Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prion ; 18(1): 72-86, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38676289

RESUMO

Infectious prions are resistant to degradation and remain infectious in the environment for several years. Chronic wasting disease (CWD) has been detected in cervids inhabiting North America, the Nordic countries, and South Korea. CWD-prion spread is partially attributed to carcass transport and disposal. We employed a forensic approach to investigate an illegal carcass dump site connected with a CWD-positive herd. We integrated anatomic, genetic, and prion amplification methods to discover CWD-positive remains from six white-tailed deer (Odocoileus virginianus) and, using microsatellite markers, confirmed a portion originated from the CWD-infected herd. This approach provides a foundation for future studies of carcass prion transmission risk.


Assuntos
Cervos , Príons , Doença de Emaciação Crônica , Animais , Doença de Emaciação Crônica/transmissão , Príons/genética , Príons/metabolismo , Repetições de Microssatélites/genética
2.
bioRxiv ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38014130

RESUMO

INTRODUCTION: Widespread disruption of neuropeptide (NP) networks in Alzheimer's disease (AD) and disproportionate absence of neurons expressing high NP-producing, coined as HNP neurons, have been reported for the entorhinal cortex (EC) of AD brains. Hypothesizing that functional features of HNP neurons are involved in the early pathogenesis of AD, we aim to understand the molecular mechanisms underlying these observations. METHODS: Multiscale and spatiotemporal transcriptomic analysis was used to investigate AD-afflicted and healthy brains. Our focus encompassed NP expression dynamics in AD, AD-associated NPs (ADNPs) trajectories with aging, and the neuroanatomical distribution of HNP neuron. RESULTS: Findings include that 1) HNP neurons exhibited heightened metabolic needs and an upregulation of gene expressions linked to protein misfolding; 2) dysfunctions of ADNP production occurred in aging and mild cognitive decline; 3) HNP neurons co-expressing ADNPs were preferentially distributed in brain regions susceptible to AD. DISCUSSION: We identified potential mechanisms that contribute to the selective vulnerability of HNP neurons to AD. Our results indicate that the functions of HNP neurons predispose them to oxidative stress and protein misfolding, potentially serving as inception sites for misfolded proteins in AD.

3.
Nano Lett ; 23(9): 4074-4081, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37126029

RESUMO

Misfolded proteins associated with various neurodegenerative diseases often accumulate in tissues or circulate in biological fluids years before the clinical onset, thus representing ideal diagnostic targets. Real-time quaking-induced conversion (RT-QuIC), a protein-based seeded-amplification assay, holds great potential for early disease detection, yet challenges remain for routine diagnostic application. Chronic Wasting Disease (CWD), associated with misfolded prion proteins of cervids, serves as an ideal model for evaluating new RT-QuIC methodologies. In this study, we investigate the previously untested hypothesis that incorporating nanoparticles into RT-QuIC assays can enhance their speed and sensitivity when applied to biological samples. We show that adding 50 nm silica nanoparticles to RT-QuIC experiments (termed Nano-QuIC) for CWD diagnostics greatly improves the performance by reducing detection times 2.5-fold and increasing sensitivity 10-fold by overcoming the effect of inhibitors in complex tissue samples. Crucially, no false positives were observed with these 50 nm silica nanoparticles, demonstrating the enhanced reliability and potential for diagnostic application of Nano-QuIC in detecting misfolded proteins.


Assuntos
Nanopartículas , Dobramento de Proteína , Proteínas/química , Reprodutibilidade dos Testes , Temperatura
4.
Pathogens ; 12(2)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36839581

RESUMO

Chronic wasting disease (CWD) is a disease affecting cervids and is caused by prions accumulating as pathogenic fibrils in lymphoid tissue and the central nervous system. Approaches for detecting CWD prions historically relied on antibody-based assays. However, recent advancements in protein amplification technology provided the foundation for a new class of CWD diagnostic tools. In particular, real-time quaking-induced conversion (RT-QuIC) has rapidly become a feasible option for CWD diagnosis. Despite its increased usage for CWD-focused research, there lacks a consensus regarding the interpretation of RT-QuIC data for diagnostic purposes. It is imperative then to identify a standardized and replicable method for determining CWD status from RT-QuIC data. Here, we assessed variables that could impact RT-QuIC results and explored the use of maxpoint ratios (maximumRFU/backgroundRFU) to improve the consistency of RT-QuIC analysis. We examined a variety of statistical analyses to retrospectively analyze CWD status based on RT-QuIC and ELISA results from 668 white-tailed deer lymph nodes. Our results revealed an MPR threshold of 2.0 for determining the rate of amyloid formation, and MPR analysis showed excellent agreement with independent ELISA results. These findings suggest that the use of MPR is a statistically viable option for normalizing between RT-QuIC experiments and defining CWD status.

5.
Alzheimers Dement ; 19(8): 3575-3592, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36825405

RESUMO

INTRODUCTION: Abnormalities of neuropeptides (NPs) that play important roles in modulating neuronal activities are commonly observed in Alzheimer's disease (AD). We hypothesize that NP network disruption is widespread in AD brains. METHODS: Single-cell transcriptomic data from the entorhinal cortex (EC) were used to investigate the NP network disruption in AD. Bulk RNA-sequencing data generated from the temporal cortex by independent groups and machine learning were employed to identify key NPs involved in AD. The relationship between aging and AD-associated NP (ADNP) expression was studied using GTEx data. RESULTS: The proportion of cells expressing NPs but not their receptors decreased significantly in AD. Neurons expressing higher level and greater diversity of NPs were disproportionately absent in AD. Increased age coincides with decreased ADNP expression in the hippocampus. DISCUSSION: NP network disruption is widespread in AD EC. Neurons expressing more NPs may be selectively vulnerable to AD. Decreased expression of NPs participates in early AD pathogenesis. We predict that the NP network can be harnessed for treatment and/or early diagnosis of AD.


Assuntos
Doença de Alzheimer , Neuropeptídeos , Humanos , Córtex Entorrinal/patologia , Doença de Alzheimer/patologia , Hipocampo/patologia , Neurônios/metabolismo
6.
Sci Rep ; 12(1): 12246, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851406

RESUMO

Diagnostic tools for the detection of protein-misfolding diseases (i.e., proteopathies) are limited. Gold nanoparticles (AuNPs) facilitate sensitive diagnostic techniques via visual color change for the identification of a variety of targets. In parallel, recently developed quaking-induced conversion (QuIC) assays leverage protein-amplification and fluorescent signaling for the accurate detection of misfolded proteins. Here, we combine AuNP and QuIC technologies for the visual detection of amplified misfolded prion proteins from tissues of wild white-tailed deer infected with chronic wasting disease (CWD), a prion disease of cervids. Our newly developed assay, MN-QuIC, enables both naked-eye and light-absorbance measurements for detection of misfolded prions. MN-QuIC leverages basic laboratory equipment that is cost-effective and portable, thus facilitating real-time prion diagnostics across a variety of settings. In addition to laboratory-based tests, we deployed to a rural field-station in southeastern Minnesota and tested for CWD on site. We successfully demonstrated that MN-QuIC is functional in a non-traditional laboratory setting by performing a blinded analysis in the field and correctly identifying all CWD positive and CWD not-detected deer at the field site in 24 h, thus documenting the portability of the assay. White-tailed deer tissues used to validate MN-QuIC included medial retropharyngeal lymph nodes, parotid lymph nodes, and palatine tonsils. Importantly, all of the white-tailed deer (n = 63) were independently tested using ELISA, IHC, and/or RT-QuIC technologies and results secured with MN-QuIC were 95.7% and 100% consistent with these tests for positive and non-detected animals, respectively. We hypothesize that electrostatic forces help govern the AuNP/prion interactions and conclude that MN-QuIC has great potential for sensitive, field-deployable diagnostics for CWD, with future potential diagnostic applications for a variety of proteopathies.


Assuntos
Cervos , Nanopartículas Metálicas , Príons , Doença de Emaciação Crônica , Animais , Ouro , Príons/análise , Doença de Emaciação Crônica/metabolismo
7.
J Wildl Dis ; 58(1): 50-62, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34695201

RESUMO

Throughout North America, chronic wasting disease (CWD) has emerged as perhaps the greatest threat to wild cervid populations, including white-tailed deer (WTD; Odocoileus virginianus). White-tailed deer are the most sought-after big game species across North America with populations of various subspecies in nearly all Canadian provinces, the contiguous US, and Mexico. Documented CWD cases have dramatically increased across the WTD range since the mid-1990s, including in Minnesota, US. CWD surveillance in free-ranging WTD and other cervid populations mainly depends upon immunodetection methods such as immunohistochemistry and enzyme-linked immunosorbent assay (ELISA) on medial retropharyngeal lymph nodes and obex. More recent technologies centered on prion protein amplification methods of detection have shown promise as more sensitive and rapid CWD diagnostic tools. Here, we used blinded samples to test the efficacy of real-time quaking-induced conversion (RT-QuIC) in comparison to ELISA for screening tissues collected in 2019 from WTD in southeastern Minnesota, where CWD has been routinely detected since 2016. Our results support previous findings that RT-QuIC is a more sensitive tool for CWD detection than current antibody-based methods. Additionally, a CWD testing protocol that includes multiple lymphoid tissues (e.g., medial retropharyngeal lymph node, parotid lymph node, and palatine tonsil) per animal can effectively identify a greater number of CWD detections in a WTD population than a single sample type (e.g., medial retropharyngeal lymph nodes). These results show that the variability of CWD pathogenesis, sampling protocol, and testing platform must be considered for the effective detection and management of CWD throughout North America.


Assuntos
Cervos , Doença de Emaciação Crônica , Animais , Canadá , Espectroscopia de Ressonância de Spin Eletrônica/veterinária , Doença de Emaciação Crônica/diagnóstico , Doença de Emaciação Crônica/epidemiologia
8.
Neurosci Biobehav Rev ; 131: 988-1004, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34592258

RESUMO

The circadian rhythm of the human brain is attuned to sleep-wake cycles that entail global alterations in neuronal excitability. This periodicity involves a highly coordinated regulation of gene expression. A growing number of studies are documenting a fascinating connection between primate-specific retrotransposons (Alu elements) and key epigenetic regulatory processes in the primate brain. Collectively, these studies indicate that Alu elements embedded in the human neuronal genome mediate post-transcriptional processes that unite human-specific neuroepigenetic landscapes and circadian rhythm. Here, we review evidence linking Alu retrotransposon-mediated posttranscriptional pathways to circadian gene expression. We hypothesize that Alu retrotransposons participate in the organization of circadian brain function through multidimensional neuroepigenetic pathways. We anticipate that these pathways are closely tied to the evolution of human cognition and their perturbation contributes to the manifestation of human-specific neurological diseases. Finally, we address current challenges and accompanying opportunities in studying primate- and human-specific transposable elements.


Assuntos
Doenças do Sistema Nervoso , Retroelementos , Elementos Alu/genética , Animais , Encéfalo , Humanos , Primatas/genética , Retroelementos/genética
9.
Sci Rep ; 11(1): 16759, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408204

RESUMO

Chronic wasting disease (CWD) is a prion disease circulating in wild and farmed cervid populations throughout North America (United States and Canada), Europe (Finland, Norway, Sweden), and South Korea. CWD is a long-term threat to all cervid populations and to cervid hunting heritage, with the potential to cause substantial economic losses across multiple sectors. In North America, hunting and farming industries focused on the processing and consumption of white-tailed deer (WTD) venison are particularly vulnerable to CWD prion contamination, as millions of WTD are consumed annually. Real-time quaking-induced conversion (RT-QuIC) is a highly sensitive assay amplifying misfolded CWD prions in vitro and has facilitated CWD prion detection in a variety of tissues and excreta. To date, no study has comprehensively examined CWD prion content across bulk skeletal muscle tissues harvested from individual CWD infected WTD. Here, we use RT-QuIC to characterize prion-seeding activity in a variety of skeletal muscles from both wild and farmed CWD-positive WTD. We successfully detected CWD prions in muscles commonly used for consumption (e.g., backstrap, tenderloin, etc.) as well as within tongue and neck samples of WTD. Our results suggest that CWD prions are distributed across the skeletal muscles of infected WTD. We posit that RT-QuIC will be a useful tool for monitoring CWD prions in venison and that the method (with additional protocol optimization and high-throughput functionality) could be used to reduce and/or prevent CWD prions from entering animal and human food chains.


Assuntos
Bioensaio , Cervos/metabolismo , Músculo Esquelético/metabolismo , Príons/metabolismo , Doença de Emaciação Crônica/metabolismo , Animais
10.
Hum Genomics ; 15(1): 2, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33390179

RESUMO

SARS-CoV-2 has spread rapidly across the world and is negatively impacting the global human population. COVID-19 patients display a wide variety of symptoms and clinical outcomes, including those attributed to genetic ancestry. Alu retrotransposons have played an important role in human evolution, and their variants influence host response to viral infection. Intronic Alus regulate gene expression through several mechanisms, including both genetic and epigenetic pathways. With respect to SARS-CoV-2, an intronic Alu within the ACE gene is hypothesized to be associated with COVID-19 susceptibility and morbidity. Here, we review specific Alu polymorphisms that are of particular interest when considering host response to SARS-CoV-2 infection, especially polymorphic Alu insertions in genes associated with immune response and coagulation/fibrinolysis cascade. We posit that additional research focused on Alu-related pathways could yield novel biomarkers capable of predicting clinical outcomes as well as patient-specific treatment strategies for COVID-19 and related infectious diseases.


Assuntos
COVID-19/genética , Predisposição Genética para Doença , Retroelementos , COVID-19/fisiopatologia , COVID-19/virologia , Humanos , Morbidade , SARS-CoV-2/isolamento & purificação
11.
PLoS One ; 15(3): e0227094, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32126066

RESUMO

CWD is an emergent prion disease that now affects cervid species on three continents. CWD is efficiently spread in wild and captive populations, likely through both direct animal contact and environmental contamination. Here, by longitudinally assaying in feces of CWD-exposed white-tailed deer by RT-QuIC, we demonstrate fecal shedding of prion seeding activity months before onset of clinical symptoms and continuing throughout the disease course. We also examine the impact of simulated environmental conditions such as repeated freeze-thaw cycles and desiccation on fecal prion seeding activity. We found that while multiple (n = 7) freeze-thaw cycles substantially decreased fecal seeding activity, desiccation had little to no effect on seeding activity. Finally, we examined whether RT-QuIC testing of landscape fecal deposits could distinguish two premises with substantial known CWD prevalence from one in which no CWD-infected animals had been detected. In the above pilot study, this distinction was possible. We conclude that fecal shedding of CWD prions occurs over much of the disease course, that environmental factors influence prion seeding activity, and that it is feasible to detect fecal prion contamination using RT-QuIC.


Assuntos
Bioensaio/métodos , Cervos , Fezes/química , Príons/análise , Doença de Emaciação Crônica/diagnóstico , Animais , Exposição Ambiental/efeitos adversos , Estudos de Viabilidade , Prevalência , Doença de Emaciação Crônica/epidemiologia , Doença de Emaciação Crônica/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...