Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Environ Pollut ; : 124119, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38718964

RESUMO

Phosphorus (P) is an essential nutrient for algal growth in nearshore ecosystems. In recent years, there has been a shift in nutrient dynamics in nearshore areas, leading to an exacerbation of P limitation, although the underlying mechanisms remain unclear. This study analyzed the P species and budget in the Bohai Sea (BS) from 2011 to 2020, aiming to explore the intrinsic mechanisms of P limitation in the BS. The results show that the main external source of P in the BS was river transport (89%), and the primary fate of P was burial (96%) into the sediment. Due to excessive nitrogen (N) input and biological processes in the BS, the P budget in the BS is unbalanced, resulting in an increase in the N/P ratio, particularly in nearshore areas. Nearshore areas typically have lower concentrations of dissolved inorganic P (DIP) in the water and higher concentrations of reactive P (Reac-P) in the sediments. This pattern is particularly evident in Bohai Bay and the northwest nearshore region, where harmful algal blooms occur frequently. To cope with enhanced P limitation, the biologically driven P regeneration and cycling processes within the BS are accelerated. From 2011 to 2020, the concentration of DIP in the BS during autumn increased, while the content of Reac-P in sediments slightly decreased. Historical data indicate that P depletion in the BS is intensifying and expanding, primarily due to N enrichment and algal production. N enrichment alters the structure and composition of primary production, potentially exacerbating P depletion in the BS. Excessive N may have significant impacts on the P pool, potentially influencing the stability of future coastal ecosystems.

2.
BMC Med Educ ; 24(1): 419, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637791

RESUMO

BACKGROUND: This study discusses the effectiveness of a 12-week intervention aimed at improving squat jump and sprint performance among second-year sports students. METHODS: The students were randomly divided into experimental (n = 89) and control (n = 92) groups. In addition to gym training, students of the experimental group also underwent online PE training. The students' performance in Squat Jumps, 30 m sprint, and Progressive Aerobic Cardiovascular Endurance Run (PACER), as well as their situational motivation, were assessed before and after the intervention. Furthermore, the students assessed their physical activity weekly using self-reports. RESULTS: The implementation of online training has positively impacted intrinsic and identified motivation, as well as external regulation; however, it was less effective in reducing amotivation compared to traditional gym-based training. CONCLUSIONS: The findings of the study contribute to the data synthesis on the expediency of using modern software in physical education.


Assuntos
Força Muscular , Esportes , Humanos , Exercício Físico , Motivação , Força Muscular/fisiologia , Educação Física e Treinamento
3.
Artigo em Inglês | MEDLINE | ID: mdl-38630566

RESUMO

Identifying links within biological networks is important in various biomedical applications. Recent studies have revealed that each node in a network may play a unique role in different links, but most link prediction methods overlook distinctive node roles, hindering the acquisition of effective link representations. Subgraph-based methods have been introduced as solutions but often ignore shared information among subgraphs. To address these limitations, we propose a Subgraph-aware Graph Kernel Neural Network (SubKNet) for link prediction in biological networks. Specifically, SubKNet extracts a subgraph for each node pair and feeds it into a graph kernel neural network, which decomposes each subgraph into a combination of trainable graph filters with diversity regularization for subgraph-aware representation learning. Additionally, node embeddings of the network are extracted as auxiliary information, aiding in distinguishing node pairs that share the same subgraph. Extensive experiments on five biological networks demonstrate that SubKNet outperforms baselines, including methods especially designed for biological networks and methods adapted to various networks. Further investigations confirm that employing graph filters to subgraphs helps to distinguish node roles in different subgraphs, and the inclusion of diversity regularization further enhances its capacity from diverse perspectives, generating effective link representations that contribute to more accurate link prediction.

4.
Foods ; 13(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38540911

RESUMO

The impact of five human milk oligosaccharides (HMOs)-2'-fucosyllactose (2FL), 3'-sialyllactose (3SL), 6'-sialyllactose (6SL), lacto-N-tetraose (LNT), and lacto-N-neotetraose (LNnT)-on the gut microbiota and short-chain fatty acid (SCFA) metabolites in infants aged 0-6 months was assessed through in vitro fermentation. Analyses of the influence of different HMOs on the composition and distribution of infant gut microbiota and on SCFA levels were conducted using 16S rRNA sequencing, quantitative real-time PCR (qPCR), and gas chromatography (GC), respectively. The findings indicated the crucial role of the initial microbiota composition in shaping fermentation outcomes. Fermentation maintained the dominant genera species in the intestine but influenced their abundance and distribution. Most of the 10 Bifidobacteria strains effectively utilized HMOs or their degradation products, particularly demonstrating proficiency in utilizing 2FL and sialylated HMOs compared to non-fucosylated neutral HMOs. Moreover, our study using B. infantis-dominant strains and B. breve-dominant strains as inocula revealed varying acetic acid levels produced by Bifidobacteria upon HMO degradation. Specifically, the B. infantis-dominant strain yielded notably higher acetic acid levels than the B. breve-dominant strain (p = 0.000), with minimal propionic and butyric acid production observed at fermentation's conclusion. These findings suggest the potential utilization of HMOs in developing microbiota-targeted foods for infants.

5.
Angew Chem Int Ed Engl ; 63(17): e202319529, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38443734

RESUMO

Limited triple-phase boundaries arising from the accumulation of solid discharge product(s) in solid-state cathodes (SSCs) pose a challenge to high-property solid-state lithium-oxygen batteries (SSLOBs). Light-assisted SSLOBs have been gradually explored as an ingenious system; however, the fundamental mechanisms of the SSCs interface behavior remain unclear. Here, we discovered that light assistance can enhance the fast inner-sphere charge transfer in SSCs and regulate the discharge products with spherical particles generated via the surface growth model. Moreover, the high photoelectron excitation and transportation capabilities of SSCs can retard cathodic catalytic decay by avoiding structural degradation of the cathode with a reduced charge voltage. The light-induced SSLOBs exhibited excellent stability (170 cycles) with a low discharge-charge polarization overpotential (0.27 V). Furthermore, transparent SSLOBs with exceptional flexibility, mechanical stability, and multiform shapes were fabricated for theory-to-practical applications in sunlight-induced batteries. Our study opens new opportunities for the introduction of solar energy into energy storage systems.

7.
J Am Chem Soc ; 145(47): 25632-25642, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37943571

RESUMO

Owing to high ionic conductivity and mechanical strength, poly(vinylidene fluoride) (PVDF) electrolytes have attracted increasing attention for solid-state lithium batteries, but highly reactive residual solvents severely plague cycling stability. Herein, we report a free-solvent-capturing strategy triggered by reinforced ion-dipole interactions between Li+ and residual solvent molecules. Lithium difluoro(oxalato)borate (LiDFOB) salt additive with electron-withdrawing capability serves as a redistributor of the Li+ electropositive state, which offers more binding sites for residual solvents. Benefiting from the modified coordination environment, the kinetically stable anion-derived interphases are preferentially formed, effectively mitigating the interfacial side reactions between the electrodes and electrolytes. As a result, the assembled solid-state battery shows a lifetime of over 2000 cycles with an average Coulombic efficiency of 99.9% and capacity retention of 80%. Our discovery sheds fresh light on the targeted regulation of the reactive residual solvent to extend the cycle life of solid-state batteries.

8.
J Voice ; 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37891128

RESUMO

INTRODUCTION: By displaying tumor-specific neoangiogenesis, narrow band imaging (NBI), a novel imaging approach, enhances the diagnosis of head and neck cancers and makes it more accurate OBJECTIVE: To determine the effect of NBI in combination with white light endoscopy (WLE) for diagnosis of preneoplastic or neoplastic laryngeal cancers according to Ni classification and to conclude if higher Ni classification and tumor stage are related. METHODS: We enrolled 114 patients with various laryngeal cancer between December 2018 and June 2021. Patients were examined with WLE and NBI. Squamous cell carcinoma (SCC) accounted for 46 cases, benign lesions 30 cases, and nondysplastic, low-grade, and severe dysplasias for 38 cases. Based on characteristics of the intraepithelial papillary capillary loop (IPCL), endoscopic NBI results were divided into five categories (I, II, III, IV, and V). Type I-IV are regarded to be benign, while type V is considered to be cancerous. An incisional biopsy was conducted to assess histopathology, and the histopathology was compared to the NBI results. We assessed the negative predictive value (NPV), positive predictive value (PPV), specificity, and sensitivity for WLE alone and WLE combined with NBI. Analyses were conducted using SPSS software version 26. RESULTS: The WLE combined with NBI showed excellent sensitivity (96%) compared to WLE (86.4%). Specificity was higher in the WLE combined with NBI (96.4%) than WLE alone (91.7%). WLE combined with NBI saw a NPV of 89% as compared with WLE with 88%. WLE and WLE in combination with NBI, recorded a PPV of 90% and 98%, respectively. CONCLUSION: The accuracy of detecting laryngeal cancer increases when WLE and NBI are combined. Combined NBI with WLE remains highly sensitive to early glottis cancer. Accuracy of preoperative NBI was high. In the diagnosis of laryngeal cancer, a higher Ni classification closely correlates with the late stages of the glottis tumor.

9.
Adv Mater ; 35(47): e2211026, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37796177

RESUMO

Conventional indirect X-ray detectors employ scintillating phosphors to convert X-ray photons into photodiode-detectable visible photons, leading to low conversion efficiencies, low spatial resolutions, and optical crosstalk. Consequently, X-ray detectors that directly convert photons into electric signals have long been desired for high-performance medical imaging and industrial inspection. Although emerging hybrid inorganic-organic halide perovskites, such as CH3 NH3 PbI3 and CH3 NH3 PbBr3 , exhibit high sensitivity, they have salient drawbacks including structural instability, ion motion, and the use of toxic Pb. Here, this work reports an ultrastable, low-dose X-ray detector comprising KTaO3 perovskite films epitaxially grown on a Nb-doped strontium titanate substrate using a low-cost solution method. The detector exhibits a stable photocurrent under high-dose irradiation, high-temperature (200 °C), and aqueous conditions. Moreover, the prototype KTaO3 -film-based detector exhibits a 150-fold higher sensitivity (3150 µC Gyair -1 cm-2 ) and 150-fold lower detection limit (<40 nGyair s-1 ) than those of commercial α-Se-based direct detectors. Systematic investigations reveal that the high stability of the detector originates from the strong covalent bonds within the KTaO3 film, whereas the low detection limit is due to a lattice-gradient-driven built-in electric field and the high insulating property of KTaO3 film. This study unveils a new path toward the fabrication of green, stable, and low-dose X-ray detectors using oxide perovskite films, which have significant application potential in medical imaging and security operations.

10.
Anal Chem ; 95(39): 14616-14623, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37725051

RESUMO

Cell spheroids offer alternative in vitro cell models to monolayer cultured cells because they express complexities similar to those of in vivo tissues, such as cellular responses to drugs and chemicals. Raman spectroscopy emerged as a powerful analytical tool for detecting chemical changes in living cells because it nondestructively provides vibrational information regarding a target. Although multiple iterations are required in drug screening to determine drugs to treat cell spheroids and assess the inter-spheroid heterogeneity, current Raman applications used in spheroids analysis allow the observation of only a few spheroids owing to the low throughput of Raman spectroscopy. In this study, we developed a multifocal Raman spectrophotometer that enables simultaneous analysis of multiple spheroids in separate wells of a regular 96-well plate. By utilizing 96 focal spots excitation and parallel signal collection, our system can improve the throughput by approximately 2 orders of magnitude compared to a conventional single-focus Raman microscope. The Raman spectra of HeLa cell spheroids treated with anticancer drugs and HepG2 cell spheroids treated with free fatty acids were measured simultaneously, and concentration-dependent cellular responses were observed in both studies. Using the multifocal Raman spectrophotometer, we rapidly observed chemical changes in spheroids, and thus, this system can facilitate the application of Raman spectroscopy in analyzing the cellular responses of spheroids.

11.
J Phys Condens Matter ; 35(49)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37659402

RESUMO

In the past decades, uranium silicide (U3Si2) as a promising accident tolerant fuel (ATF) has drawn considerable attention in the field of nuclear physics. In comparison with traditional nuclear fuel (UO2), the U3Si2has higher thermal conductivity and uranium density, thereby resulting in lower centerline temperatures and better fuel economy. However, during the nuclear fission reaction, some unexpected fission products, such as Xe and Cs, are released and form the defective states. In this study, we explore the influence of Xe and Cs on the thermal conductivity of the U3Si2lattice from 200 to 1500 K using density functional theory calculations combined with Boltzmann transport equation. Our results reveal that the lattice and electronic thermal conductivities of defective U3Si2are reduced at a constant temperature, as compared with that of ideal system, thus resulting in a decrease of the total thermal conductivity. In the case of Cs occupation at U1 site, the total thermal conductivity (4.42 W mK-1) is decreased by ∼56% at 300 K, as compared with the value of 9.99 W mK-1for ideal system. With U1 and Si sites being occupied by Xe, the total thermal conductivities (4.45 and 6.52 W mK-1) are decreased by ∼55% and 35% at 300 K, respectively. The presented results suggest that the U3Si2has potential as a promising ATF at high temperatures.

12.
Biology (Basel) ; 12(8)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37627013

RESUMO

Metabolic dysregulation has been reported involving in the clinical outcomes of multiple cancers. However, systematical identification of the impact of metabolic pathways on cancer prognosis is still lacking. Here, we performed a pan-cancer analysis of popular metabolic checkpoint genes and pathways with cancer prognosis by integrating information of clinical survival with gene expression and pathway activity in multiple cancer patients. By discarding the effects of age and sex, we revealed extensive and significant associations between the survival of cancer patients and the expression of metabolic checkpoint genes, as well as the activities of three primary metabolic pathways: amino acid metabolism, carbohydrate metabolism, lipid metabolism, and eight nonprimary metabolic pathways. Among multiple cancers, we found the survival of kidney renal clear cell carcinoma and low-grade glioma exhibit high metabolic dependence. Our work systematically assesses the impact of metabolic checkpoint genes and pathways on cancer prognosis, providing clues for further study of cancer diagnosis and therapy.

13.
Biosens Bioelectron ; 238: 115564, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37544105

RESUMO

The identification and detection of mesenchymal circulating tumor cells (mCTCs) is important for early warning of tumor metastasis. The majority of conventional detection methods for CTCs rely on the recognition of epithelial biomarkers, which is technically challenging for detecting CTCs with epithelial-mesenchymal transition (EMT)-induced phenotypic alteration. In this work, we have constructed a label-free biosensor for sensitive electrochemical assay of mCTCs. In our design, the capture probe can recognize the vimentin overexpressed on the surface of mCTCs with high specificity. Meantime, the network-like DNA nanoprobes with multiple G-quadruplex/hemin complexes and multiple cholesterol molecules can be grafted to the cell surface based on the high affinity between cholesterol molecules and cell membrane. Owing to the mimic horseradish peroxidase of G-quadruplex/hemin complexes, strong electrochemical responses will be obtained for sensitive quantification of mCTCs with a detection limit of 8 cell mL-1. Moreover, the biosensor can effectively overcome the interference of vimentin negative cells or secretory vimentin, and realize the recovery tests in whole blood with high accuracy, thereby may further promoting the diagnosis and personalized treatment of cancer in clinic.


Assuntos
Técnicas Biossensoriais , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Vimentina/metabolismo , Hemina , Biomarcadores Tumorais , DNA , Transição Epitelial-Mesenquimal/genética
14.
Clin Lab ; 69(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37560856

RESUMO

BACKGROUND: Regenerating gene (REG) family proteins play a pivotal role in cell proliferation, tissue regeneration, and tumor metastasis. Recent studies have concentrated on the role of REG proteins in pancreatic cancer, but the results remain controversial. In this study, a meta-analysis was performed to evaluate the precise diagnostic value of REG proteins in pancreatic cancer. METHODS: A search was conducted in PubMed, Medline, Embase, Cochrane Library, Chinese National Knowledge Infrastructure (CNKI), Biomedical Literature Database (CBM), and WANFANG Data up to May 5, 2021. The QUADAS-2 tool was used to evaluate the quality of the included studies. The statistical analysis of the diagnostic tests was conducted using RevMan5 and Meta-Disc 1.4. The pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and their 95% confidence intervals (95% CIs) were calculated from each eligible study. RESULTS: The meta-analysis included 15 articles containing 796 patients and 584 controls. The pooled sensitivity was 0.71 (95% CI: 0.67 - 0.74), the pooled specificity was 0.73 (95% CI: 0.70 - 0.76), and the pooled DOR was 11.35 (95% CI: 5.92 - 21.77), respectively. The overall area under the receiver operating characteristic curve (AUC) was 0.84. Spearman's correlation coefficient was 0.34 (p = 0.221). For the subgroup analysis, the REG4 protein showed higher diagnostic accuracy compared with the other REG proteins. CONCLUSIONS: REG proteins have moderate diagnostic accuracy in pancreatic cancer. Further well-designed studies with larger sample sizes and clinical application are needed to validate the results of this meta-analysis.


Assuntos
Neoplasias Pancreáticas , Proteínas , Humanos , Neoplasias Pancreáticas/diagnóstico , Curva ROC , Biomarcadores , Neoplasias Pancreáticas
15.
Anal Chem ; 95(24): 9252-9262, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37293770

RESUMO

To promote the clinical application of human induced pluripotent stem cell (hiPSC)-derived hepatocytes, a method capable of monitoring regenerative processes and assessing differentiation efficiency without harming or modifying these cells is important. Raman microscopy provides a powerful tool for this as it enables label-free identification of intracellular biomolecules in live samples. Here, we used label-free Raman microscopy to assess hiPSC differentiation into hepatocyte lineage based on the intracellular chemical content. We contrasted these data with similar phenotypes from the HepaRG and from commercially available hiPSC-derived hepatocytes (iCell hepatocytes). We detected hepatic cytochromes, lipids, and glycogen in hiPSC-derived hepatocyte-like cells (HLCs) but not biliary-like cells (BLCs), indicating intrinsic differences in biomolecular content between these phenotypes. The data show significant glycogen and lipid accumulation as early as the definitive endoderm transition. Additionally, we explored the use of Raman imaging as a hepatotoxicity assay for the HepaRG and iCell hepatocytes, with data displaying a dose-dependent reduction of glycogen accumulation in response to acetaminophen. These findings show that the nondestructive and high-content nature of Raman imaging provides a promising tool for both quality control of hiPSC-derived hepatocytes and hepatotoxicity screening.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Células-Tronco Pluripotentes Induzidas , Humanos , Hepatócitos , Diferenciação Celular
16.
ACS Appl Mater Interfaces ; 15(23): 27742-27749, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37278386

RESUMO

In the last decade, perovskite nanocrystals (PNCs) have brought extensive thinking owing to their excellent optical properties. Recently, we have uncovered the peroxidase-like activity of PNCs and used this for detecting many small molecules; however, the low enzymatic activity makes them unsuitable for fluorescence analysis, which is easily disturbed by the autofluorescence of biological media. This greatly limits their application in bioanalysis. Thus, the development of a method to facilely modulate the activity of PNCs for the instrument-free colorimetric detection is highly desirable. Herein, we demonstrated an iodide-enhanced perovskite nanozyme-based colorimetric platform for the visual assay of urinary nuclear matrix protein 22 (NMP22), a typical biomarker for the diagnosis of bladder cancer. We discovered that halogen could regulate the activity of perovskite nanozymes through a simple anion replacement reaction. Experimental analysis suggested that CsPbI3 nanocrystals (NCs) displayed 24-fold higher catalytic efficiency than classical CsPbBr3 NCs. As a proof-of-concept assay, the CsPbI3 NCs could be explored into an immunoassay for the detection of NMP22 in clinical urine specimens, resulting in a low detection limit of 0.03 U/mL. This iodide-enhanced immunoassay deepens our understanding of perovskite nanozymes and also provides great potential for bioanalysis.


Assuntos
Colorimetria , Iodetos , Óxidos
17.
Cardiovasc Res ; 119(9): 1811-1824, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37279540

RESUMO

AIMS: Chemoattractants and their cognate receptors are essential for leucocyte recruitment during atherogenesis, and atherosclerotic plaques preferentially occur at predilection sites of the arterial wall with disturbed flow (d-flow). In profiling the endothelial expression of atypical chemoattractant receptors (ACKRs), we found that Ackr5 (CCRL2) was up-regulated in an endothelial subpopulation by atherosclerotic stimulation. We therefore investigated the role of CCRL2 and its ligand chemerin in atherosclerosis and the underlying mechanism. METHODS AND RESULTS: By analysing scRNA-seq data of the left carotid artery under d-flow and scRNA-seq datasets GSE131776 of ApoE-/- mice from the Gene Expression Omnibus database, we found that CCRL2 was up-regulated in one subpopulation of endothelial cells in response to d-flow stimulation and atherosclerosis. Using CCRL2-/-ApoE-/- mice, we showed that CCRL2 deficiency protected against plaque formation primarily in the d-flow areas of the aortic arch in ApoE-/- mice fed high-fat diet. Disturbed flow induced the expression of vascular endothelial CCRL2, recruiting chemerin, which caused leucocyte adhesion to the endothelium. Surprisingly, instead of binding to monocytic CMKLR1, chemerin was found to activate ß2 integrin, enhancing ERK1/2 phosphorylation and monocyte adhesion. Moreover, chemerin was found to have protein disulfide isomerase-like enzymatic activity, which was responsible for the interaction of chemerin with ß2 integrin, as identified by a Di-E-GSSG assay and a proximity ligation assay. For clinical relevance, relatively high serum levels of chemerin were found in patients with acute atherothrombotic stroke compared to healthy individuals. CONCLUSIONS: Our findings indicate that d-flow-induced CCRL2 promotes atherosclerotic plaque formation via a novel CCRL2-chemerin-ß2 integrin axis, providing potential targets for the prevention or therapeutic intervention of atherosclerosis.


Assuntos
Aterosclerose , Antígenos CD18 , Placa Aterosclerótica , Animais , Camundongos , Aterosclerose/genética , Aterosclerose/metabolismo , Antígenos CD18/metabolismo , Quimiocinas/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos Knockout para ApoE , Monócitos/metabolismo , Placa Aterosclerótica/metabolismo
18.
Int J Cardiovasc Imaging ; 39(9): 1741-1752, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37316646

RESUMO

This study aimed to construct a large animal model of coronary microvascular embolism, and investigate whether it could mimic the clinical imaging phenotypes of myocardial hypoperfusion in patients with ST-segment elevation myocardial infarction (STEMI). Nine minipigs underwent percutaneous coronary embolization with microspheres, followed by cardiac magnetic resonance (CMR) on week 1, 2 and 4 post operation. Microvascular obstruction (MVO) was defined as the isolated hypointense core within the enhanced area on late gadolinium enhancement images, which evolved during a 4-week follow-up. Fibrotic fraction of the segments was measured by Masson trichrome staining using a panoramic analysis software. Iron deposit and macrophage infiltration were quantified based on Perl's blue and anti-CD163 staining, respectively. Seven out of 9 (77.8%) minipigs survived and completed all of the imaging follow-ups. Four out of 7 (57.1%) minipigs were identified as transmural infarct with MVO. The systolic wall thickening (SWT) of MVO zone was similar to that of infarct zone (P = 0.762). Histopathology revealed transmural deposition of collagen, with microvessels obstructed by microspheres. The fibrotic fraction of infarct with MVO segments was similar to that of infarct without MVO segments (P = 0.954). The fraction of iron deposit in infarct with MVO segments was higher than that of infarct without MVO segments (P < 0.05), but the fraction of macrophage infiltration between these two segments did not show statistical difference (P = 0.723). Large animal model of coronary microvascular embolism could mimic most clinical imaging phenotypes of myocardial hypoperfusion in patients with STEMI, demonstrated by serial CMR and histopathology.


Assuntos
Doença da Artéria Coronariana , Embolia , Intervenção Coronária Percutânea , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Animais , Suínos , Infarto do Miocárdio com Supradesnível do Segmento ST/terapia , Infarto do Miocárdio com Supradesnível do Segmento ST/cirurgia , Meios de Contraste , Porco Miniatura , Circulação Coronária , Valor Preditivo dos Testes , Gadolínio , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Modelos Animais , Embolia/diagnóstico por imagem , Embolia/etiologia , Microcirculação
19.
Prev Med ; 173: 107591, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37380133

RESUMO

In physical education, in order to prevent sports injuries of students, it is necessary to study and build a set of physical education Internet of Things data monitoring training system to prevent sports injuries of students. This system is mainly composed of sensors, smart phones and cloud servers. Wearable devices equipped with sensors are used to complete data acquisition and transmission by means of the Internet of Things system, and relevant parameters are sorted and monitored by combining data analysis technology. The system makes a more in-depth, comprehensive and accurate analysis and processing of the collected data, so as to better evaluate the status and quality of students' sports, find out the existing problems in time, and put forward the corresponding solutions. By analyzing students' sports data and health data, the system generates personalized training programs, including training intensity, training time, training frequency and other parameters, so as to meet the needs and actual conditions of different students and avoid sports injuries caused by overtraining. This system can better analyze and process the collected data, provide teachers with more comprehensive and in-depth assessment and monitoring of students' sports status, and provide students with more personalized and scientific training programs, so as to effectively prevent the occurrence of students' sports injuries.


Assuntos
Traumatismos em Atletas , Exercícios de Alongamento Muscular , Esportes , Humanos , Traumatismos em Atletas/prevenção & controle , Educação Física e Treinamento , Estudantes
20.
Nat Plants ; 9(6): 908-925, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37142750

RESUMO

Genetic transformation is important for gene functional study and crop improvement. However, it is less effective in wheat. Here we employed a multi-omic analysis strategy to uncover the transcriptional regulatory network (TRN) responsible for wheat regeneration. RNA-seq, ATAC-seq and CUT&Tag techniques were utilized to profile the transcriptional and chromatin dynamics during early regeneration from the scutellum of immature embryos in the wheat variety Fielder. Our results demonstrate that the sequential expression of genes mediating cell fate transition during regeneration is induced by auxin, in coordination with changes in chromatin accessibility, H3K27me3 and H3K4me3 status. The built-up TRN driving wheat regeneration was found to be dominated by 446 key transcription factors (TFs). Further comparisons between wheat and Arabidopsis revealed distinct patterns of DNA binding with one finger (DOF) TFs in the two species. Experimental validations highlighted TaDOF5.6 (TraesCS6A02G274000) and TaDOF3.4 (TraesCS2B02G592600) as potential enhancers of transformation efficiency in different wheat varieties.


Assuntos
Fatores de Transcrição , Triticum , Triticum/genética , Triticum/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cromatina , Redes Reguladoras de Genes , Diferenciação Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...