Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Emerg Microbes Infect ; 13(1): 2353302, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38753462

RESUMO

Animal models of COVID-19 facilitate the development of vaccines and antivirals against SARS-CoV-2. The efficacy of antivirals or vaccines may differ in different animal models with varied degrees of disease. Here, we introduce a mouse model expressing human angiotensin-converting enzyme 2 (ACE2). In this model, ACE2 with the human cytokeratin 18 promoter was knocked into the Hipp11 locus of C57BL/6J mouse by CRISPR - Cas9 (K18-hACE2 KI). Upon intranasal inoculation with high (3 × 105 PFU) or low (2.5 × 102 PFU) dose of SARS-CoV-2 wildtype (WT), Delta, Omicron BA.1, or Omicron BA.2 variants, all mice showed obvious infection symptoms, including weight loss, high viral loads in the lung, and interstitial pneumonia. 100% lethality was observed in K18-hACE2 KI mice infected by variants with a delay of endpoint for Delta and BA.1, and a significantly attenuated pathogenicity was observed for BA.2. The pneumonia of infected mice was accompanied by the infiltration of neutrophils and pulmonary fibrosis in the lung. Compared with K18-hACE2 Tg mice and HFH4-hACE2 Tg mice, K18-hACE2 KI mice are more susceptible to SARS-CoV-2. In the antivirals test, REGN10933 and Remdesivir had limited antiviral efficacies in K18-hACE2 KI mice upon the challenge of SARS-CoV-2 infections, while Nirmatrelvir, monoclonal antibody 4G4, and mRNA vaccines potently protected the mice from death. Our results suggest that the K18-hACE2 KI mouse model is lethal and stable for SARS-CoV-2 infection, and is practicable and stringent to antiviral development.


Assuntos
Enzima de Conversão de Angiotensina 2 , Antivirais , COVID-19 , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , SARS-CoV-2 , Animais , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/virologia , Camundongos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , Humanos , Pulmão/virologia , Pulmão/patologia , Tratamento Farmacológico da COVID-19 , Queratina-18/genética , Carga Viral , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Alanina/análogos & derivados , Alanina/farmacologia , Técnicas de Introdução de Genes , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Feminino
2.
World J Microbiol Biotechnol ; 40(6): 191, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38702442

RESUMO

Seed endophytes played a crucial role on host plants stress tolerance and heavy metal (HM) accumulation. Dysphania ambrosioides is a hyperaccumulator and showed strong tolerance and extraordinary accumulation capacities of multiple HMs. However, little is known about its seed endophytes response to field HM-contamination, and its role on host plants HM tolerance and accumulation. In this study, the seed endophytic community of D. ambrosioides from HM-contaminated area (H) and non-contaminated area (N) were investigated by both culture-dependent and independent methods. Moreover, Cd tolerance and the plant growth promoting (PGP) traits of dominant endophytes from site H and N were evaluated. The results showed that in both studies, HM-contamination reduced the diversity and richness of endophytic community and changed the most dominant endophyte, but increased resistant species abundance. By functional trait assessments, a great number of dominant endophytes displayed multiple PGP traits and Cd tolerance. Interestingly, soil HM-contamination significantly increased the percentage of Cd tolerance isolates of Agrobacterium and Epicoccum, but significantly decreased the ration of Agrobacterium with the siderophore production ability. However, the other PGP traits of isolates from site H and N showed no significant difference. Therefore, it was suggested that D. ambrosioides might improve its HM tolerance and accumulation through harboring more HM-resistant endophytes rather than PGP endophytes, but to prove this, more work need to be conducted in the future.


Assuntos
Cádmio , Endófitos , Metais Pesados , Sementes , Microbiologia do Solo , Poluentes do Solo , Endófitos/metabolismo , Endófitos/isolamento & purificação , Metais Pesados/metabolismo , Sementes/microbiologia , Poluentes do Solo/metabolismo , Cádmio/metabolismo , Biodiversidade , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Bactérias/genética , Solo/química , Biodegradação Ambiental , Raízes de Plantas/microbiologia
3.
Nano Lett ; 24(14): 4186-4193, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38545933

RESUMO

Achieving metal-organic frameworks (MOFs) with nonlinear optical (NLO) switching is profoundly important. Herein, the conductive MOFs Cu-TCNQ phase I (Ph-I) and phase II (Ph-II) films were prepared using the liquid-phase-epitaxial layer-by-layer spin-coating method and steam heating method, respectively. Electronic experiments showed that the Ph-II film could be changed into the Ph-I film under an applied electric field. The third-order NLO results revealed that the Ph-I film had a third-order nonlinear reverse saturation absorption (RSA) response and the Ph-II film displayed a third-order nonlinear saturation absorption (SA) response. With increases in the heating time and applied voltage, the third-order NLO response realized the reversible transition between SA and RSA. The theoretical calculations indicated that Ph-I possessed more interlayer charge transfer, resulting in a third-order nonlinear RSA response that was stronger than that of Ph-II. This work applies phase-transformed MOFs to third-order NLO switching and provides new insights into the nonlinear photoelectric applications of MOFs.

4.
Angew Chem Int Ed Engl ; 63(12): e202318806, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38278762

RESUMO

Making oppositely charged metal-organic cages (MOCs) into a tightly ordered structure may bring interesting functions. Herein, we report a novel structure composed of anionic (Zr4 L6 )8- (L=embonate) tetrahedral cages and in situ-formed cationic [Zn4 (Bim)4 ]4+ (Bim=[BH(im)3 ]- ; im=imidazole) cubic cages. Chiral transfer is observed from enantiopure (Zr4 L6 )8- cage to enantiopure [Zn4 (Bim)4 ]4+ cage. A pair of enantiomers (PTC-373(Δ) and PTC-373(Λ)) are formed. PTC-373 exhibits high chemical and thermal stabilities, affording an interesting single-crystal-to-single-crystal transformation. More importantly, the combination of ionic pair cages significantly enhances its third-order nonlinear optical property, and its thin-film exhibits an excellent optical limiting effect.

5.
Chemistry ; 30(6): e202303148, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-37943116

RESUMO

Developing efficient nanostructured electrocatalysts for N2 reduction to NH3 under mild conditions remains a major challenge. The Fe-Mo cofactor serves as the archetypal active site in nitrogenase. Inspired by nitrogenase, we designed a series of heteronuclear dual-atom catalysts (DACs) labeled as FeMoN6-a Xa (a=1, 2, 3; X=B, C, O, S) anchored on the pore of g-C3 N4 to probe the impact of coordination on FeMo-catalyzed nitrogen fixation. The stability, reaction paths, activity, and selectivity of 12 different FeMoN6-a Xa DACs have been systematically studied using density functional theory. Of these, four DACs (FeMoN5 B1 , FeMoN5 O1 , FeMoN4 O2 , and FeMoN3 C3 ) displayed promising nitrogen reduction reaction (NRR) performance. Notably, FeMoN5 O1 stands out with an ultralow limiting potential of -0.11 V and high selectivity. Analysis of the density of states and charge/spin changes shows FeMoN5 O1 's high activity arises from optimal N2 binding on Fe initially and synergy of the FeMo dimer enabling protonation in NRR. This work contributes to the advancement of rational design for efficient NRR catalysts by regulating atomic coordination environments.

6.
Mater Horiz ; 11(1): 297-302, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37947130

RESUMO

The pivotal role of clusters and aromaticity in chemistry is undeniable, but there remains a gap in systematically understanding the aromaticity of metal-organic clusters. Herein, this article presents a novel metal-organic π-cluster, melding both metal-organic chemistry and aromaticity, to guide the construction of structurally stable Os-organic π-clusters. An in-depth analysis of these clusters reveals their bonding attributes, π-electronic composition, and origins of aromaticity, thereby confirming their unique metal-organic π-cluster properties. Furthermore, the Os5 cluster exhibits a promising third-order nonlinear optical (NLO) response, attributable to its narrow band gap and uniform electron/hole distribution, suggesting its potential as an optical switching material. This research introduces a fresh perspective on clusters, centered on delocalization, and broadens the domain of aromaticity studies. It also presents a novel method for designing efficient third-order NLO materials through consideration of the structure-activity relationship.

7.
Nano Lett ; 23(24): 11562-11568, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38054737

RESUMO

Developing artificial enzymes with excellent catalytic activities and uncovering the structural and chemical determinants remain a grand challenge. Discrete titanium-oxo clusters with well-defined coordination environments at the atomic level can mimic the pivotal catalytic center of natural enzymes and optimize the charge-transfer kinetics. Herein, we report the precise structural tailoring of a self-assembled tetrahedral Ti4Mn3-cluster for photocatalytic CO2 reduction and realize the selective evolution of CO over specific sites. Experiments and theoretical simulation demonstrate that the high catalytic performance of the Ti4Mn3-cluster should be related to the synergy between active Mn sites and the surrounding functional microenvironment. The reduced energy barrier of the CO2 photoreduction reaction and moderate adsorption strength of CO* are beneficial for the high selective evolution of CO. This work provides a molecular scale accurate structural model to give insight into artificial enzyme for CO2 photoreduction.

8.
Ann Med Surg (Lond) ; 85(12): 5932-5940, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38098593

RESUMO

Objective: Yixishu lotion (YXSL) originates from the summary of traditional Chinese medicine clinical experience and constantly improves in practice in clinical validation of the exact efficacy of traditional Chinese medicine prescription. To explore the mechanism of YXSL in treating vaginitis and the potential mechanisms based on network pharmacology and experimental verification. Methods: The active components and drug-related targets of YXSL were retrieved from the TCMSP (Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform) database, and the target was predicted by the UniProt database. Searching for genes related to 'vaginitis' disease in the GeneCards database, a total of 2581 drug targets were obtained. The interaction between proteins (PPI - protein-protein interaction) relationship was obtained by STRING database and visualized by Cytoscape software. Finally, the 'Bioconductor' installation package in R software was used to analyze the GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways of the target. Results: In this study, by the method of network pharmacology, the key active components of YXSL were flavonoids such as quercetin, apigenin, kaempferol, luteolin, ß-sitosterol; the main core proteins included MAPK14, TP53, FGF2, ESR1, MAPK3, MAPK1, VEGFA, JUN, IL-6, and the KEGG pathway was mainly involved in MAPK pathway, Th17 pathway, Malaria, TNF pathway, and other signaling pathways. Animal experiments showed that the clinical symptoms and vaginal tissue lesions of the YXSL group and the fluconazole group were improved, and the levels of TNF-α (tumor necrosis factor alpha), IL-6 (interleukin-6), MDA (malondialdehyde), SOD (superoxide dismutase), IL-4, and IFN-γ (interferon-γ) in vaginal tissue and serum were better than the model group. Conclusion: YXSL may achieve its therapeutic effect on vaginitis by reducing the inflammatory response, improving oxidative stress response, and improving body immunity, and it provides a theoretical basis for further research on its pharmacodynamic material basis and mechanism of action.

9.
Phys Chem Chem Phys ; 25(37): 25442-25449, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37712214

RESUMO

Two-dimensional (2D) materials demonstrate promising potential as high-efficiency photocatalysts. However, the intrinsic limitations of aluminum nitride (AlN), such as inadequate oxidation capacity, a high carrier recombination rate, and limited absorption of visible light, pose considerable challenges. In this paper, we introduce a novel co-doping technique with dysprosium (Dy) and carbon (C) on a 2D AlN monolayer, aiming to enhance its photocatalytic properties. Our first-principles calculations reveal a reduction in the bandgap and a significant enhancement in the visible light absorption rate of the co-doped Al24N22DyC2 structure. Notably, the distribution of the highest occupied molecular orbital and the lowest unoccupied molecular in proximity to Dy atoms demonstrates favorable conditions for carrier separation. Theoretical assessments of the hydrogen evolution reaction and oxygen evolution reaction activities further corroborate the potential of Al24N22DyC2 as a competent catalyst for photocatalytic reactions. These findings provide valuable theoretical insights for the experimental design and fabrication of novel, high-efficiency AlN semiconductor photocatalysts.

10.
BMC Genomics ; 24(1): 435, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537572

RESUMO

BACKGROUND: Pectate lyase (PL, EC 4.2.2.2), as an endo-acting depolymerizing enzyme, cleaves α-1,4-glycosidic linkages in esterified pectin and involves a broad range of cell wall modifications. However, the knowledge concerning the genome-wide analysis of the PL gene family in Fragaria vesca has not been thoroughly elucidated. RESULTS: In this study, sixteen PLs members in F. vesca were identified based on a genome-wide investigation. Substantial divergences existed among FvePLs in gene duplication, cis-acting elements, and tissue expression patterns. Four clusters were classified according to phylogenetic analysis. FvePL6, 8 and 13 in cluster II significantly contributed to the significant expansions during evolution by comparing orthologous PL genes from Malus domestica, Solanum lycopersicum, Arabidopsis thaliana, and Fragaria×ananassa. The cis-acting elements implicated in the abscisic acid signaling pathway were abundant in the regions of FvePLs promoters. The RNA-seq data and in situ hybridization revealed that FvePL1, 4, and 7 exhibited maximum expression in fruits at twenty days after pollination, whereas FvePL8 and FvePL13 were preferentially and prominently expressed in mature anthers and pollens. Additionally, the co-expression networks displayed that FvePLs had tight correlations with transcription factors and genes implicated in plant development, abiotic/biotic stresses, ions/Ca2+, and hormones, suggesting the potential roles of FvePLs during strawberry development. Besides, histological observations suggested that FvePL1, 4 and 7 enhanced cell division and expansion of the cortex, thus negatively influencing fruit firmness. Finally, FvePL1-RNAi reduced leaf size, altered petal architectures, disrupted normal pollen development, and rendered partial male sterility. CONCLUSION: These results provide valuable information for characterizing the evolution, expansion, expression patterns and functional analysis, which help to understand the molecular mechanisms of the FvePLs in the development of strawberries.


Assuntos
Fragaria , Filogenia , Estresse Fisiológico/genética , Desenvolvimento Vegetal/genética , Regulação da Expressão Gênica de Plantas , Frutas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Dalton Trans ; 52(33): 11451-11457, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37547997

RESUMO

Heterometallic oxo clusters have been attracting intensive interest due to their unique properties originating from the synergistic interactions between different components. Herein, we report the construction and catalytic applications of a family of copper-doped polyoxo-titanium clusters (Cu-PTCs) coordinated with different acetate derivative ligands. The solvothermal reactions of metal salts and trimethylacetic acid or 1,2-phenylenediacetic acid in ethanol produced Ti6Cu3(µ3-O)4(µ2-O)(OEt)16(L1)4 (L1 = trimethyl acetate, PTC-367) and H2Ti8Cu2Br2(µ4-O)2(µ2-O)4(OEt)20(L2)2 (L2 = 1,2-phenylenediacetate, PTC-368), respectively. When smaller acetic acid was introduced as a stabilizing ligand, higher nuclei H2Ti16Cu3(µ4-O)5(µ3-O)15(µ2-O)3(OiPr)18(Ac)8 (Ac = acetate, PTC-369) and H3Ti29Cu3(µ4-O)6(µ3-O)30(µ2-O)8(OiPr)17(Ac)20 (PTC-370) were prepared. The number of metal ions exposed on the surface of the four clusters changes due to variations in the steric hindrance of functionalizing ligands, and theoretically, so does their catalytic activity as Lewis acids. In light of this, we conducted a carbon dioxide cycloaddition reaction in an atmospheric environment and the four obtained compounds displayed increasing catalytic activities from PTC-367 to PTC-370. These results provide a feasible synthetic method for modulating the structures of Cu-doped titanium oxide materials and improving their catalytic activities.

12.
J Cell Mol Med ; 27(18): 2701-2713, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37539490

RESUMO

Glioma is the most common primary malignant brain tumour, and survival is poor. Hirudin has anticancer pharmacological effects through suppression of glioma cell progression, but the molecular target and mechanism are poorly understood. In this study, we observed that hirudin dose- and time-dependently inhibited glioma invasion, migration and proliferation. Mechanistically, hirudin activated LC3-II but not Caspase-3 to induce the autophagic death of glioma cells by decreasing the phosphorylation of mTOR and its downstream substrates ULK1, P70S6K and 4EBP1. Furthermore, hirudin inhibited glioma growth and induced changes in autophagy in cell-derived xenograft (CDX) nude mice, with a decrease in mTOR activity and activation of LC3-II. Collectively, our results highlight a new anticancer mechanism of hirudin in which hirudin-induced inhibition of glioma progression through autophagy activation is likely achieved by inhibition of the mTOR signalling pathway, thus providing a molecular basis for hirudin as a potential and effective clinical drug for glioma therapy.


Assuntos
Glioma , Hirudinas , Camundongos , Animais , Humanos , Hirudinas/farmacologia , Camundongos Nus , Linhagem Celular Tumoral , Serina-Treonina Quinases TOR/metabolismo , Glioma/patologia , Proliferação de Células , Autofagia , Apoptose
13.
J Phys Chem A ; 127(29): 6109-6115, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37449913

RESUMO

In order to determine the polarizability and hyperpolarizability of a molecule, several key parameters need to be known, including the excitation energy of the ground and excited states, the transition dipole moment, and the difference of dipole moment between the ground and excited states. In this study, a machine-learning model was developed and trained to predict the molecular polarizability and second-order hyperpolarizability on a subset of QM9 data set. The density of states was employed as input to the model. The results demonstrated that the machine-learning model effectively estimated both polarizability and the order of magnitude of second-order hyperpolarizability. However, the model was unable to predict the dipole moment and first-order hyperpolarizability, suggesting limitations in its ability to predict the difference of dipole moment between the ground and excited states. The computational efficiency of machine-learning models compared to traditional quantum mechanical calculations enables the possibility of large-scale screening of molecules that satisfy specific requirements using existing databases. This work presents a potential solution for the efficient exploration and analysis of molecules on a larger scale.

14.
Angew Chem Int Ed Engl ; 62(31): e202305977, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37289538

RESUMO

The electronic conductivity (EC) of metal-organic frameworks (MOFs) is sensitive to strongly oxidizing guest molecules. Water is a relatively mild species, however, the effect of H2 O on the EC of MOFs is rarely reported. We explored the effect of H2 O on the EC in the MOFs (NH2 )2 -MIL-125 and its derivatives with experimental and theoretical investigations. Unexpectedly, a large EC increase of 107 on H2 SO4 @(NH2 )2 -MIL-125 by H2 O was observed. Brønsted acid-base pairs formed with the -NH2 groups, and H2 SO4 played an important role in promoting the charge transfer from H2 O to the MOF. Based on H2 SO4 @(NH2 )2 -MIL-125, a high-performance chemiresistive humidity sensor was developed with the highest sensitivity, broadest detection range, and lowest limit of detection amongst all reported sensing materials to date. This work not only demonstrated that H2 O can remarkably influence the EC of MOFs, but it also revealed that post-modification of the structure of MOFs could enhance the influence of the guest molecule on their EC to design high-performance sensing materials.

15.
Chem Sci ; 14(18): 4824-4831, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37181787

RESUMO

Dangling bond formation for COF materials in a rational manner is an enormous challenge, especially through post-treatment which is a facile strategy while has not been reported yet. In this work, a "chemical scissor" strategy is proposed for the first time to rationally design dangling bonds in COF materials. It is found that Zn2+ coordination in post-metallization of TDCOF can act as an "inducer" which elongates the target bond and facilitates its fracture in hydrolyzation reactions to create dangling bonds. The number of dangling bonds is well-modulated by controlling the post-metallization time. Zn-TDCOF-12 shows one of the highest sensitivities to NO2 in all reported chemiresistive gas sensing materials operating under visible light and room temperature. This work opens an avenue to rationally design a dangling bond in COF materials, which could increase the active sites and improve the mass transport in COFs to remarkably promote their various chemical applications.

16.
Angew Chem Int Ed Engl ; 62(22): e202302882, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37005221

RESUMO

Designing porous materials for C2 H2 purification and safe storage is essential research for industrial utilization. We emphatically regulate the metal-alkyne interaction of PdII and PtII on C2 H2 sorption and C2 H2 /CO2 separation in two isostructural NbO metal-organic frameworks (MOFs), Pd/Cu-PDA and Pt/Cu-PDA. The experimental investigations and systematic theoretical calculations reveal that PdII in Pd/Cu-PDA undergoes spontaneous chemical reaction with C2 H2 , leading to irreversible structural collapse and loss of C2 H2 /CO2 sorption and separation. Contrarily, PtII in Pt/Cu-PDA shows strong di-σ bond interaction with C2 H2 to form specific π-complexation, contributing to high C2 H2 capture (28.7 cm3 g-1 at 0.01 bar and 153 cm3 g-1 at 1 bar). The reusable Pt/Cu-PDA efficiently separates C2 H2 from C2 H2 /CO2 mixtures with satisfying selectivity and C2 H2 capacity (37 min g-1 ). This research provides valuable insight into designing high-performance MOFs for gas sorption and separation.

17.
Angew Chem Int Ed Engl ; 62(26): e202302996, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37106275

RESUMO

Pore size plays a critical role in determining the performance of metal-organic frameworks (MOFs) in catalysis, sensing, and gas storage or separation. However, revealing the pore-size/property relationship remains extremely challenging because ideal structure models possessing different pore sizes but having the same components are lacking. In this work, a solvent-coordination directed structure swelling method was developed for modulating the ratio between the large and narrow pore phases of a flexible MOF, MIL-88B. Pore-size-dependent gas sensitivity and selectivity were studied for the first time in the MIL-88B samples. The optimized MIL-88B-20 % sample showed one of the best sensing performances among all the reported MOF-based H2 S-sensing materials. This work not only provides a method to synthesize ideal structure models for revealing the relationship between pore-size and properties, but also may inspire the development of high-performance gas sensing materials.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Solventes , Catálise
18.
Angew Chem Int Ed Engl ; 62(27): e202305225, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37104116

RESUMO

Porous organic polymers (POPs) with high porosity and tunable functionalities have been widely studied for use in gas separation, catalysis, energy conversion and energy storage. However, the high cost of organic monomers, and the use of toxic solvents and high temperatures during synthesis pose obstacles for large-scale production. Herein, we report the synthesis of imine and aminal-linked POPs using inexpensive diamine and dialdehyde monomers in green solvents. Theoretical calculations and control experiments show that using meta-diamines is crucial for forming aminal linkages and branching porous networks from [2+2] polycondensation reactions. The method demonstrates good generality in that 6 POPs were successfully synthesized from different monomers. Additionally, we scaled up the synthesis in ethanol at room temperature, resulting in the production of POPs in sub-kilogram quantities at a relatively low cost. Proof-of-concept studies demonstrate that the POPs can be used as high-performance sorbents for CO2 separation and as porous substrates for efficient heterogeneous catalysis. This method provides an environmentally friendly and cost-effective approach for large-scale synthesis of various POPs.

19.
Molecules ; 28(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36903547

RESUMO

Herein, the combination of anionic Zr4L6 (L = embonate) cages and N, N-chelated transition-metal cations leads to a series of new cage-based architectures, including ion pair structures (PTC-355 and PTC-356), dimer (PTC-357), and 3D frameworks (PTC-358 and PTC-359). Structural analyses show that PTC-358 exhibits a 2-fold interpenetrating framework with a 3,4-connected topology, and PTC-359 shows a 2-fold interpenetrating framework with a 4-connected dia network. Both PTC-358 and PTC-359 can be stable in air and other common solvents at room temperature. The investigations of third-order nonlinear optical (NLO) properties indicate that these materials show different degrees of optical limiting effects. It is surprising that increasing coordination interactions between anion and cation moieties can effectively enhance their third-order NLO properties, which can be attributed to the formation of coordination bonds that facilitate charge transfer. In addition, the phase purity, UV-vis spectra, and photocurrent properties of these materials were also studied. This work provides new ideas for the construction of third-order NLO materials.

20.
Nano Lett ; 23(7): 3062-3069, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36995141

RESUMO

Structural asymmetry affecting the nonlinear optics (NLO) of metal-organic frameworks (MOFs) is very important in fundamentals and applications but is still a challenge. Herein we develop a series of indium-porphyrinic framework (InTCPP) thin films and provide the first study on the coordination-induced symmetry breaking on their third-order NLO. The continuous and oriented InTCPP(H2) thin films were grown on quartz substrates and then postcoordinated with different cations (Fe2+ or Fe3+Cl-) in InTCPP(H2) (named InTCPP(Fe2+) and InTCPP(Fe3+Cl-)). The third-order NLO results reveal the Fe2+ and Fe3+Cl- coordinated InTCPP thin films have substantially enhanced NLO performance. Moreover, InTCPP(Fe3+Cl-) thin films cause symmetry breaking of microstructures, resulting in a 3-fold increase in the nonlinear absorption coefficient (up to 6.35 × 10-6 m/W) compared to InTCPP(Fe2+). This work not only develops a series of nonlinear optical MOF thin films but also provides new insight into symmetry breaking on MOFs for nonlinear optoelectronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...