Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Cardiol ; 406: 132016, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599466

RESUMO

BACKGROUND: Epicardial adipose tissue(EAT) is associated with inflammation in previous studies but is unknown in patients with ST-segment elevation myocardial infarction(STEMI).This study investigated the correlation between epicardial fat and inflammatory cells obtained by cardiac magnetic resonance (CMR) and the effect on atrial arrhythmias in patients with STEMI. METHODS: This was a single-center, retrospective study. We consecutively selected patients who all completed CMR after Percutaneous Coronary Intervention (PCI) from January 2019 to December 2022 and then had regular follow-ups at 1, 3, 6, 9, and 12 months. The enrolled patients were grouped according to the presence or absence of atrial arrhythmia and divided into atrial and non-atrial arrhythmia groups. RESULTS: White blood cell, neutrophil, lymphocyte, C-reactive protein, EATV, LVES, LVED were higher in the atrial arrhythmia group than in the non-atrial arrhythmia group, and LVEF was lower than that in the non-atrial arrhythmia group (p < 0.05); EATV was significantly positively correlated with each inflammatory indices (white blood cell: r = 0.415 p < 0.001, neutrophil:r = 0.386 p < 0.001, lymphocyte:r = 0.354 p < 0.001, C-reactive protein:r = 0.414 p < 0.001); one-way logistic regression analysis showed that risk factors for atrial arrhythmias were age, heart rate, white blood cell, neutrophil, lymphocyte, C-reactive protein, EATV, LVES, LVED; multifactorial logistic regression analysis showed that neutrophil, lymphocyte, C-reactive protein, EATV, and LVES were independent risk factors for atrial arrhythmias; ROC analysis showed that the area under the curve (AUC) for neutrophil was 0.862; the AUC for lymphocyte was 1.95; and the AUC for C-reactive protein was 0.862. reactive protein was 0.852; AUC for LVES was 0.683; and AUC for EATV was 0.869. CONCLUSION: In patients with STEMI, EAT was significantly and positively correlated with inflammatory indices; neutrophil, lymphocyte, C-reactive protein, EATV, and LVES were independent risk factors for atrial arrhythmias and had good predictive value.


Assuntos
Tecido Adiposo , Inflamação , Pericárdio , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Masculino , Feminino , Pericárdio/diagnóstico por imagem , Pericárdio/patologia , Pessoa de Meia-Idade , Estudos Retrospectivos , Infarto do Miocárdio com Supradesnível do Segmento ST/sangue , Infarto do Miocárdio com Supradesnível do Segmento ST/cirurgia , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico por imagem , Tecido Adiposo/diagnóstico por imagem , Idoso , Inflamação/sangue , Imagem Cinética por Ressonância Magnética/métodos , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/sangue , Fibrilação Atrial/fisiopatologia , Fibrilação Atrial/sangue , Intervenção Coronária Percutânea , Seguimentos , Proteína C-Reativa/metabolismo , Proteína C-Reativa/análise , Tecido Adiposo Epicárdico
2.
Nat Commun ; 15(1): 1537, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378731

RESUMO

Cepharanthine is a secondary metabolite isolated from Stephania. It has been reported that it has anti-conronaviruses activities including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Here, we assemble three Stephania genomes (S. japonica, S. yunnanensis, and S. cepharantha), propose the cepharanthine biosynthetic pathway, and assess the antiviral potential of compounds involved in the pathway. Among the three genomes, S. japonica has a near telomere-to-telomere assembly with one remaining gap, and S. cepharantha and S. yunnanensis have chromosome-level assemblies. Following by biosynthetic gene mining and metabolomics analysis, we identify seven cepharanthine analogs that have broad-spectrum anti-coronavirus activities, including SARS-CoV-2, Guangxi pangolin-CoV (GX_P2V), swine acute diarrhoea syndrome coronavirus (SADS-CoV), and porcine epidemic diarrhea virus (PEDV). We also show that two other genera, Nelumbo and Thalictrum, can produce cepharanthine analogs, and thus have the potential for antiviral compound discovery. Results generated from this study could accelerate broad-spectrum anti-coronavirus drug discovery.


Assuntos
Alphacoronavirus , Benzodioxóis , Benzilisoquinolinas , Stephania , Animais , Suínos , China/epidemiologia , SARS-CoV-2 , Antivirais/farmacologia
3.
MedComm (2020) ; 4(6): e441, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38045831

RESUMO

Mutation of residue 313 in the viral nucleoprotein from F/L to Y/V (or substitutions to N, H, or Q in the nucleoprotein residue 52 adjacent to residue 313) facilitates IAVs to escape from BTN3A3 restriction on virus replication.

4.
MedComm (2020) ; 4(5): e351, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37614966

RESUMO

Multiple LDLR class A (LA) repeats around LA3 promote synergistic binding to Semliki Forest virus (SFV) E1-DIII near the 2-fold and 5-fold symmetry axes. Meanwhile, the multiple consecutive LAs concatemer shows approximately 1000 times higher binding affinity than that of LA3s, which can help to effectively and synergistically bind with E1-DIII of viral envelope protein.

5.
Viruses ; 15(3)2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36992382

RESUMO

Acinetobacter baumannii (A. baumannii) is one of the most common clinical pathogens and a typical multi-drug resistant (MDR) bacterium. With the increase of drug-resistant A. baumannii infections, it is urgent to find some new treatment strategies, such as phage therapy. In this paper, we described the different drug resistances of A. baumannii and some basic properties of A. baumannii phages, analyzed the interaction between phages and their hosts, and focused on A. baumannii phage therapies. Finally, we discussed the chance and challenge of phage therapy. This paper aims to provide a more comprehensive understanding of A. baumannii phages and theoretical support for the clinical application of A. baumannii phages.


Assuntos
Acinetobacter baumannii , Bacteriófagos , Antibacterianos
6.
J Med Virol ; 95(1): e28281, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36329614

RESUMO

Breast milk has been found to inhibit coronavirus infection, while the key components and mechanisms are unknown. We aimed to determine the components that contribute to the antiviral effects of breastmilk and explore their potential mechanism. Lactoferrin (Lf) and milk fat globule membrane inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related coronavirus GX_P2V and transcription- and replication-competent SARS-CoV-2 virus-like particles in vitro and block viral entry into cells. We confirmed that bovine Lf (bLf) blocked the binding between human angiotensin-converting enzyme 2 and SARS-CoV-2 spike protein by combining receptor-binding domain (RBD). Importantly, bLf inhibited RNA-dependent RNA polymerase (RdRp) activity of both SARS-CoV-2 and SARS-CoV in vitro in the nanomolar range. So far, no biological macromolecules have been reported to inhibit coronavirus RdRp. Our result indicated that bLf plays a major role in inhibiting viral replication. bLf treatment reduced viral load in lungs and tracheae and alleviated pathological damage. Our study provides evidence that bLf prevents SARS-CoV-2 infection by combining SARS-CoV-2 spike protein RBD and inhibiting coronaviruses' RdRp activity, and may be a promising candidate for the treatment of coronavirus disease 2019.


Assuntos
COVID-19 , SARS-CoV-2 , Feminino , Humanos , Cricetinae , SARS-CoV-2/metabolismo , Lactoferrina/farmacologia , Lactoferrina/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Antivirais/farmacologia , Antivirais/química , RNA Polimerase Dependente de RNA/metabolismo
8.
Adv Biol (Weinh) ; 6(12): e2200148, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35775953

RESUMO

Recently, the inhibiting effects of a clinically approved drug Cepharanthine on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have attracted widespread attention and discussion. However, the public does not understand the relevant research progress very well. This paper aims to introduce a brief history of studies on the effects of cepharanthine against SARS-CoV-2, including "discovery of anti-SARS-CoV-2 activity of cepharanthine in vitro", "potential mechanisms of cepharanthine against SARS-CoV-2", "confirmation of cepharanthine's anti-SARS-CoV-2 activity in vivo", "potential approaches for improving the druggability of cepharanthine" and "clinical trials of cepharanthine treating SARS-CoV-2 infection". Taken together, cepharanthine is believed to be a promising old drug for coronavirus disease-19 (COVID-19) therapy.


Assuntos
Benzilisoquinolinas , COVID-19 , Humanos , SARS-CoV-2 , Antivirais/farmacologia , Benzilisoquinolinas/farmacologia
9.
Signal Transduct Target Ther ; 7(1): 146, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35504917

RESUMO

With the constantly mutating of SARS-CoV-2 and the emergence of Variants of Concern (VOC), the implementation of vaccination is critically important. Existing SARS-CoV-2 vaccines mainly include inactivated, live attenuated, viral vector, protein subunit, RNA, DNA, and virus-like particle (VLP) vaccines. Viral vector vaccines, protein subunit vaccines, and mRNA vaccines may induce additional cellular or humoral immune regulations, including Th cell responses and germinal center responses, and form relevant memory cells, greatly improving their efficiency. However, some viral vector or mRNA vaccines may be associated with complications like thrombocytopenia and myocarditis, raising concerns about the safety of these COVID-19 vaccines. Here, we systemically assess the safety and efficacy of COVID-19 vaccines, including the possible complications and different effects on pregnant women, the elderly, people with immune diseases and acquired immunodeficiency syndrome (AIDS), transplant recipients, and cancer patients. Based on the current analysis, governments and relevant agencies are recommended to continue to advance the vaccine immunization process. Simultaneously, special attention should be paid to the health status of the vaccines, timely treatment of complications, vaccine development, and ensuring the lives and health of patients. In addition, available measures such as mix-and-match vaccination, developing new vaccines like nanoparticle vaccines, and optimizing immune adjuvant to improve vaccine safety and efficacy could be considered.


Assuntos
Vacinas contra COVID-19 , Idoso , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/uso terapêutico , Feminino , Humanos , Gravidez , Subunidades Proteicas , SARS-CoV-2/genética , Vacinas de Partículas Semelhantes a Vírus
10.
Front Immunol ; 13: 855496, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444647

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) constitutes a major worldwide public health threat and economic burden. The pandemic is still ongoing and the SARS-CoV-2 variants are still emerging constantly, resulting in an urgent demand for new drugs to treat this disease. Molnupiravir, a biological prodrug of NHC (ß-D-N(4)-hydroxycytidine), is a novel nucleoside analogue with a broad-spectrum antiviral activity against SARS-CoV, SARS-CoV-2, Middle East respiratory syndrome coronavirus (MERS-CoV), influenza virus, respiratory syncytial virus (RSV), bovine viral diarrhea virus (BVDV), hepatitis C virus (HCV) and Ebola virus (EBOV). Molnupiravir showed potent therapeutic and prophylactic activity against multiple coronaviruses including SARS-CoV-2, SARS-CoV, and MERS-CoV in animal models. In clinical trials, molnupiravir showed beneficial effects for mild to moderate COVID-19 patients with a favorable safety profile. The oral bioavailability and potent antiviral activity of molnupiravir highlight its potential utility as a therapeutic candidate against COVID-19. This review presents the research progress of molnupiravir starting with its discovery and synthesis, broad-spectrum antiviral effects, and antiviral mechanism. In addition, the preclinical studies, antiviral resistance, clinical trials, safety, and drug tolerability of molnupiravir are also summarized and discussed, aiming to expand our knowledge on molnupiravir and better deal with the COVID-19 epidemic.


Assuntos
Tratamento Farmacológico da COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Citidina/análogos & derivados , Humanos , Hidroxilaminas , SARS-CoV-2
11.
J Hazard Mater ; 430: 128414, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35149493

RESUMO

Coronavirus disease 2019 (COVID-19) has become a worldwide public health emergency, and the high transmission of SARS-CoV-2 variants has raised serious concerns. Efficient disinfection methods are crucial for the prevention of viral transmission. Herein, pulse power-driven cold atmospheric plasma (CAP), a novel sterilization strategy, was found to potently inactivate SARS-CoV-2-like coronavirus GX_P2V, six strains of major epidemic SARS-CoV-2 variants and even swine coronavirus PEDV and SADS-CoV within 300 s (with inhibition rate more than 99%). We identified four dominant short-lived reactive species, ONOO-, 1O2, O2- and·OH, generated in response to CAP and distinguished their roles in the inactivation of GX_P2V and SARS-CoV-2 spike protein receptor binding domain (RBD), which is responsible for recognition and binding to human angiotensin-converting enzyme 2 (hACE2). Our study provides detailed evidence of a novel surface disinfection strategy for SARS-CoV-2 and other coronaviruses.


Assuntos
COVID-19 , Gases em Plasma , Animais , COVID-19/prevenção & controle , Desinfecção , Humanos , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Suínos
14.
Front Immunol ; 12: 744242, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804024

RESUMO

The global pandemic of the coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), places a heavy burden on global public health. Four SARS-CoV-2 variants of concern including B.1.1.7, B.1.351, B.1.617.2, and P.1, and two variants of interest including C.37 and B.1.621 have been reported to have potential immune escape, and one or more mutations endow them with worrisome epidemiologic, immunologic, or pathogenic characteristics. This review introduces the latest research progress on SARS-CoV-2 variants of interest and concern, key mutation sites, and their effects on virus infectivity, mortality, and immune escape. Moreover, we compared the effects of various clinical SARS-CoV-2 vaccines and convalescent sera on epidemic variants, and evaluated the neutralizing capability of several antibodies on epidemic variants. In the end, SARS-CoV-2 evolution strategies in different transmission stages, the impact of different vaccination strategies on SARS-CoV-2 immune escape, antibody therapy strategies and COVID-19 epidemic control prospects are discussed. This review will provide a systematic and comprehensive understanding of the secret of SARS-CoV-2 variants of interest/concern and immune escape.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Evasão da Resposta Imune , SARS-CoV-2 , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/transmissão , Vacinas contra COVID-19 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade
18.
Sheng Wu Gong Cheng Xue Bao ; 35(12): 2326-2338, 2019 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-31880139

RESUMO

Hepatocellular carcinoma (HCC) is one of the malignant tumors with the highest morbidity and mortality in the world. The morbidity and mortality of HCC are increasing every year. Liver cancer is a serious threat to public health in China and the death rate of patients with liver cancer in China is the highest in the world. Beyond surgery, chemotherapy and radiotherapy, immunotherapy is an emerging treatment for cancer, which could control and kill tumor cells by relieving the inhibitory status of immune cells in the tumor microenvironment and activating the immune function of the body. Immune checkpoint inhibitors, adoptive immunotherapy and tumor vaccine are the major treatments of immunotherapy. Compared with traditional therapy methods, immunotherapy could enhance immune function, delay tumor progression, prolong the survival time of patients, and becomes a hotspot in the basic and clinical cancer research. This article reviews the research progress of immunotherapy for liver cancer.


Assuntos
Vacinas Anticâncer , Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/terapia , China , Humanos , Imunoterapia , Neoplasias Hepáticas/terapia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...