Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Colloid Interface Sci ; 642: 691-704, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37037075

RESUMO

Phototherapy can trigger immunogenic cell death of tumors in situ, whereas it is virtually impossible to eradicate the tumor due to the intrinsic resistance and inefficient anti-tumor immunity. To overcome these limitations, novel bimetallic infinite coordination nanopolymers (TA-Fe/Mn-OVA@MB NPs) were synthesized using model antigen ovalbumin (OVA) as a template to assemble tannic acid (TA) and bi-metal, supplemented with methylene blue (MB) surface absorption. The formulated TA-Fe/Mn-OVA@MB NPs possess excellent photothermal and photodynamic therapy (PTT/PDT) performance, which is adequate to destroy tumor cells by physical and chemical attack. Especially, these TA-Fe/Mn-OVA@MB NPs are capability of promoting the dendritic cells (DCs) maturation and antigen presentation via manganese-mediated cGAS-STING pathway activation, finally activating cytotoxicity T lymphocyte and promoting memory T lymphocyte differentiation in the peripheral lymphoid organs. In conclusion, this research offers a versatile metal-polyphenol nanoplatform to integrate functional metals and therapeutic molecule for topical phototherapy and robust anti-tumor immune activation.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fototerapia , Neoplasias/tratamento farmacológico , Metais , Linhagem Celular Tumoral
3.
Mater Today Bio ; 19: 100566, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36816600

RESUMO

Despite advances in combined photothermal/immunotherapy of tumor, the therapeutic effect has been impaired due to hypoxic microenvironment and inadequate immune activation. Manganese ions directly activated the stimulator of interferon genes (STING) pathway and induced innate antitumor immunity. Herein, a near infrared light (NIR)-responsive nanoenzyme (PB-Mn/OVA NE) was constructed by doping manganese into the ovalbumin (OVA)-templated Prussian blue (PB) nanoparticles. The resultant PB-Mn/OVA NEs exhibited favorable catalase activity to produce oxygen, which was conducive to alleviate the tumor hypoxic microenvironment. Under 808 â€‹nm NIR irradiation, the PB-Mn/OVA NEs with outstanding photothermal conversion efficiency of 30% significantly destroyed tumor cells by inducing immunogenic cell death (ICD). Impressively, the PB-Mn/OVA NEs could activate the cGAS-STING pathway to promote the maturation and the antigen cross-presentation ability of dendritic cells (DCs), which further activated cytotoxic T lymphocytes and memory T lymphocytes. Overall, this work presents a powerful nanoenzyme formula to integrate photothermal ablation and hypoxic reversal for triggering robust innate and adaptive antitumor immune response.

4.
ACS Appl Mater Interfaces ; 15(6): 7700-7712, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36719405

RESUMO

Immunogenic tumor cell death (ICD) induced by photothermal therapy (PTT) fails to elicit a robust antitumor immune response partially due to its inherent immunosuppressive microenvironment and poor antigen presentation. To address these issues, we developed an immunoinducible carbon dot-incorporated hydrogel (iCD@Gel) through a dynamic covalent Schiff base reaction using mannose-modified aluminum-doped carbon dots (M/A-CDs) as a cross-linking agent. The M/A-CDs possessed superior photothermal conversion efficiency and served as nanocarriers to load cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) for inducing the maturation of dendritic cells (DCs) via mannose receptor-mediated targeting delivery. Upon intratumoral injection, the as-prepared iCD@Gel induced ICD, and damage-associated molecular patterns (DAMPs) were released via photothermal ablation under 808 nm NIR irradiation. Subsequently, the iCD@Gel synergized with the DAMPs to significantly promote the maturation and antigen cross-presentation ability of DCs. This work provides a promising strategy to develop carbon dot-based therapeutic hydrogels for photothermal therapy and immune activation.


Assuntos
Nanopartículas , Neoplasias , Humanos , Fototerapia , Carbono , Hidrogéis/farmacologia , Neoplasias/terapia , Apresentação de Antígeno , Linhagem Celular Tumoral , Microambiente Tumoral
5.
Nanotechnology ; 34(5)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36195012

RESUMO

Photothermal therapy (PTT) is a promising treatment that efficiently suppresses local cancer, but fails to induce a robust antitumor immune response against tumor metastasis and recurrence. In this study, a NIR responsive nano-immunostimulant (Mn/A-HP NI) is fabricated by entrapping manganese and azo-initiator (AIPH) into hyaluronic acid-based polypyrrole nanoparticle. The as-prepared Mn/A-HP NIs with a high photothermal conversion efficiencey of 20.17% dramatically induced the imunogenic cell death of tumor cells and triggered the release ATP and HMGB1. Meanwhile, the hyperthermia induced AIPH decomposition to produce alkyl radicals which further destroyed cancer cells. Furthermore, the Mn/A-HP NIs were capable of promoting the maturation and antigen cross-presentation ability of dendritic cells. Consequently, the multifunctional Mn/A-HP NIs provided a combined treatment via integrating PTT/chemo-dynamic therapy and immune activation for tumor therapy.


Assuntos
Hipertermia Induzida , Nanopartículas , Polímeros/química , Terapia Fototérmica , Pirróis/farmacologia , Nanopartículas/química , Linhagem Celular Tumoral , Fototerapia
6.
Biomed Mater ; 17(5)2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35835088

RESUMO

Calvarial bone defect remains a clinical challenge due to the lack of efficient osteo-inductive agent. Herein, a novel calcium and phosphorus codoped carbon dot (Ca/P-CD) for bone regeneration was synthesized using phosphoethanolamine and calcium gluconate as precursors. The resultant Ca/P-CDs exhibited ultra-small size, stable excitation dependent emission spectra and favorable dispersibility in water. Moreover, Ca/P-CDs with good biocompatibility rapidly entered the cytoplasm through endocytosis and increased the expression of bone differentiation genes. After mixing with temperature-sensitive hydrogel, Ca/P-CDs were injectedin situinto calvarial defect and promoted the repair of bone injury. These Ca/P-CDs provide a new treatment method for the bone repair and should be expended the application in the biomedical fields.


Assuntos
Carbono , Pontos Quânticos , Regeneração Óssea , Cálcio , Osteogênese , Fósforo
7.
J Nanobiotechnology ; 20(1): 297, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35733214

RESUMO

BACKGROUND: Phototherapy-triggered immunogenic cell death (ICD) rarely elicits a robust antitumour immune response, partially due to low antigen exposure and inefficient antigen presentation. To address these issues, we developed novel methylene blue-loaded ovalbumin/polypyrrole nanoparticles (MB@OVA/PPY NPs) via oxidative polymerization and π-π stacking interactions. RESULTS: The as-prepared MB@OVA/PPY NPs with outstanding photothermal conversion efficiency (38%) and photodynamic properties were readily internalized into the cytoplasm and accumulated in the lysosomes and mitochondria. Upon 808 nm and 660 nm laser irradiation, the MB@OVA/PPY NPs not only ablated tumour cells by inducing local hyperthermia but also damaged residual tumour cells by generating a large amount of reactive oxygen species (ROS), finally triggering the release of many damage-associated molecular patterns (DAMPs). Moreover, the MB@OVA/PPY NPs synergized with DAMPs to promote the maturation and improve the antigen presentation ability of DCs in vitro and in vivo. CONCLUSIONS: This work reported a PPY NPs-based nanoplatform to encapsulate the therepeutic proteins and absorb the functional molecules for combination therapy of tumours. The results demonstrated that the prepared MB@OVA/PPY NPs could be used as effective nanotherapeutic agents to eliminate solid tumours and trigger a powerful antitumour immune response.


Assuntos
Nanopartículas , Neoplasias , Humanos , Azul de Metileno/farmacologia , Nanopartículas/uso terapêutico , Neoplasias/terapia , Ovalbumina , Fototerapia/métodos , Polímeros/farmacologia , Pirróis/farmacologia
8.
Biomater Sci ; 10(9): 2384-2393, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35383811

RESUMO

Curcumin as a hydrophobic polyphenol has great potential for tumor therapy, yet its rapid degradation and hydrophobicity severely impair its therapeutic effect in the clinic. Herein, we report a novel strategy for the formation of curcumin doped zeolitic imidazolate framework nanoparticles (Cur-ZIF NPs) by zinc ion driven simultaneous coordination of curcumin and 2-methylimidazole. The resultant Cur-ZIF NPs with a uniform nanosize exhibit favorable stability and dispersibility in water, as well as high drug-loading capacities. The pH and redox sensitivity of ZIF NPs enable the controlled release of curcumin in vivo. Moreover, Cur-ZIF NPs serve as nanocarriers that can load the toll-like-receptor-7 agonist (imiquimod, IQ) and be coated by homotypic cancer cell membranes to enhance tumor-targeted delivery. This study provides an attractive nanoplatform to effectively utilize curcumin and integrate multiple therapeutic modalities into a single system for tumor treatment.


Assuntos
Curcumina , Nanopartículas , Neoplasias , Zeolitas , Curcumina/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Humanos , Imunoterapia , Nanopartículas/química , Neoplasias/tratamento farmacológico , Zeolitas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...