Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(8): e18270, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37520955

RESUMO

Bats serve as reservoirs for many emerging viruses. Cressdnaviruses can infect a wide range of animals, including agricultural species, such as pigs, in which porcine circoviruses cause severe gastroenteritis. New cressdnaviruses have also attracted considerable attention recently, due to their involvement with infectious diseases. However, little is known about their host range and many cressdnaviruses remain poorly characterized. We identified and characterized 11 contigs consisting of previously unknown cressdnaviruses from a rectal swab sample of a Cynopterus bat collected in Yunnan Province, China, in 2011. Full genomes of two cressdnaviruses (OQ267680, 2069 nt; OQ351951, 2382 nt), and a nearly complete genome for a third (OQ267683, 2361 nt) were obtained. Phylogenetic analyses and the characteristics of these viral genomes suggest a high degree of ssDNA virus diversity. These results shed light on cressdnavirus diversity and the probable role of Cynopterus bats as their hosts.

2.
Sci Total Environ ; 900: 165807, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37506917

RESUMO

Plastisphere is a new niche for microorganisms that complicate the ecological effects of plastics, and may profoundly influence biodiversity and habitat conservation. The DaGuishan National Nature Reserve, one of the largest habitats of the highly endangered crocodile lizard (Shinisaurus crocodilurus), is experiencing plastic pollution without sufficient attention. Here, plastisphere collected from captive tanks of crocodile lizards in this nature reserve was characterized for the first time. Three types of plastic (PE-PP, PE1, and PE2) together with the surrounding water and soil samples, were collected, and 16S rRNA sequencing technology was used to characterize the bacterial composition. The results demonstrated that plastisphere was driven by stochastic process and had a distinct bacterial community with higher diversity than that in surrounding water (p < 0.05). Bacteria related to nitrogen and carbon cycles (Pseudomonas psychrotolerans, Methylobacterium-Methylorubrum) were more abundant in plastisphere than in water or soil (p < 0.05). More importantly, plastics recruited pathogens and those bacteria function in antibiotic resistant genes (ARGs) coding. Bacteria related to polymer degradation also proliferated in plastisphere, especially Bacillus subtilis with a fold change of 42.01. The PE2 plastisphere, which had the lowest diversity and was dominated by Methylobacterium-Methylorubrum differed from PE 1 and PE-PP plastispheres totally. Plastics' morphology and aquatic nutrient levels contributed to the heterogeneity of different plastispheres. Overall, this study demonstrated that plastispheres diversify in composition and function, affecting ecosystem services directly or indirectly. Pathogens and bacteria related to ARGs expression enriched in the plastisphere should not be ignored because they may threaten the health of crocodile lizards by increasing the risk of infection. Plastic pollution control should be included in conservation efforts for crocodile lizards. This study provides new insights into the potential impacts of plastisphere, which is important for ecological risk assessments of plastic pollution in the habitats of endangered species.


Assuntos
Ecossistema , Lagartos , Animais , RNA Ribossômico 16S , Bactérias , Plásticos , Água , Lagartos/genética , Antibacterianos
3.
Front Microbiol ; 13: 1053925, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36560954

RESUMO

Intestinal microorganisms are crucial for health and have a significant impact on biological processes, such as metabolism, immunity, and neural regulation. Although pangolin are protected animals in China and listed as critically endangered (CR) level by The International Union for Conservation of Nature (IUCN), the population of wild pangolins has decreased sharply in recent decades. Captive breeding has been adopted to protect pangolins, but the survival is low due to gastrointestinal infections, diarrhea, and parasitic infections. Studies on intestinal microbes in pangolins may reveal the relationship between intestinal microorganisms and health and assist protection. To explore the relationship between intestinal microorganisms and pangolin health, blood parameters and intestinal microorganisms of 10 pangolins (two Manis pentadactyla and eight Manis javanica) were studied at the Shenzhen Wildlife Rescue Center. There is difference among adult Sunda pangolins (M. javanica), adult Chinese pangolins (M. pentadactyla) and sub-adult Sunda pangolins (M. javanica) in intestinal microbial composition, diversity and phenotypic diversity, which suggested that adult Sunda pangolins occupied more diversity and proportion of microbial species to resist environmental pressure than the others. Due to the captive breeding serum cortisol of pangolins was increased, and the intestinal microbial structure changed, which may affect immunity. This study provides a scientific basis for the rescue of pangolins through artificial breeding.

4.
Front Microbiol ; 13: 988730, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118205

RESUMO

Pangolins are endangered animals and are listed in the CITES Appendix I of the Convention International Trade Endangered Species of Wild Fauna and Flora as well as being the national first-level protected wild animal in China. Based on a few reports on pangolins infected with pestiviruses of the Flaviviridae family, Pestivirus infections in pangolins have attracted increasing attention. Pangolin pestivirus is a pathogen that may cause diseases such as acute diarrhea and acute hemorrhagic syndrome. To better understand the epidemiology and genomic characterization of pestiviruses carried by pangolins, we detected pestiviruses in dead Malayan pangolin using metavirome sequencing technology and obtained a Pestivirus sequence of 12,333 nucleotides (named Guangdong pangolin Pestivirus, GDPV). Phylogenetic tree analysis based on the entire coding sequence, NS3 gene or RdRp gene sequences, showed that GDPV was closely related to previously reported pangolin-derived Pestivirus and clustered into a separate branch. Molecular epidemiological investigation revealed that 15 Pestivirus-positive tissues from two pangolins individuals with a positivity rate of 5.56%, and six Amblyomma javanense carried pestiviruses with a positivity rate of 19.35%. Moreover, the RdRp gene of the Pestivirus carried by A. javanense showed a high similarity to that carried by pangolins (93-100%), indicating A. javanense is likely to represent the vector of Pestivirus transmission. This study expands the diversity of viruses carried by pangolins and provides an important reference value for interrupting the transmission route of the virus and protecting the health of pangolins.

5.
Front Zool ; 19(1): 23, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163040

RESUMO

BACKGROUND: Sex differentiation can be viewed as a controlled regulatory balance between sex differentiation-related mRNAs and post-transcriptional mechanisms mediated by non-coding RNAs. In mammals, increasing evidence has been reported regarding the importance of gonad-specific microRNAs (miRNAs) in sex differentiation. Although many fishes express a large number of gonadal miRNAs, the effects of these sex-biased miRNAs on sex differentiation in teleost fish remain unknown. Previous studies have shown the exclusive and sexually dimorphic expression of miR-34b/c in the gonads of the Amur sturgeon (Acipenser schrenckii), suggesting its potential role in the sex differentiation process. RESULTS: Using quantitative real-time PCR (qPCR), we observed that miR-34b/c showed consistent spatiotemporal expression patterns; the expression levels significantly increased during early sex differentiation. Using in situ hybridization, miR-34c was found to be located in the germ cells. In primary germ cells in vitro, the group subjected to overexpression and inhibition of miR-34c showed significantly higher proliferation ability and lower apoptosis, respectively, compared to the corresponding control group. Luciferase reporter assays using the ar-3'UTR-psiCHECK-2 luciferase vector suggested a targeted regulatory interaction between miR-34b/c and the 3'UTR of the androgen receptor (ar) mRNA. Furthermore, miR-34b/c and ar showed negative expression patterns during early sex differentiation. Additionally, a negative feedback regulation pattern was observed between foxl2 expression in the ovaries and amh and sox9 expression in the testes during early sex differentiation. CONCLUSIONS: This study sheds new light on the roles of miR-34b/c in gonad development of Amur sturgeon, and provides the first comprehensive evidence that the gonad-predominant microRNAs may have a major role in sex differentiation in teleost fish.

6.
Virus Evol ; 8(1): veac049, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795295

RESUMO

Coronavirus infections cause diseases that range from mild to severe in mammals and birds. In this study, we detected coronavirus infections in 748 farmed wild animals of 23 species in Guangdong, southern China, by RT-PCR and metagenomic analysis. We identified four coronaviruses in these wild animals and analysed their evolutionary origins. Coronaviruses detected in Rhizomys sinensis were genetically grouped into canine and rodent coronaviruses, which were likely recombinants of canine and rodent coronaviruses. The coronavirus found in Phasianus colchicus was a recombinant pheasant coronavirus of turkey coronavirus and infectious bronchitis virus. The coronavirus in Paguma larvata had a high nucleotide identity (94.6-98.5 per cent) with a coronavirus of bottlenose dolphin (Tursiops truncates). These findings suggested that the wildlife coronaviruses may have experienced homologous recombination and/or crossed the species barrier, likely resulting in the emergence of new coronaviruses. It is necessary to reduce human-animal interactions by prohibiting the eating and raising of wild animals, which may contribute to preventing the emergence of the next coronavirus pandemic.

7.
Fish Physiol Biochem ; 48(4): 839-852, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35650309

RESUMO

The regulatory mechanisms that govern sex differentiation in sturgeon are still poorly understood. The doublesex and Mab-3-related transcription factor (Dmrt) gene family is known for its extensive roles in sex determination and differentiation across vertebrates. This study aimed to identify new members of sturgeon Dmrt family genes and core actors in the gonadal differentiation of Amur sturgeon. A full-length gonad transcriptome database was exploited to identify Dmrt gene orthologs. Analyses of phylogenetic relationships and selection pressure were performed, and tissue expression profiles and spatiotemporal expression patterns in gonads were then analyzed using real-time PCR. In total, five Dmrt family genes were identified from the full-length gonad transcriptome, including Dmrt2, DmrtA1, DmrtA2, DmrtB1a, and DmrtB1b. Phylogenetic analysis showed that these genes were clustered into clades corresponding to the doublesex/Mav-3 (DM) genes of vertebrates. Furthermore, the analysis of evolutionary selective pressure indicated that DmrtB1a and DmrtB1b were subject to positive selection, suggesting the existence of adaptive evolution in sturgeon. The extensive tissue expression profiling of each Dmrt family gene revealed typical characteristics. Remarkably, according to a spatiotemporal expression pattern analysis, in later stages, DmrtB1b expression increased in testes and was significantly higher in testes than in ovaries at 24 months after hatching (M) and 36 M. This study provides a genetic resource of full-length Dmrt family genes and increases the understanding of Dmrt functions in sex differentiation in sturgeon.


Assuntos
Perfilação da Expressão Gênica , Gônadas , Animais , Peixes/genética , Peixes/metabolismo , Gônadas/metabolismo , Filogenia , Diferenciação Sexual/genética , Transcriptoma
8.
Sci Data ; 9(1): 336, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701476

RESUMO

Bats are considered reservoirs of many lethal zoonotic viruses and have been implicated in several outbreaks of emerging infectious diseases, such as SARS-CoV, MERS-CoV, and SARS-CoV-2. It is necessary to systematically derive the expression patterns of bat virus receptors and their regulatory features for future research into bat-borne viruses and the prediction and prevention of pandemics. Here, we performed single-nucleus RNA sequencing (snRNA-seq) and single-nucleus assay for transposase-accessible chromatin using sequencing (snATAC-seq) of major organ samples collected from Chinese horseshoe bats (Rhinolophus affinis) and systematically checked the expression pattern of bat-related virus receptors and chromatin accessibility across organs and cell types, providing a valuable dataset for studying the nature of infection among bat-borne viruses.


Assuntos
COVID-19 , Quirópteros , Receptores Virais , SARS-CoV-2 , Animais , Genoma Viral , Humanos , Filogenia , Análise de Célula Única
9.
Gigascience ; 112022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35583674

RESUMO

BACKGROUND: The masked palm civet (Paguma larvata) acts as an intermediate host of severe acute respiratory syndrome coronavirus (SARS-CoV), which caused SARS, and transfered this virus from bats to humans. Additionally, P. larvata has the potential to carry a variety of zoonotic viruses that may threaten human health. However, genome resources for P. larvata have not been reported to date. FINDINGS: A chromosome-level genome assembly of P. larvata was generated using PacBio sequencing, Illumina sequencing, and Hi-C technology. The genome assembly was 2.44 Gb in size, of which 95.32% could be grouped into 22 pseudochromosomes, with contig N50 and scaffold N50 values of 12.97 Mb and 111.81 Mb, respectively. A total of 21,582 protein-coding genes were predicted, and 95.20% of the predicted genes were functionally annotated. Phylogenetic analysis of 19 animal species confirmed the close genetic relationship between P. larvata and species belonging to the Felidae family. Gene family clustering revealed 119 unique, 243 significantly expanded, and 58 significantly contracted genes in the P. larvata genome. We identified 971 positively selected genes in P. larvata, and one known human viral receptor gene PDGFRA is positively selected in P. larvata, which is required for human cytomegalovirus infection. CONCLUSIONS: This high-quality genome assembly provides a valuable genomic resource for exploring virus-host interactions. It will also provide a reliable reference for studying the genetic bases of the morphologic characteristics, adaptive evolution, and evolutionary history of this species.


Assuntos
Genoma , Viverridae , Animais , Cromossomos , Genômica , Filogenia , Viverridae/genética
10.
mBio ; 13(3): e0046322, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35467426

RESUMO

Severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) and SARS-CoV-2, the causative agents of SARS, which broke out in 2003, and coronavirus disease 2019 (COVID-2019), which broke out in 2019, probably originated in Rhinolophus sinicus and R. affinis, respectively. Rhinolophus bats are important hosts for coronaviruses. Many SARS-related coronaviruses (SARSr-CoVs) have been detected in bats from different areas of China; however, the diversity of bat SARSr-CoVs is increasing, and their transmission mechanisms have attracted much attention. Here, we report the findings of SARSr-CoVs in R. sinicus and R. affinis from South China from 2008 to 2021. The full-length genome sequences of the two novel SARSr-CoVs obtained from Guangdong shared 83 to 88% and 71 to 72% nucleotide identities with human SARS-CoV and SARS-CoV-2, respectively, while sharing high similarity with human SARS-CoV in hypervariable open reading frame 8 (ORF8). Significant recombination occurred between the two novel SARSr-CoVs. Phylogenetic analysis showed that the two novel bat SARSr-CoVs from Guangdong were more distant than the bat SARSr-CoVs from Yunnan to human SARS-CoV. We found that transmission in bats contributes more to virus diversity than time. Although our results of the sequence analysis of the receptor-binding motif (RBM) and the expression pattern of angiotensin-converting enzyme 2 (ACE2) inferred that these viruses could not directly infect humans, risks still exist after some unpredictable mutations. Thus, this study increased our understanding of the genetic diversity and transmission of SARSr-CoVs carried by bats in the field. IMPORTANCE Severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 probably originated from the SARS-related coronaviruses (SARSr-CoVs) carried by Rhinolophus bats from Yunnan, China. Systematic investigations of the reservoir hosts carrying SARSr-CoVs in Guangdong and the reservoir distribution and transmission are urgently needed to prevent future outbreaks. Here, we detected SARSr-CoV in Rhinolophus bat samples from Guangdong in 2009 and 2021 and found that the transmission of SARSr-CoV from different host populations contributes more to increased virus diversity than time. Bat SARSr-CoVs in Guangdong had genetic diversity, and Guangdong was also the hot spot for SARSr-CoVs. We once again prove that R. sinicus plays an important role in the maintenance of the SARS-CoVs. Besides, the SARSr-CoVs are mainly transmitted through the intestines in bats, and these SARSr-CoVs found in Guangdong could not use human ACE2 (hACE2), but whether they can pass through intermediate hosts or directly infect humans requires further research. Our findings demonstrate the ability of SARSr-CoVs to spread across species.


Assuntos
Quirópteros , Coronavirus , Enzima de Conversão de Angiotensina 2 , Animais , China/epidemiologia , Quirópteros/virologia , Coronavirus/classificação , Evolução Molecular , Genoma Viral , Genômica , Humanos , Filogenia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , SARS-CoV-2/genética
11.
Front Vet Sci ; 9: 817490, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237680

RESUMO

Skin diseases commonly affect reptiles, but their relationships to the closely related skin microbiome are not well-understood. In recent years, both the wild and captive populations of the crocodile lizard, a Class I protected endangered animal in China, have suffered serious skin diseases that hamper the rescue and release projects for their conservation. This study conducted a detailed prevalence investigation of a major dermatosis characterized by foot skin ulcer in crocodile lizards. It should be noticed that skin ulcer has been prevalent in both captive and wild populations. There was positive correlation between skin ulcer and temperature, while no significant relationship between skin ulcer and humidity, sex, and age. We further studied the relationship between skin ulcer and the skin microbiota using meta-taxonomics. Results showed that the skin microbiota of crocodile lizards was significantly different from those of the environmental microbial communities, and that skin microbiota had a significant relationship with skin ulcer despite the impact of environment. Both bacterial and fungal communities on the ulcerated skin were significantly changed, which was characterized by lower community diversity and different dominant microbes. Our findings provide an insight into the relationship between skin microbiota and skin disease in reptile, serving as a reference for dermatological etiology in wildlife conservation.

12.
Front Vet Sci ; 9: 1039519, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36590814

RESUMO

Introduction: Green sea turtles are endangered marine reptiles. Carapacial ulcers will develop on juvenile green sea turtles during artificial rescue, seriously affecting their health and potentially leading to death. Methods: To determine the pathogens causing ulcerative carapacial disease, we performed 16S and ITS high-throughput sequencing, and microbial diversity analysis on samples from carapacial ulcers, healthy carapaces, feces, and seawater of juvenile green sea turtles. Results: Our analysis showed that changes in microbial diversity of green sea turtle feces and seawater were not significantly associated with ulcerative carapacial disease. Discussion: Psychrobacter sp. is the dominant species in the carapacial ulcers of green sea turtles. The bacterium is present in both healthy turtles and seawater where carapacial ulcers did not occur and decreasing seawater temperatures are likely responsible for the infection of juvenile green turtles with Psychrobacter sp. This is the first study on carapacial ulcers in captive juvenile green sea turtles. Our research provides theoretical guidance for the prevention and control of carapacial ulcers in captive juvenile green sea turtles.

13.
PLoS Pathog ; 17(6): e1009664, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34106988

RESUMO

[This corrects the article DOI: 10.1371/journal.ppat.1008421.].

14.
Front Microbiol ; 12: 657439, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763052

RESUMO

The coronavirus disease 2019 (COVID-19) outbreak has significantly affected international public health safety. It has been reported that the pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes COVID-19, could originate from bats and utilize the Malayan pangolin (Manis javanica) as an intermediate host. To gain further insights into the coronaviruses carried by pangolins, we investigated the occurrence of Betacoronavirus (ß-CoV) infections in captive Malayan pangolins in the Guangdong province of China. We detected three ß-CoV-positive M. javanica individuals with a positive rate of 6.98% and also detected ß-CoV in two dead pangolins sampled in August 2019. The CoV carried by pangolins is a new ß-CoV, which is genetically related to SARS-CoV-2. Furthermore, the expression of angiotensin-converting enzyme 2 (ACE2) was detected in eight organs of pangolins, with the highest ACE2 mRNA levels in the kidney, suggesting that these organs could be at a risk of ß-CoV infection. These results enable us to better understand the status of ß-CoV carried by Malayan pangolins, while providing a theoretical basis for better pangolin protection and viral control.

15.
Sci Rep ; 10(1): 14566, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32884035

RESUMO

Pangolin (Mains javanica) is an interesting endangered mammal with special morphological characteristics. Here, we applied proteomics and transcriptomics to explore the differentiation of pangolin skin appendages at two developmental stages and to compare gene expression profiles between abdomen hair and dorsal scale tissues. We identified 4,311 genes and 91 proteins differentially expressed between scale-type and hair-type tissue, of which 6 genes were shared by the transcriptome and proteome. Differentiation altered the abundance of hundreds of proteins and mRNA in the two types of skin appendages, many of which are involved in keratinocyte differentiation, epidermal cell differentiation, and multicellular organism development based on GO enrichment analysis, and FoxO, MAPK, and p53 signalling pathways based on KEGG enrichment analysis. DEGs in scale-type tissues were also significantly enriched in immune-related terms and pathways compared with that in hair-type tissues. Thus, we propose that pangolins have a normal skin innate immune system. Compared with the abdomen, the back skin of pangolins had more genes involved in the regulation of immune function, which may be an adaptive adjustment for the vulnerability of scaly skin to infection and injury. This investigation provides a scientific basis for the study of development and immunity of pangolin skin, which may be helpful in the protection of wild pangolin in China.


Assuntos
Diferenciação Celular , Biologia Computacional/métodos , Pangolins/genética , Proteoma/análise , Pele/imunologia , Pele/patologia , Transcriptoma , Animais , Perfilação da Expressão Gênica , Pangolins/crescimento & desenvolvimento , Pangolins/metabolismo , Pele/metabolismo
16.
Sci Rep ; 10(1): 13920, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811876

RESUMO

The expression of hair features is an evolutionary adaptation resulting from interactions between many organisms and their environment. Elucidation of the mechanisms that underlie the expression of such traits is a topic in evolutionary biology research. Therefore, we assessed the de novo transcriptome of Atelerix albiventris at three developmental stages and compared gene expression profiles between abdomen hair and dorsal spine tissues. We identified 328,576 unigenes in our transcriptome, among which 4,435 were differentially expressed between hair- and spine-type tissues. Dorsal and abdomen skin tissues 5 days after birth were compared and the resulting DEGs were mainly enriched in keratin filament, epithelium cell differentiation, and epidermis development based on GO enrichment analysis, and tight junction, p53, and cell cycle signaling pathways based on KEGG enrichment analysis. MBP8, SFN, Wnt1 and KRT1 gene may involve in the development of hedgehog skin and its appendages. Strikingly, DEGs in hair-type tissues were also significantly enriched in immune-related terms and pathways with hair-type tissues exhibiting more upregulated immune genes than spine-type tissues. Our study provided a list of potential genes involved in skin appendage development and differentiation in A. albiventris, and the candidate genes provided valuable information for further studies of skin appendages.


Assuntos
Ouriços/genética , Ouriços/imunologia , Pele/metabolismo , Animais , China , Biologia Computacional/métodos , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento/genética , Ontologia Genética , Cabelo/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Anotação de Sequência Molecular/métodos , Transdução de Sinais/genética , Pele/crescimento & desenvolvimento , Transcriptoma/genética
17.
Microb Pathog ; 147: 104361, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32622926

RESUMO

The innate immune system is the first line of defense in vertebrates against microbial pathogens. This defense system depends on the peptidoglycan pathogen recognition of receptors (PGRPs) existing in both invertebrates and vertebrates. Although some studies revealed the structural and functional differences between them, however, the evolutionary history and the selection pressures on these genes during adaptive evolution are poorly understood. In this study, we examined four (PGLYRP1, PGLYRP2, PGLYRP3, and PGLYRP4) genes of 127 vertebrates' species, conserved across vertebrates to evaluate positive selection pressure drives by adaptive evolution. The codons under positive selection were recognized through likelihood tests by comparing different models based on ω ratios in these genes across the vertebrate species. The positive selection test used two sets of models M1a vs. M2a and M7 vs. M8. The results showed that the test of these genes in M1a vs. M2a was not significant with the likelihood value 2ΔlnL = 0, while the likelihood ratios (2ΔlnL) were 2ΔlnL = 12.386, 2ΔlnL = 4.9283, 2ΔlnL = 24.031, and 2ΔlnL = 103.39 for PGLYRP1, PGLYRP2, PGLYRP3, and PGLYRP4 in M7 vs. M8, respectively. Our study identified the evidence of robust positive selection for these four genes across the vertebrates. These protuberant changes in PGRPs evolution of vertebrates reveal their role in innate immunity. Our study provides an insight based on PGRP genes to understand the evolution of host and pathogens interaction that leads to the progress of the novel conducts for immune diseases that include proteins linked to the recognition of pathogens.


Assuntos
Proteínas de Transporte , Vertebrados , Animais , Proteínas de Transporte/genética , Evolução Molecular , Imunidade Inata , Filogenia , Proteínas
18.
PLoS Pathog ; 16(5): e1008421, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32407364

RESUMO

The outbreak of a novel corona Virus Disease 2019 (COVID-19) in the city of Wuhan, China has resulted in more than 1.7 million laboratory confirmed cases all over the world. Recent studies showed that SARS-CoV-2 was likely originated from bats, but its intermediate hosts are still largely unknown. In this study, we assembled the complete genome of a coronavirus identified in 3 sick Malayan pangolins. The molecular and phylogenetic analyses showed that this pangolin coronavirus (pangolin-CoV-2020) is genetically related to the SARS-CoV-2 as well as a group of bat coronaviruses but do not support the SARS-CoV-2 emerged directly from the pangolin-CoV-2020. Our study suggests that pangolins are natural hosts of Betacoronaviruses. Large surveillance of coronaviruses in pangolins could improve our understanding of the spectrum of coronaviruses in pangolins. In addition to conservation of wildlife, minimizing the exposures of humans to wildlife will be important to reduce the spillover risks of coronaviruses from wild animals to humans.


Assuntos
Betacoronavirus/classificação , Betacoronavirus/genética , Infecções por Coronavirus/virologia , Reservatórios de Doenças/virologia , Eutérios/virologia , Pneumonia Viral/virologia , Animais , COVID-19 , Coronaviridae/classificação , Coronaviridae/genética , Especificidade de Hospedeiro , Humanos , Pandemias , Filogenia , SARS-CoV-2 , Homologia de Sequência do Ácido Nucleico , Zoonoses/prevenção & controle , Zoonoses/virologia
19.
Microbiologyopen ; 9(7): e1050, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32395912

RESUMO

The bacterial microbiota in the gut varies among species, as well as with habitat, diet, age, and other factors. Intestinal microbiota homeostasis allows a host to adjust metabolic and immune performances in response to environmental changes. Therefore, potential implications of the gut microbiota in sustaining the health of the host have gained increasing attention in the field of endangered animal conservation. However, the effect of host intraspecies genetic variation on the gut microbiota is unknown. Moreover, little is known about the complexity of the gut mycobiota. Tigers are listed as endangered species, raising worldwide concern. Potential influences of subspecies, diet, and age on the gut microbiota in tigers were investigated in this study to provide a better understanding of the response of the tiger gut microbiota to external changes. The results revealed that the impacts of the factors listed above on gut bacterial and fungal communities are versatile. Host intraspecies genetic variation significantly impacted only fungal alpha diversity of the gut microbiota. Differences in diet, on the other hand, had a significant impact on alpha diversity of the gut microbiota, but exerted different effects on beta diversity of gut bacterial and fungal communities. Host age had no significant impact on the diversity of the gut fungal communities, but significantly impacted beta diversity of gut bacterial communities. This comprehensive study of tiger gut microbiota is an essential reference for tiger conservation when considering feeding and management strategies, and will contribute to a better understanding of the mycobiota in wildlife.


Assuntos
Bactérias/classificação , Bactérias/genética , Fungos/classificação , Fungos/genética , Microbioma Gastrointestinal/genética , Tigres/microbiologia , Fatores Etários , Animais , Bactérias/isolamento & purificação , China , Dieta , Feminino , Fungos/isolamento & purificação , Variação Genética/genética , Masculino
20.
Front Zool ; 17: 11, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308726

RESUMO

BACKGROUND: Sturgeons (Acipenseriformes) are polyploid chondrostean fish that constitute an important model species for studying development and evolution in vertebrates. To better understand the mechanisms of reproduction regulation in sturgeon, this study combined PacBio isoform sequencing (Iso-Seq) with Illumina short-read RNA-seq methods to discover full-length genes involved in early gametogenesis of the Amur sturgeon, Acipenser schrenckii. RESULTS: A total of 50.04 G subread bases were generated from two SMRT cells, and herein 164,618 nonredundant full-length transcripts (unigenes) were produced with an average length of 2782 bp from gonad tissues (three testes and four ovaries) from seven 3-year-old A. schrenckii individuals. The number of ovary-specific expressed unigenes was greater than those of testis (19,716 vs. 3028), and completely different KEGG pathways were significantly enriched between the ovary-biased and testis-biased DEUs. Importantly, 60 early gametogenesis-related genes (involving 755 unigenes) were successfully identified, and exactly 50% (30/60) genes of those showed significantly differential expression in testes and ovaries. Among these, the Amh and Gsdf with testis-biased expression, and the Foxl2 and Cyp19a with ovary-biased expression strongly suggested the important regulatory roles in spermatogenesis and oogenesis of A. schrenckii, respectively. We also found the four novel Sox9 transcript variants, which increase the numbers of regulatory genes and imply function complexity in early gametogenesis. Finally, a total of 236,672 AS events (involving 36,522 unigenes) were detected, and 10,556 putative long noncoding RNAs (lncRNAs) and 4339 predicted transcript factors (TFs) were also respectively identified, which were all significantly associated with the early gametogenesis of A. schrenckii. CONCLUSIONS: Overall, our results provide new genetic resources of full-length transcription data and information as a genomic-level reference for sturgeon. Crucially, we explored the comprehensive genetic characteristics that differ between the testes and ovaries of A. schrenckii in the early gametogenesis stage, which could provide candidate genes and theoretical basis for further the mechanisms of reproduction regulation of sturgeon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...