks of n-ZnO. Herein, sea urchin-like ZnO-NSs with an average size of 78 nm were synthesized and adopted as the model n-ZnO of special morphology. The ZnO-NPs at average sizes of 71 nm (ZnO-NPs-71), 48 nm (ZnO-NPs-48), and 17 nm (ZnO-NPs-17) nm were used to examine possible differences in the sulfidation between the sea urchin-like ZnO-NSs and ZnO-NPs. A new analytical method selectively dissolving ZnO over ZnS in partially sulfidized n-ZnO was developed and applied to understand the kinetics of n-ZnO sulfidation. The sulfidation rate constant (ks) of sea urchin-like ZnO-NSs was 2.9 × 10-3 h-1, comparable to that of ZnO-NPs-71 (4.1 × 10-3 h-1), but much lower than those of ZnO-NPs-48 (20.1 × 10-3 h-1) and ZnO-NPs-17 (67.8 × 10-3 h-1). This might be attributed to the differences in the specific surface area; ks positively correlated with the specific surface area (R2 = 0.97). Natural organic matter (NOM) decreased dissolution and sulfidation of the sea urchin-like ZnO-NSs. Aggregate ZnS nanocrystals instead of the original sea urchin-like ZnO-NSs were observed. We proposed that sea urchin-like ZnO-NSs were transformed to ZnS through a dissolution-precipitation pathway, consistent with the sulfidation pathway of ZnO-NPs. Sulfidation drastically reduced toxicity of sea urchin-like ZnO-NSs to Escherichia coli due to negligible dissolution of ZnS nanocrystals. These results greatly improved our understanding of the transformation and potential risks of n-ZnO with special morphology.


Assuntos
Nanopartículas Metálicas , Nanosferas , Óxido de Zinco , Animais , Escherichia coli , Cinética , Ouriços-do-Mar
18.
J Agric Food Chem ; 68(11): 3372-3381, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32109358

RESUMO

Nanopesticides are being introduced in agriculture, and the associated environmental risks and benefits must be carefully assessed before their widespread agricultural applications. We investigated the impacts of a commercial Cu(OH)2 nanopesticide formulation (NPF) at different agricultural application doses (e.g., 0.5, 5, and 50 mg of Cu kg-1) on enzyme activities and bacterial communities of loamy soil (organic matter content of 3.61%) over 21 days. Results were compared to its ionic analogue (i.e., CuSO4) and nano-Cu(OH)2, including both the commercial unformulated active ingredient of NPF (AI-NPF) and synthesized Cu(OH)2 nanorods (NR). There were negligible changes in the activity of acid phosphatase, regardless of exposure dose, whereas significant (p < 0.05) variations in activities of invertase, urease, and catalase were observed at a dose of 5 mg kg-1 or higher. Invertase activity decreased with an increasing bioavailable Cu concentration in soil under various treatments. In comparison to CuSO4, both Cu(OH)2 nanopesticide (i.e., NPF) and nano-Cu(OH)2 (i.e., AI-NPF and NR) caused a significant (p < 0.05) inhibition of urease activity, wherein a significant (p < 0.05) increase in the activity of catalase was observed, representing serious oxidative stress. Accordingly, NPF, AI-NPF, and NR differently affected soil bacterial abundance, diversity, and community compared to CuSO4, which could have resulted from the changes in the bioavailable Cu concentration as a result of the distinct nature of copper spiked (i.e., nano form versus salt). Moreover, minor differences in the soil enzyme activity and bacterial community were observed between NPF and AI-NPF, reflecting that the impact of the Cu(OH)2 nanopesticide was primarily attributed to the presence of nano-Cu(OH)2. In total, the impacts of nano-Cu(OH)2 on the soil bacterial community and enzyme activity tested in this study differed from CuSO4, shedding light on the environmental risks of the Cu(OH)2 nanopesticide in the long run.


Assuntos
Poluentes do Solo , Solo , Bactérias/genética , Cobre/análise , Microbiologia do Solo , Poluentes do Solo/análise , Urease
19.
Environ Sci Technol ; 53(15): 9091-9101, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31264863

RESUMO

Covalent triazine frameworks (CTFs) with high adsorption potential and photocatalytic ability features are expected to be designed as a new class of adsorbents that can regenerate themselves just by harnessing sunlight. To simultaneously improve both the adsorption and photocatalytic regeneration performance, a defect-abundant CTF-m was designed and tuned effectively by varying the lengths of benzene ring chains incorporated into the CTF backbone. It has been demonstrated that two kinds of defects in terms of broken benzene rings and pyrrole nitrogen were newly generated, other than the normal benzene rings and triazine units in the CTF-m skeleton. Benefiting from these defects, the adsorption sites with high energy for adsorbing volatile aromatic pollutants were significantly increased, which are reflected by higher saturated adsorption capacities of CTF-m (3.026 mmol/g for benzene (BEN), 1.490 mmol/g for naphthalene (NAP), and 0.863 mmol/g for phenol (PHE)) compared with those of CTF-1 and CTF-2. Furthermore, these defects narrowed the band structure and facilitated the separation of photogenerated charge carries, thus promoting photocatalytic regeneration. The percentage of CTF-m regenerated was still higher than 90% in the fourth cycle. These experimental results, together with the density functional theory (DFT) studies, soundly corroborated that the defects could optimize the adsorption and regeneration property of CTF-m. The present work highlights the potential of fabrication of defective CTFs as solar-driven self-cleaning adsorbents to remove pollutants from water.


Assuntos
Poluentes Ambientais , Luz Solar , Adsorção , Triazinas , Água
20.
Mikrochim Acta ; 186(8): 494, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31267250

RESUMO

This study describes a universal fluorometric method for sensitive detection of analytes by using aptamers. It is based on the use of graphene oxide (GO) and cryonase-assisted signal amplification. GO is a strong quencher of FAM-labeled nucleic acid probes, while cryonase digests all types of nucleic acid probes. This makes the platform widely applicable to analytes for which the corresponding aptamers are available. Theophylline and ATP were chosen as model analytes. In the absence of targets, dye-labeled aptamers are in a flexible single strand state and adsorb on the GO. As a result, the probes are non-fluorescent due to the efficient quenching of dyes by GO. Upon the addition of a specific target, the aptamer/target complex desorbed from the GO surface and the probe becomes fluorescent. The released complex will immediately become a substrate for cryonase digestion and subsequently releasing the target to bind to another aptamer to initiate the next round of cleavage. This cyclic reaction will repeat again and again until all the related-probes are consumed and all fluorophores light up, resulting in significant fluorescent signal amplification. The detection limits are 47 nM for theophylline and 22.5 nM for ATP. This is much better than that of known methods. The assay requires only mix-and-measure steps that can be accomplished rapidly. In our perception, the detection scheme holds great promise for the design enzyme-aided amplification mechanisms for use in bioanalytical methods. Graphical abstract A cryonase-assisted signal amplification (CASA) method has been developed by using graphene oxide (GO) conjugated with a fluorophore-labeled aptamer for fluorescence signal generation. It has a large scope because it may be applied to numerous analytes.


Assuntos
Trifosfato de Adenosina/análise , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais , Grafite/química , Sondas de Ácido Nucleico/química , Teofilina/análise , Trifosfato de Adenosina/química , Fluorescência , Teofilina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...