Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 103(6): 103717, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643746

RESUMO

Gliotoxin (GT) belongs to the epipolythiodioxopiperazine (ETP) family, which is considered a crucial virulence determinant among the secondary metabolites produced by Aspergillus fumigatus. The metabolites are commonly found in food and feed, contributing to the invasion and immune escape of Aspergillus fumigatus, thereby posing a significant threat to the health of livestock, poultry, and humans. Heterophil extracellular traps (HETs), a novel form of innate immune defense, have been documented in the chicken's innate immune systems for capturing and eliminating invading microbes. However, the effects and mechanisms of GT on the production of duck HETs in vitro remain unknown. In this study, we first confirmed the presence of HETs in duck innate immune systems and further investigated the molecular mechanism underlying GT-induced HETs release. Our results demonstrate that GT can trigger typical release of HETs in duck. The structures of GT-induced HETs structures were characterized by DNA decoration, citrullinated histones 3, and elastase. Furthermore, NADPH oxidase, glycolysis, ERK1/2 and p38 signaling pathway were found to regulate GT-induced HETs. In summary, our findings reveal that gliotoxin activates HETs release in the early innate immune system of duck while providing new insights into the immunotoxicity of GT towards ducks.


Assuntos
Patos , Gliotoxina , Imunidade Inata , Animais , Imunidade Inata/efeitos dos fármacos , Armadilhas Extracelulares/efeitos dos fármacos , Imunotoxinas/toxicidade
2.
Theriogenology ; 206: 40-48, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37178673

RESUMO

Evidence has shown that microRNA-665 (miR-665) is highly expressed in the mid-luteal phase compared with the early and end-luteal phase of the corpus luteum (CL) life cycle. However, whether miR-665 is a positive regulator of the life span of the CL is still unknown. The objective of this study is to explore the effect of miR-665 on the structural luteolysis in the ovarian CL. In this study, the targeting relationship between miR-665 and hematopoietic prostaglandin synthase (HPGDS) was firstly verified by dual luciferase reporter assay. Then, quantitative real-time PCR (qRT-PCR) was used to detect the expression of miR-665 and HPGDS in luteal cells. Following miR-665 overexpression, the apoptosis rate of the luteal cells was determined using flow cytometry; B-cell lymphoma-2 (BCL-2) and caspase-3 mRNA and protein were measured using qRT-PCR and Western blot (WB) analysis. Finally, the DP1 and CRTH2 receptors of PGD2, a synthetic product of HPGDS, were localized using immunofluorescence. Results confirmed that HPGDS was a direct target gene of miR-665, and miR-665 expression was negatively correlated with HPGDS mRNA expression in luteal cells. Meanwhile, after miR-665 was overexpressed, the apoptotic rate of the luteal cells showed a significant decrease (P < 0.05) and this was accompanied by elevated expression levels of anti-apoptotic factor BCL-2 mRNA and protein and decreased expression levels of apoptotic factor caspase-3 mRNA and protein (P < 0.01). Moreover, the immune fluorescence staining results showed that the DP1 receptor was also significantly decreased (P < 0.05), but the CRTH2 receptor was significantly increased (P < 0.05) in luteal cells. Overall, these results indicate that miR-665 reduces the apoptosis of luteal cells via inhibiting caspase-3 expression and promoting BCL-2 expression, and the biological function of miR-665 may be attributed to its target gene HPGDS which regulates the balance of DP1 and CRTH2 receptors expression in luteal cells. As a consequence, this study suggests that miR-665 might be a positive regulator of the life span of the CL rather than destroy the integrity of CL in small ruminants.


Assuntos
Células Lúteas , MicroRNAs , Feminino , Animais , Células Lúteas/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Corpo Lúteo/fisiologia , Apoptose/fisiologia , Ruminantes , RNA Mensageiro/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , MicroRNAs/metabolismo
3.
Am J Transl Res ; 9(12): 5289-5298, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312483

RESUMO

Pelvic organ prolapse (POP) is a serious health issue that affects many adult women. A common strategy for POP reconstruction is to use scaffold materials to reconstruct the prolapsed pelvic organ. However, the existing materials for pelvic reconstruction do not meet the clinical requirements for biocompatibility, mechanics and immunological rejection. To address these concerns, urinary bladder decellularized materials (UBDM) was selected due to their good strain-stress resistance. To enhance its biocompatibility, laminin/nidogen was used to modify the UBDM with a mussel-inspired polydopamine coating. We found that the biocompatibility and mechanical properties of laminin/nidogen-Dopamine-UBDM were significantly enhanced and that the degradation rate of laminin/nidogen-Dopamine-UBDM was markedly reduced. Moreover, the expression of CD31 in the laminin/nidogen-Dopamine-UBDM group was higher than that in the normal UBDM group. The laminin/nidogen-Dopamine-UBDM treatment mainly guided M2 type macrophages and led to an inflammatory response. These results indicate that laminin/nidogen adsorbed urinary bladder decellularized materials are promising for use in pelvic reconstruction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...