Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Res ; 29(1): 199, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528586

RESUMO

BACKGROUND: Lipid metabolism changes occur in early Alzheimer's disease (AD) patients. Yet little is known about metabolic gene changes in early AD cortex. METHODS: The lipid metabolic genes selected from two datasets (GSE39420 and GSE118553) were analyzed with enrichment analysis. Protein-protein interaction network construction and correlation analyses were used to screen core genes. Literature analysis and molecular docking were applied to explore potential therapeutic drugs. RESULTS: 60 lipid metabolic genes differentially expressed in early AD patients' cortex were screened. Bioinformatics analyses revealed that up-regulated genes were mainly focused on mitochondrial fatty acid oxidation and mediating the activation of long-chain fatty acids, phosphoproteins, and cholesterol metabolism. Down-regulated genes were mainly focused on lipid transport, carboxylic acid metabolic process, and neuron apoptotic process. Literature reviews and molecular docking results indicated that ACSL1, ACSBG2, ACAA2, FABP3, ALDH5A1, and FFAR4 were core targets for lipid metabolism disorder and had a high binding affinity with compounds including adenosine phosphate, oxidized Photinus luciferin, BMS-488043, and candidate therapeutic drugs especially bisphenol A, benzo(a)pyrene, ethinyl estradiol. CONCLUSIONS: AD cortical lipid metabolism disorder was associated with the dysregulation of the PPAR signaling pathway, glycerophospholipid metabolism, adipocytokine signaling pathway, fatty acid biosynthesis, fatty acid degradation, ferroptosis, biosynthesis of unsaturated fatty acids, and fatty acid elongation. Candidate drugs including bisphenol A, benzo(a)pyrene, ethinyl estradiol, and active compounds including adenosine phosphate, oxidized Photinus luciferin, and BMS-488043 have potential therapeutic effects on cortical lipid metabolism disorder of early AD.


Assuntos
Doença de Alzheimer , Compostos Benzidrílicos , Indóis , Transtornos do Metabolismo dos Lipídeos , Fenóis , Piperazinas , Ácido Pirúvico , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Simulação de Acoplamento Molecular , Benzo(a)pireno , Ácidos Graxos/metabolismo , Redes e Vias Metabólicas , Etinilestradiol , Nucleotídeos de Adenina/metabolismo , Luciferinas
2.
Ann Surg Oncol ; 31(5): 3502-3512, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38429534

RESUMO

PURPOSE: Esophageal squamous carcinoma (ESCC) is a gastrointestinal malignancy with a high mortality, but the tumorigenesis is still unclear, restricting the target therapy development of ESCC. We explored the role of COL8A1 in ESCC development. METHODS: Tissue microarrays were used to investigate the expression level of COL8A1 in ESCC tissues. The association between COL8A1 and the overall survival of ESCC patients was assessed. The effect of differential COL8A1 expression on tumor growth was investigated by the xenograft model. The regulation of COL8A1 on tumor growth, migration, and invasion was studied by using ESCC cell lines. The signal transduction pathways involved in COL8A1 were bioinformatically profiled and validated. RESULTS: The COL8A1 was significantly expressed in cancerous tissues and was associated with poor prognosis in patients with ESCC. In vivo, the tumor growth obviously declined after inhibition of the COL8A1 expression. The abilities of cell proliferation and invasion were both decreased when the expression of COL8A1 was knockdown in ESCC cell line. Furthermore, we found the inactivation of the PI3K/AKT pathway that was mediated by knockdown of COL8A1 in ESCC cells, which was reversed with COL8A1 overexpression, whereas the cell proliferation and invasion ability were restored. CONCLUSIONS: This is the first report that COL8A1 promote ESCC progression, which hopefully will provide a theoretical basis for clinical targeting of ESCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Carcinoma de Células Escamosas/patologia , Neoplasias Esofágicas/patologia , Linhagem Celular Tumoral , Invasividade Neoplásica , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Proliferação de Células , Movimento Celular , Regulação Neoplásica da Expressão Gênica
3.
Sci Rep ; 13(1): 21393, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049471

RESUMO

In high-sensitive laser interferometers, such as the gravitational-wave detector KAGRA, ultra-high-quality mirrors are essential. In the case of KAGRA, where cavity mirrors are cooled down to 20 K, large-size Sapphire crystals are used as the substrate for the main mirrors to achieve both a good optical quality (i.e., low absorption and uniform refractive index) and optimized thermal behavior under cryogenic temperatures. To implement the very tight optical specifications required by this demanding application, it is mandatory to test the optical homogeneity of different substrates. In order to characterize refractive-index inhomogeneities of large-size uniaxial samples such as the KAGRA Sapphire test masses, we developed a dedicated setup, allowing to resolve birefringence changes with a sensitivity in the order of [Formula: see text] and a spatial resolution of [Formula: see text]. Moreover, the same setup allows us to simultaneously record residual absorption maps, thus allowing for a comparison between birefringence and absorption features. In this paper, we will present for the first time measurements on a KAGRA-sized Sapphire substrate which has been characterized in terms of absorption already in an earlier work. Both birefringence inhomogeneities and absorption distributions will be compared and correlations discussed.

4.
Chaos ; 33(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37561122

RESUMO

The rapid development of quantitative portfolio optimization in financial engineering has produced promising results in AI-based algorithmic trading strategies. However, the complexity of financial markets poses challenges for comprehensive simulation due to various factors, such as abrupt transitions, unpredictable hidden causal factors, and heavy tail properties. This paper aims to address these challenges by employing heavy-tailed preserving normalizing flows to simulate the high-dimensional joint probability of the complex trading environment under a model-based reinforcement learning framework. Through experiments with various stocks from three financial markets (Dow, NASDAQ, and S&P), we demonstrate that Dow outperforms the other two based on multiple evaluation metrics in our testing system. Notably, our proposed method mitigates the impact of unpredictable financial market crises during the COVID-19 pandemic, resulting in a lower maximum drawdown. Additionally, we explore the explanation of our reinforcement learning algorithm, employing the pattern causality method to study interactive relationships among stocks, analyzing dynamics of training for loss functions to ensure convergence, visualizing high-dimensional state transition data with t-SNE to uncover effective patterns for portfolio optimization, and utilizing eigenvalue analysis to study convergence properties of the environment's model.

5.
Opt Express ; 31(13): 21881-21898, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37381275

RESUMO

We investigated the transmission of single and two photons in a one-dimensional waveguide that is coupled with a Kerr micro-ring resonator and a polarized quantum emitter. In both cases, a phase shift occurs, and the non-reciprocal behavior of the system is attributed to the unbalanced coupling between the quantum emitter and the resonator. Our analytical solutions and numerical simulations demonstrate that the nonlinear resonator scattering causes the energy redistribution of the two photons through the bound state. When the system is in the two-photon resonance state, the polarization of the correlated two photons is locked to their propagation direction, leading to non-reciprocity. As a result, our configuration can act as an optical diode.

6.
Environ Sci Pollut Res Int ; 30(24): 65835-65847, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37093379

RESUMO

Heavy metal(loid)s are widely regarded as important environmental pollutants and have attracted extensive attention. In addition to such areas with frequent human activities as cities and industrial areas, the heavy metal(loid) pollution in remote areas lacking long-term monitoring data also deserves attention. In this study, Chinese pine (Pinus tabuliformis) in Jiuzhaigou World Natural Heritage was sampled to analyze concentration of Pb, Zn, Cu, As, Cd, Co, Cr, and Ni and to reconstruct pollution history. Source analysis and evaluation of the potential ecological risk of heavy metal(loid)s were also performed. Results showed that Jiuzhaigou has been polluted by heavy metal(loid)s at a relatively high level and concentrations were the highest at the location with intensive human activities (Nuorilang). Tree growth was inhibited by increased heavy metal(loid) concentration and this situation was more pronounced at high concentrations. The increased heavy metal(loid) concentrations were attributed to human activities such as forest logging, infrastructure construction, and tourism development. Heavy metal(loid) pollution reached a very high level of ecological harm at Nuorilang and a high level of ecological harm in Shuzheng and Heye villages. Overall, even at low concentrations, we demonstrated that Chinese pine can be used not only as a bioindicator for heavy metal(loid) pollution but also to infer pollution history over a relative long-term period and to enhance our understanding of the biogeochemical cycle of heavy metal(loid)s in forest ecosystems.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Ecossistema , Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Metais Pesados/análise , China , Medição de Risco , Solo
7.
ACS Appl Mater Interfaces ; 15(16): 20208-20218, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37040451

RESUMO

Rational ligand passivation is essential to achieve a higher performance of weakly confined lead halide perovskite quantum dots (PQDs) via a mechanism of surface chemistry and/or microstrain. In situ passivation with 3-mercaptopropyltrimethoxysilane (MPTMS) produces CsPbBr3 PQDs with an enhanced photoluminescence quantum yield (PLQY, ΦPL) of up to 99%; meanwhile, charge transport of the PQD film can be enhanced by one order of magnitude. Herein, we examine the effect of the molecular structure of MPTMS as the ligand exchange agent in comparison to octanethiol. Both thiol ligands promote crystal growth of PQDs, inhibit nonradiative recombination, and cause blue-shifted PL, while the silane moiety of MPTMS manipulates surface chemistry and outperforms owing to its unique cross-linking chemistry characterized by FTIR vibrations at 908 and 1641 cm-1. Emergence of the diagnostic vibrations is ascribed to hybrid ligand polymerization arising from the silyl tail group that confers the advantages of narrower size dispersion, lower shell thickness, more static surface binding, and higher moisture resistance. In contrast, the superior electrical property of the thiol-passivated PQDs is mostly determined by the covalent S-Pb bonding on the interface.

8.
Phys Rev Lett ; 130(7): 073602, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36867822

RESUMO

Coherent tripartite interactions among degrees of freedom of completely different nature are instrumental for quantum information and simulation technologies, but they are generally difficult to realize and remain largely unexplored. Here, we predict a tripartite coupling mechanism in a hybrid setup comprising a single nitrogen-vacancy (NV) center and a micromagnet. We propose to realize direct and strong tripartite interactions among single NV spins, magnons, and phonons via modulating the relative motion between the NV center and the micromagnet. Specifically, by introducing a parametric drive (two-phonon drive) to modulate the mechanical motion (such as the center-of-mass motion of a NV spin in diamond trapped in an electrical trap or a levitated micromagnet in a magnetic trap), we can obtain a tunable and strong spin-magnon-phonon coupling at the single quantum level, with up to 2 orders of magnitude enhancement for the tripartite coupling strength. This enables, for example, tripartite entanglement among solid-state spins, magnons, and mechanical motions in quantum spin-magnonics-mechanics with realistic experimental parameters. This protocol can be readily implemented with the well-developed techniques in ion traps or magnetic traps and could pave the way for general applications in quantum simulations and information processing based on directly and strongly coupled tripartite systems.

9.
Heliyon ; 8(10): e11219, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36339991

RESUMO

Though rising atmospheric CO2 concentrations (Ca) harm the environment and society, they may also raise photosynthetic rates and enhance intrinsic water-use efficiency (iWUE). Numerous short-term studies have investigated tree growth under elevated CO2 (eCO2) conditions, but no long-duration study has investigated eCO2 impacts on tree growth and iWUE under natural conditions. Utilizing a new dendrochronological experimental design in a heavily-touristed nature preserve in Southwest China (Jiuzhaigou National Nature Reserve), we compared tree growth (e.g., basal area increment) and iWUE in two biophysically and environmentally similar valleys with contrasting anthropogenic activities. Trees in the control valley with ambient CO2 benefited from increasing Ca, possibly due to the CO2 fertilization effect and optimal environmental conditions. However, trees in the treatment valley with intensive tourism experienced comparatively higher localized eCO2 and growth rate declines. While iWUE increased (1959-2017) in the control (25.3%) and treatment sites (47.8%), declining tree growth rates in the treatment site was likely because comparatively extreme CO2 exposure levels encouraged stomatal closures. As the first long-term study investigating eCO2 impacts on tree growth and iWUE under natural conditions, we demonstrate that increased forest iWUE is unlikely to overcome negative drought stress and rising temperature impacts. Thus, forest potential for mitigating eCO2 and global climate change is likely overestimated, particularly under dry temperate conditions.

10.
Front Plant Sci ; 13: 990287, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160981

RESUMO

Flag-leaf-related traits including length (FLL), width (FLW), area (FLA), thickness (FLT), and volume (FLV) of flag leaves are the most important determinants of plant architecture and yield in wheat. Understanding the genetic basis of these traits could accelerate the breeding of high yield wheat varieties. In this study, we constructed a doubled haploid (DH) population and analyzed flag-leaf-related traits in five experimental locations/years using the wheat 90K single-nucleotide polymorphism array. It's worth noting that a novel method was used to measure FLT and FLV easily. Leaf thickness at two-thirds of the leaf length from tip to collar represented the average leaf thickness as measured with freehand sections and was used to calculate the leaf volume. In addition, flag-leaf-related traits showed positive correlations with yield related traits under two different water regimes. A total of 79 quantitative trait loci (QTL) controlling the five traits were detected among all chromosomes except 4D and 5A, explaining 3.09-14.52% of the phenotypic variation. Among them, 15 stable QTL were identified in more than three environments, including two major QTL for FLT, six for FLW, three for FLA, two for FLT and two for FLV. DH lines with positive alleles at both QTL regions had an average FLL (9.90%), FLW (32.87%), FLT (6.62%), FLA (18.47%), and FLV (20.87%) greater than lines with contrasting alleles. QFLT-2B, QFLV-2A, and QFLV-7D were co-located with yield-related traits. The 15 QTL were validated by tightly linked kompetitive allele specific PCR (KASP) markers in a recombinant inbred line (RIL) population derived from a different cross. QFLL-4A, QFLW-4B, QFLA-5D.1, QFLA-7A, QFLA-7D.1, QFLT-2B, QFLT-6A, QFLV-2A, and QFLV-7D are likely novel loci. These results provide a better understanding of the genetic basis underlying flag-leaf-related traits. Also, target regions for fine mapping and marker-assisted selection were identified and these will be valuable for breeding high yielding bread wheat.

11.
Sheng Wu Gong Cheng Xue Bao ; 38(8): 2713-2724, 2022 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-36002405

RESUMO

Gene editing technology has been a hotspot in the field of biotechnology. CRISPR/Cas systems are efficient gene editing tools because of its specificity, simplicity and flexibility, these features enabled the rapid application of CRISPR/Cas systems in a variety of organisms. Moreover, the combination of transcriptional activator with dead Cas protein can achieve specific regulation of gene expression at the transcription level, which has made important contributions to the development of biotechnology in medical and agriculture. Overexpression of foreign genes is a common method to verify gene function and regulation. However, due to the limitation of vector capacity, it is difficult to achieve overexpression of multiple genes. CRISPR/Cas9 activation system can regulate the expression of multiple genes under the guidance of different guide RNAs to verify gene functions at the regulatory level. This review summarizes the composition of the CRISPR/Cas9 activation system and different activation strategies, and summarizes solutions for excessive activation. It may facilitate the application of CRISPR/Cas9 activation system in genetic improvement of cotton and herbicide resistance research.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Biotecnologia , Sistemas CRISPR-Cas/genética , Fenótipo , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo
12.
Entropy (Basel) ; 24(7)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35885203

RESUMO

As a common load-bearing component, mining wire rope produces different types of damage during a long period of operation, especially in the case of damage inside the wire rope, which cannot be identified by the naked eye, and it is difficult to accurately detect such damage using the present technology. In this study we designed a non-destructive testing device based on leakage magnetism, which can effectively detect the internal defects of wire rope damage, and carried out simulation analysis to lay a theoretical foundation for the subsequent experiments. To address the noise reduction problem in the design process, a variational mode decomposition-adaptive wavelet thresholding noise reduction method is proposed, which can improve the signal-to-noise ratio and also calculate the wavelet energy entropy in the reconstructed signal to construct multi-dimensional feature vectors. For the quantitative identification of system damage, a particle swarm optimization-support vector machine algorithm is proposed. Moreover, based on the signal following the noise reduction step, seven different feature vectors, namely, the waveform area, peak value, peak-valley value, wavelet energy entropy classification, and identification of internal and external damage defects, have been determined. The results show that the device can be used to effectively identify internal damage defects. In addition, the comparative analysis showed that the algorithm can reduce the system noise and effectively identify internal and external damage defects with a certain superiority.

13.
Sensors (Basel) ; 22(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35632062

RESUMO

Hall-effect sensors are used for the non-destructive testing of wire ropes owing to their low power consumption and high operation frequency. The high-speed operation of wire ropes causes vibration inclination at different frequencies, which makes it difficult to detect the ropes. Considering that the radial signal in the magnetic flux leakage (MFL) detection method can respond to damages to the maximum extent possible, this study proposes a radial magnetic concentrator suitable for the non-destructive testing of wire ropes based on theoretical analysis and transient magnetic field simulations. The concentrator improves the radial magnetic circuit, polymerizes the leakage of the magnetic field in the detection device, and the leakage of the magnetic field of the defect converges at the sensor position of the circumferential array to improve the signal-to-noise ratio of the Hall-effect sensor. In addition, the MFL field is homogenized through the structure of the magnetic concentrator when the wire rope is tilted, which weakens the influence of the vibration tilt of the wire rope on the test results. Finally, the experiments show that the amplitude of the wire-rope damage signal is effectively improved by using the proposed radial magnetic concentration technology, hence being convenient for defect analyses.

14.
BMC Genomics ; 23(1): 231, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35331129

RESUMO

BACKGROUND: The cryptochromes (CRY) are specific blue light receptors of plants and animals, which play crucial roles in physiological processes of plant growth, development, and stress tolerance. RESULTS: In the present work, a systematic analysis of the CRY gene family was performed on twelve cotton species, resulting in 18, 17, 17, 17, and 17 CRYs identified in five alloteraploid cottons (Gossypium hirsutum, G. barbadense, G. tomentosum, G. mustelinum and G. darwinii), respectively, and five to nine CRY genes in the seven diploid species. Phylogenetic analysis of protein-coding sequences revealed that CRY genes from cottons and Arabidopsis thaliana could be classified into seven clades. Synteny analysis suggested that the homoeolog of G. hirsutum Gh_A02G0384 has undergone an evolutionary loss event in the other four allotetraploid cotton species. Cis-element analysis predicated the possible functions of CRY genes in G. hirsutum. RNA-seq data revealed that Gh_D09G2225, Gh_A09G2012 and Gh_A11G1040 had high expressions in fiber cells of different developmental states. In addition, the expression levels of one (Gh_A03G0120), 15 and nine GhCRY genes were down-regulated following the PEG, NaCl and high-temperature treatments, respectively. For the low-temperature treatment, five GhCRY genes were induced, and five were repressed. These results indicated that most GhCRY genes negatively regulate the abiotic stress treatments. CONCLUSION: We report the structures, domains, divergence, synteny, and cis-elements analyses systematically of G. hirsutum CRY genes. Possible biological functions of GhCRY genes in differential tissues as well as in response to abiotic stress during the cotton plant life cycle were predicted.


Assuntos
Criptocromos , Gossypium , Criptocromos/genética , Regulação da Expressão Gênica de Plantas , Gossypium/fisiologia , Família Multigênica , Filogenia
15.
Intensive Crit Care Nurs ; 70: 103219, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35248441

RESUMO

BACKGROUND: Unplanned extubation has been widely recognized as a life-threatening adverse event in intensive care unit patients. AIM: To systematically quantify the global prevalence of unplanned extubation among critically ill adults and reintubation rate after unplanned extubation. METHODS: Systematic review and meta-analysis. We identified original peer-reviewed studies through electronic searches of EMBASE, PubMed, ISI Web of Science, and CINAHL databases involving ventilated adult intensive care unit patients. Primary endpoints were prevalence of overall unplanned extubation rate rate, type of unplanned extubation (self-extubation or accidental extubation) and reintubation rate within 48 hours. Two reviewers independently selected studies and extracted data on the outcomes. Random effect meta-analysis of proportions was used to estimate the pooled prevalence rates. RESULTS: Of 1613 retrieved citations, 38 studies from 18 countries published between 1990 and 2020 were included. The overall methodological quality was low (mean score on Newcastle-Ottawa scale, 2.6/5). The pooled prevalence of unplanned extubation was 6.69% (95% CI, 5.29%-8.24%; 34 studies involving 121,129 subjects) with an incidence density of 1.06 events per 100 ventilator-days (95% CI, 0.7-1.3; 16 studies involving 375,967 ventilation days). The majority of unplanned extubations (84.2%) were self-extubations (95% CI, 79.8%-88.3%; 23 studies involving 2274 unplanned extubations). In addition, 50.2% of subjects with unplanned extubations required reintubation within 48 hours (95% CI, 43.6%-56.9%; 10 studies involving 1564 unplanned extubations). CONCLUSION: Despite significant heterogeneity between studies, these data showed that 6.7% of intubated adult subjects in the intensive care unit experience unplanned extubation, most of which are self-extubations. Further well-designed studies are required to better understand unplanned extubation among intubated intensive care unitpatient, using standardized methods of data collection and reporting.


Assuntos
Extubação , Estado Terminal , Adulto , Extubação/efeitos adversos , Extubação/métodos , Humanos , Incidência , Unidades de Terapia Intensiva , Intubação Intratraqueal/efeitos adversos , Respiração Artificial/efeitos adversos , Fatores de Risco
16.
J Recept Signal Transduct Res ; 42(4): 382-389, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34423728

RESUMO

Recent studies have shown that many long noncoding RNAs (lncRNAs) are abnormally expressed in ovarian cancer and involved in the pathological progress of ovarian cancer. In the present study, we aimed to investigate the role of lncRNA LINC00858 and the potential mechanism in ovarian cancer. The qRT-PCR was used to measure the expression levels of LINC00858 and miR-134-5p in ovarian cancer tissue specimens and cell lines. Loss-of-function assays were performed to investigate the role of LINC00858 in ovarian cancer. MTT assay was carried out to measure cell proliferation. Transwell assays were performed to determine cell migration and invasion. Biological information analysis and luciferase report gene assay were used to verify potential downstream genes of LINC00858. The xenograft mouse model was established to analyze tumor growth in vivo. Our results showed that LINC00858 was highly expressed in human ovarian cancer tissues and cell lines. Knockdown of LINC00858 inhibited cell proliferation, migration and invasion of SKOV3 cells, and suppressed tumor growth in mouse xenograft models. Mechanistic studies revealed that LINC00858 acted as a sponge of miR-134-5p and then regulated TRIM44 expression in SKOV3 cells. Furthermore, rescue experiments illustrated that inhibition of miR-134-5p restored the inhibitory effects of LINC00858 knockdown on cell proliferation, migration and invasion. TRIM44 overexpression could counteract the inhibitory effects of miR-134-5p mimics on ovarian cancer cells. In conclusion, these findings demonstrated that LINC00858 exerted oncogenic role in ovarian cancer, which was mediated by miR-134-5p/TRIM44 axis. Thus, LINC00858 might be a therapeutic target for the treatment of ovarian cancer.


Assuntos
MicroRNAs , Neoplasias Ovarianas , RNA Longo não Codificante , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Ovarianas/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas com Motivo Tripartido/genética
17.
Plant Biotechnol J ; 20(4): 691-710, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34800075

RESUMO

Sea Island cotton (Gossypium barbadense) is the source of the world's finest fibre quality cotton, yet relatively little is understood about genetic variations among diverse germplasms, genes underlying important traits and the effects of pedigree selection. Here, we resequenced 336 G. barbadense accessions and identified 16 million SNPs. Phylogenetic and population structure analyses revealed two major gene pools and a third admixed subgroup derived from geographical dissemination and interbreeding. We conducted a genome-wide association study (GWAS) of 15 traits including fibre quality, yield, disease resistance, maturity and plant architecture. The highest number of associated loci was for fibre quality, followed by disease resistance and yield. Using gene expression analyses and VIGS transgenic experiments, we confirmed the roles of five candidate genes regulating four key traits, that is disease resistance, fibre length, fibre strength and lint percentage. Geographical and temporal considerations demonstrated selection for the superior fibre quality (fibre length and fibre strength), and high lint percentage in improving G. barbadense in China. Pedigree selection breeding increased Fusarium wilt disease resistance and separately improved fibre quality and yield. Our work provides a foundation for understanding genomic variation and selective breeding of Sea Island cotton.


Assuntos
Fusarium , Gossypium , Mapeamento Cromossômico , Fibra de Algodão , Resistência à Doença/genética , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Gossypium/genética , Fenótipo , Filogenia , Melhoramento Vegetal , Locos de Características Quantitativas
18.
Plants (Basel) ; 10(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34961226

RESUMO

Caffeic acid O-methyltransferases (COMTs) play an essential role in lignin synthesis procession, especially in the plant's phenylalanine metabolic pathway. The content of COMT genes in cotton and the relationship between their expression patterns have not been studied clearly in cotton. In this study, we have identified 190 COMT genes in cotton, which were classified into three groups (I, II and III), and mapped on the cotton chromosomes. In addition, we found that 135 of the 190 COMT genes result from dispersed duplication (DSD) and whole-genome duplication (WGD), indicating that DSD and WGD were the main forces driving COMT gene expansion. The Ka/Ks analysis showed that GhCOMT43 and GhCOMT41 evolved from GaCOMT27 and GrCOMT14 through positive selection. The results of qRT-PCR showed that GhCOMT13, GhCOMT28, GhCOMT39 and GhCOMT55 were related to lignin content during the cotton fiber development. GhCOMT28, GhCOMT39, GhCOMT55, GhCOMT56 and GhCOMT57 responded to Verticillium Wilt (VW) and maybe related to VW resistance through lignin synthesis. Conclusively, this study found that GhCOMTs were highly expressed in the secondary wall thickening stage and VW. These results provide a clue for studying the functions of GhCOMTs in the development of cotton fiber and VW resistance and could lay a foundation for breeding cotton cultivates with higher quantity and high resistance to VW.

19.
Phys Rev Lett ; 126(20): 203601, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34110200

RESUMO

We predict a set of unusual quantum acoustic phenomena resulting from sound-matter interactions in a fully tunable solid-state platform in which an array of solid-state spins in diamond are coupled to quantized acoustic waves in a one-dimensional optomechanical crystal. We find that, by using a spatially varying laser drive that introduces a position-dependent phase in the optomechanical interaction, the mechanical band structure can be tuned in situ, consequently leading to unconventional quantum sound-matter interactions. We show that quasichiral sound-matter interactions can occur, with tunable ranges from bidirectional to quasiunidirectional, when the spins are resonant with the bands. When the solid-state spin frequency lies within the acoustic band gap, we demonstrate the emergence of an exotic polariton bound state that can mediate long-range tunable, odd-neighbor, and complex spin-spin interactions. This work expands the present exploration of quantum phononics and can have wide applications in quantum simulations and quantum information processing.

20.
Front Plant Sci ; 12: 815648, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35185964

RESUMO

Sea Island cotton (Gossypium barbadense) is world-renowned for its superior natural fiber. Although fiber strength is one of the most important fiber quality traits, genes contributing to fiber strength are poorly understood. Production of sea island cotton also is inextricably linked to improving its relatively low yield, thus enhancing the importance of joint improvement of both fiber quality and yield. We used genomic variation to uncover the genetic evidence of trait improvement resulting from pedigree breeding of Sea Island cotton. This pedigree was aimed at improving fiber strength and yielded an elite cultivar, XH35. Using a combination of genome-wide association study (GWAS) and selection screens, we detected 82 putative fiber-strength-related genes. Expression analysis confirmed a calmodulin-like gene, GbCML7, which enhanced fiber strength in a specific haplotype. This gene is a major-effect gene, which interacts with a minor-effect gene, GbTUA3, facilitating the enhancement of fiber strength in a synergistic fashion. Moreover, GbCML7 participates in the cooperative improvement of fiber strength, fiber length, and fiber uniformity, though a slight compromise exists between the first two of these traits and the latter. Importantly, GbCML7 is shown to boost yield in some backgrounds by increasing multiple yield components to varying degrees, especially boll number. Our work provides valuable genomic evidence and a key genetic factor for the joint improvement of fiber quality and yield in Sea Island cotton.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...