Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Mol Ther ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734903

RESUMO

Sepsis is a life-threatening process due to organ dysfunction resulting from severe infections. Mesenchymal stromal cells (MSCs) are being investigated as therapy for sepsis, along with conditioning regimens to improve their function. Carbon monoxide (CO) gas, which is cytoprotective at low doses, induces autophagy and is a mediator of inflammation. We evaluated CO-induced autophagy in human MSCs (hMSCs), and its impact on cell function in murine cecal ligation and puncture. Conditioning of hMSCs with CO ex vivo resulted in enhanced survival and bacterial clearance in vivo, and neutrophil phagocytosis of bacteria in vitro. Decreased neutrophil infiltration and less parenchymal cell death in organs were associated with increased macrophage efferocytosis of apoptotic neutrophils, promoting resolution of inflammation. These CO effects were lost when the cells were exposed to autophagy inhibition prior to gas exposure. When assessing paracrine actions of CO-induced autophagy, extracellular vesicles (EVs) were predominantly responsible. CO had no effect on EV production, but altered their miRNA cargo. Increased expression of miR-145-3p and miR-193a-3p by CO was blunted with disruption of autophagy, and inhibitors of these miRNAs led to a loss of neutrophil phagocytosis and macrophage efferocytosis. Collectively, CO-induced autophagy enhanced hMSC function during sepsis via paracrine actions of MSC-derived EVs.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38725372

RESUMO

BACKGROUND: Autosomal-recessive mutations in SPEG (striated muscle preferentially expressed protein kinase) have been linked to centronuclear myopathy with or without dilated cardiomyopathy (CNM5). Loss of SPEG is associated with defective triad formation, abnormal excitation-contraction coupling, calcium mishandling and disruption of the focal adhesion complex in skeletal muscles. To elucidate the underlying molecular pathways, we have utilized multi-omics tools and analysis to obtain a comprehensive view of the complex biological processes and molecular functions. METHODS: Skeletal muscles from 2-month-old SPEG-deficient (Speg-CKO) and wild-type (WT) mice were used for RNA sequencing (n = 4 per genotype) to profile transcriptomics and mass spectrometry (n = 4 for WT; n = 3 for Speg-CKO mice) to profile proteomics and phosphoproteomics. In addition, interactomics was performed using the SPEG antibody on pooled muscle lysates (quadriceps, gastrocnemius and triceps) from WT and Speg-CKO mice. Based on the multi-omics results, we performed quantitative real-time PCR, co-immunoprecipitation and immunoblot to verify the findings. RESULTS: We identified that SPEG interacts with myospryn complex proteins CMYA5, FSD2 and RyR1, which are critical for triad formation, and that SPEG deficiency results in myospryn complex abnormalities (protein levels decreased to 22 ± 3% for CMYA5 [P < 0.05] and 18 ± 3% for FSD2 [P < 0.01]). Furthermore, SPEG phosphorylates RyR1 at S2902 (phosphorylation level decreased to 55 ± 15% at S2902 in Speg-CKO mice; P < 0.05), and its loss affects JPH2 phosphorylation at multiple sites (increased phosphorylation at T161 [1.90 ± 0.24-fold], S162 [1.61 ± 0.37-fold] and S165 [1.66 ± 0.13-fold]; decreased phosphorylation at S228 and S231 [39 ± 6%], S234 [50 ± 12%], S593 [48 ± 3%] and S613 [66 ± 10%]; P < 0.05 for S162 and P < 0.01 for other sites). On analysing the transcriptome, the most dysregulated pathways affected by SPEG deficiency included extracellular matrix-receptor interaction (P < 1e-15) and peroxisome proliferator-activated receptor signalling (P < 9e-14). CONCLUSIONS: We have elucidated the critical role of SPEG in the triad as it works closely with myospryn complex proteins (CMYA5, FSD2 and RyR1), it regulates phosphorylation levels of various residues in JPH2 and S2902 in RyR1, and its deficiency is associated with dysregulation of several pathways. The study identifies unique SPEG-interacting proteins and their phosphorylation functions and emphasizes the importance of using a multi-omics approach to comprehensively evaluate the molecular function of proteins involved in various genetic disorders.

3.
Heliyon ; 10(5): e26844, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38439863

RESUMO

Particle reinforced metal matrix composite (PRMMCs) has a complex mesoscopic structure, and the addition of particles can strengthen the metal matrix, which makes the deformation and failure behavior of PRMMCs under load very complicated. The finite element method can quantitatively describe the effect of PRMMCs microstructure parameters on the macroscopic properties of materials, but the key is to establish a representative volume element(RVE) model that can reflect the real mechanical properties of materials. This paper reports and discusses on the construction methods of the RVE model of PRMMCs from three aspects: the geometric modeling of PRMMCs microstructure, the construction of the matrix constitutive equation based on PRMMCs reinforcement mechanism and the interface module. In the end, Abaqus and some of its secondary development functions are introduced.

4.
J Nutr Health Aging ; 28(3): 100036, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38320382

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is a major public health concern. However, validated and broadly applicable biomarkers for early CKD diagnosis are currently not available. We aimed to identify serum metabolic signatures at an early stage of CKD to provide a reference for future investigations into the early diagnostic biomarkers. METHODS: Serum metabolites were extracted from 65 renal dysfunction (RD) patients and 121 healthy controls (discovery cohort: 12 RD patients and 55 health participants; validation cohort: 53 RD patients and 66 health participants). Metabolite extracts were analyzed by ultraperformance liquid chromatography coupled with quadrupole-electrostatic field orbital trap mass spectrometry (UPLC-QE-Orbitrap MS) for untargeted metabolomics. Orthogonal partial least squares-discriminant analysis (OPLS-DA) was performed to detect different compounds between groups. Receiver operating characteristic (ROC) curve analysis was carried out to determine the diagnostic value of the validated differential metabolites between groups. We referred to the Kyoto Encyclopedia of Gene and Genomes (KEGG) to elucidate the metabolic pathways of the validated differential metabolites. RESULTS: A total of 22 and 23 metabolites had significantly different abundances in the discovery and validation cohort, respectively. Six of them (creatinine, L-proline, citrulline, butyrylcarnitine, 1-methylhistidine, and valerylcarnitine) in the RD group was more abundant than that of the health group in both cohorts. The combination of the six validated differential metabolites were able to accurately detect RD (AUC 0.86). Three of the six metabolites are involved in the metabolism of arginine and proline. CONCLUSIONS: The present study highlights that creatinine, L-proline, citrulline, butyrylcarnitine, 1-methylhistidine, and valerylcarnitine are metabolite indicators with potential predictive value for CKD.


Assuntos
Carnitina/análogos & derivados , Citrulina , Insuficiência Renal Crônica , Humanos , Idoso , Cromatografia Líquida de Alta Pressão , Creatinina , Biomarcadores , Insuficiência Renal Crônica/diagnóstico , China , Prolina
5.
Arch Pharm (Weinheim) ; 357(1): e2300442, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37840345

RESUMO

The coronavirus disease-19 (COVID-19) pandemic has raised major interest in innovative drug concepts to suppress human coronavirus (HCoV) infections. We previously reported on a class of 1,2,3-triazolo fused betulonic acid derivatives causing strong inhibition of HCoV-229E replication via the viral nsp15 protein, which is proposedly related to compound binding at an intermonomer interface in hexameric nsp15. In the present study, we further explored the structure-activity relationship (SAR), by varying the substituent at the 1,2,3-triazolo ring as well as the triterpenoid skeleton. The 1,2,3-triazolo fused triterpenoids were synthesized by a multicomponent triazolization reaction, which has been developed in-house. Several analogs possessing a betulin, oleanolic acid, or ursolic acid core displayed favorable activity and selectivity (EC50 values for HCoV-229E: 1.6-3.5 µM), but neither of them proved as effective as the lead compound containing betulonic acid. The 18ß-glycyrrhetinic acid-containing analogs had low selectivity. The antiviral findings were rationalized by in silico docking in the available structure of the HCoV-229E nsp15 protein. The new SAR insights will aid the further development of these 1,2,3-triazolo fused triterpenoid compounds as a unique type of coronavirus inhibitors.


Assuntos
Coronavirus Humano 229E , Triterpenos , Humanos , Coronavirus Humano 229E/metabolismo , Proteínas Virais , Triterpenos/farmacologia , Relação Estrutura-Atividade
6.
Adv Mater ; 36(1): e2308332, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37730213

RESUMO

Inorganic all-solid-state sodium batteries (IASSSBs) are emerged as promising candidates to replace commercial lithium-ion batteries in large-scale energy storage systems due to their potential advantages, such as abundant raw materials, robust safety, low price, high-energy density, favorable reliability and stability. Inorganic sodium solid electrolytes (ISSEs) are an indispensable component of IASSSBs, gaining significant attention. Herein, this review begins by discussing the fundamentals of ISSEs, including their ionic conductivity, mechanical property, chemical and electrochemical stabilities. It then presents the crystal structures of advanced ISSEs (e.g., ß/ß''-alumina, NASICON, sulfides, complex hydride and halide electrolytes) and the related issues, along with corresponding modification strategies. The review also outlines effective approaches for forming intimate interfaces between ISSEs and working electrodes. Finally, current challenges and critical perspectives for the potential developments and possible directions to improve interfacial contacts for future practical applications of ISSEs are highlighted. This comprehensive review aims to advance the understanding and development of next-generation rechargeable IASSSBs.

7.
Basic Res Cardiol ; 119(1): 151-168, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145999

RESUMO

A deficiency of striated preferentially expressed gene (Speg), a member of the myosin light chain kinase family, results in abnormal myofibril structure and function of immature cardiomyocytes (CMs), corresponding with a dilated cardiomyopathy, heart failure and perinatal death. Mitochondrial development plays a role in cardiomyocyte maturation. Therefore, this study investigated whether Speg deficiency ( - / - ) in CMs would result in mitochondrial abnormalities. Speg wild-type and Speg-/- C57BL/6 littermate mice were utilized for assessment of mitochondrial structure by transmission electron and confocal microscopies. Speg was expressed in the first and second heart fields at embryonic (E) day 7.5, prior to the expression of mitochondrial Na+/Ca2+/Li+ exchanger (NCLX) at E8.5. Decreases in NCLX expression (E11.5) and the mitochondrial-to-nuclear DNA ratio (E13.5) were observed in Speg-/- hearts. Imaging of E18.5 Speg-/- hearts revealed abnormal mitochondrial cristae, corresponding with decreased ATP production in cells fed glucose or palmitate, increased levels of mitochondrial superoxide and depolarization of mitochondrial membrane potential. Interestingly, phosphorylated (p) PGC-1α, a key mediator of mitochondrial development, was significantly reduced in Speg-/- hearts during screening for targeted genes. Besides Z-line expression, Speg partially co-localized with PGC-1α in the sarcomeric region and was found in the same complex by co-immunoprecipitation. Overexpression of a Speg internal serine/threonine kinase domain in Speg-/- CMs promoted translocation of pPGC-1α into the nucleus, and restored ATP production that was abolished by siRNA-mediated silencing of PGC-1α. Our results demonstrate a critical role of Speg in mitochondrial development and energy metabolism in CMs, mediated in part by phosphorylation of PGC-1α.


Assuntos
Cardiomiopatia Dilatada , Doenças Mitocondriais , Camundongos , Animais , Gravidez , Feminino , Miócitos Cardíacos/metabolismo , Camundongos Endogâmicos C57BL , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , DNA Mitocondrial/metabolismo , Trifosfato de Adenosina/metabolismo , Doenças Mitocondriais/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas Musculares/genética , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo
8.
Am J Med Genet A ; 194(5): e63509, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38158391

RESUMO

Advances in bioinformatic tools paired with the ongoing accumulation of genetic knowledge and periodic reanalysis of genomic sequencing data have led to an improvement in genetic diagnostic rates. Candidate gene variants (CGVs) identified during sequencing or on reanalysis but not yet implicated in human disease or associated with a phenotypically distinct condition are often not revisited, leading to missed diagnostic opportunities. Here, we revisited 33 such CGVs from our previously published study and determined that 16 of them are indeed disease-causing (novel or phenotype expansion) since their identification. These results emphasize the need to focus on previously identified CGVs during sequencing or reanalysis and the importance of sharing that information with researchers around the world, including relevant functional analysis to establish disease causality.


Assuntos
Biologia Computacional , Genômica , Humanos , Sequenciamento do Exoma , Fenótipo , Genômica/métodos , Biologia Computacional/métodos , Alelos
9.
bioRxiv ; 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37905068

RESUMO

Inherited retinal diseases (IRDs) encompass a genetically diverse group of conditions in which mutations in genes critical to retinal function lead to progressive loss of photoreceptor cells and subsequent visual impairment. A handful of ribosome-associated genes have been implicated in retinal disorders alongside neurological phenotypes. This study focuses on the HBS1L gene, encoding HBS1 Like Translational GTPase which has been recognized as a critical ribosomal rescue factor. Previously, we have reported a female child carrying biallelic HBS1L mutations, manifesting growth restriction, developmental delay, and hypotonia. In this study, we describe her ophthalmologic findings, compare them with the Hbs1ltm1a/tm1a hypomorph mouse model, and evaluate the underlying microscopic and molecular perturbations. The patient was noted to have impaired visual function observed by electroretinogram (ERG), with dampened amplitudes of a- and b-waves in both rod- and cone-mediated responses. Hbs1ltm1a/tm1a mice exhibited profound retinal thinning of the entire retina, specifically of the outer retinal photoreceptor layer, detected using in vivo imaging of optical coherence tomography (OCT) and retinal cross sections. TUNEL assay revealed retinal degeneration due to extensive photoreceptor cell apoptosis. Loss of HBS1L resulted in comprehensive proteomic alterations in mass spectrometry analysis, with169 proteins increased and 480 proteins decreased including many critical IRD-related proteins. GO biological process and GSEA analyses reveal that these downregulated proteins are primarily involved in photoreceptor cell development, cilium assembly, phototransduction, and aerobic respiration. Furthermore, apart from the diminished level of PELO, a known partner protein, HBS1L depletion was accompanied by reduction in translation machinery associated 7 homolog (Tma7), and Endothelial differentiation-related factor 1(Edf1) proteins, the latter of which coordinates cellular responses to ribosome collisions. This novel connection between HBS1L and ribosome collision sensor (EDF1) further highlights the intricate mechanisms underpinning ribosomal rescue and quality control that are essential to maintain homeostasis of key proteins of retinal health, such as rhodopsin.

10.
Bioorg Chem ; 139: 106755, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37544272

RESUMO

CCR8 agonists hold promise for the treatment of various auto-immune diseases. Despite the fact that phenoxybenzylpiperazine derivatives are known to be endowed with CCR8 agonistic activity, systematic structure-activity relationship studies have not been reported. In this study, ZK756326, a previously disclosed CCR8 agonist, was divided in various fragments and each subunit was subjected to structural modifications. All newly synthesized analogues were evaluated in a CCR8 calcium mobilization assay, revealing that only limited structural variation was tolerated in both phenyl rings and at the benzylic position. In contrast, various linkers gave analogues with good CCR8 agonistic potency. In addition, the presence of small substituents on the piperazinyl moiety or the exchange of the piperazinyl for a piperidinyl group afforded compounds with promising CCR8 agonism, with the most potent congener being 10-fold more potent than ZK756326.


Assuntos
Receptores CCR8 , Transdução de Sinais , Relação Estrutura-Atividade , Receptores CCR8/antagonistas & inibidores
11.
bioRxiv ; 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37162921

RESUMO

Autosomal-recessive mutations in SPEG (striated muscle preferentially expressed protein kinase) have been linked to centronuclear myopathy. Loss of SPEG is associated with defective triad formation, abnormal excitation-contraction coupling, and calcium mishandling in skeletal muscles. To elucidate the underlying molecular pathways, we have utilized multi-omics tools and analysis to obtain a comprehensive view of the complex biological processes. We identified that SPEG interacts with myospryn complex proteins (CMYA5, FSD2, RyR1), and SPEG deficiency results in myospryn complex abnormalities. In addition, transcriptional and protein profiles of SPEG-deficient muscle revealed defective mitochondrial function including aberrant accumulation of enlarged mitochondria on electron microscopy. Furthermore, SPEG regulates RyR1 phosphorylation at S2902, and its loss affects JPH2 phosphorylation at multiple sites. On analyzing the transcriptome, the most dysregulated pathways affected by SPEG deficiency included extracellular matrix-receptor interaction and peroxisome proliferator-activated receptors signaling, which may be due to defective triad and mitochondrial abnormalities. In summary, we have elucidated the critical role of SPEG in triad as it works closely with myospryn complex, phosphorylates JPH2 and RyR1, and demonstrated that its deficiency is associated with mitochondrial abnormalities. This study emphasizes the importance of using multi-omics techniques to comprehensively analyze the molecular anomalies of rare diseases. Synopsis: We have previously linked mutations in SPEG (striated preferentially expressed protein) with a recessive form of centronuclear myopathy and/or dilated cardiomyopathy and have characterized a striated muscle-specific SPEG-deficient mouse model that recapitulates human disease with disruption of the triad structure and calcium homeostasis in skeletal muscles. In this study, we applied multi-omics approaches (interactomic, proteomic, phosphoproteomic, and transcriptomic analyses) in the skeletal muscles of SPEG-deficient mice to assess the underlying pathways associated with the pathological and molecular abnormalities. SPEG interacts with myospryn complex proteins (CMYA5, FSD2, RyR1), and its deficiency results in myospryn complex abnormalities.SPEG regulates RyR1 phosphorylation at S2902, and its loss affects JPH2 phosphorylation at multiple sites.SPEGα and SPEGß have different interacting partners suggestive of differential function.Transcriptome analysis indicates dysregulated pathways of ECM-receptor interaction and peroxisome proliferator-activated receptor signaling.Mitochondrial defects on the transcriptome, proteome, and electron microscopy, may be a consequence of defective calcium signaling.

12.
Eur J Hum Genet ; 31(6): 712-715, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36690831

RESUMO

Clinical exome/genome sequencing is increasingly being utilized by clinicians to diagnose various likely genetic conditions, but many cases remain undiagnosed. In a subset of those undiagnosed cases, a single heterozygous variant in an autosomal recessive (AR) condition with consistent phenotype may be identified, raising the question if a second variant is missing. Here, we report two cases of recessive conditions in which only one heterozygous variant was initially reported by clinical exome sequencing, and on research reanalysis a second heterozygous variant in trans was identified. We performed a review of the existing exome reanalysis literature and found that this aspect is often not emphasized. These findings highlight the importance of data reanalysis in undiagnosed cases where only a single disease-associated variant is identified in an AR condition with a strong link to presenting phenotype.


Assuntos
Exoma , Fenótipo , Heterozigoto , Sequenciamento do Exoma
13.
JCI Insight ; 7(15)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35763354

RESUMO

Striated preferentially expressed protein kinase (SPEG), a myosin light chain kinase, is mutated in centronuclear myopathy (CNM) and/or dilated cardiomyopathy. No precise therapies are available for this disorder, and gene replacement therapy is not a feasible option due to the large size of SPEG. We evaluated the potential of dynamin-2 (DNM2) reduction as a potential therapeutic strategy because it has been shown to revert muscle phenotypes in mouse models of CNM caused by MTM1, DNM2, and BIN1 mutations. We determined that SPEG-ß interacted with DNM2, and SPEG deficiency caused an increase in DNM2 levels. The DNM2 reduction strategy in Speg-KO mice was associated with an increase in life span, body weight, and motor performance. Additionally, it normalized the distribution of triadic proteins, triad ultrastructure, and triad number and restored phosphatidylinositol-3-phosphate levels in SPEG-deficient skeletal muscles. Although DNM2 reduction rescued the myopathy phenotype, it did not improve cardiac dysfunction, indicating a differential tissue-specific function. Combining DNM2 reduction with other strategies may be needed to target both the cardiac and skeletal defects associated with SPEG deficiency. DNM2 reduction should be explored as a therapeutic strategy against other genetic myopathies (and dystrophies) associated with a high level of DNM2.


Assuntos
Dinamina II , Miopatias Congênitas Estruturais , Animais , Modelos Animais de Doenças , Dinamina II/genética , Camundongos , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/metabolismo , Miopatias Congênitas Estruturais/terapia , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Fenótipo
14.
J Pers Med ; 11(12)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34945750

RESUMO

SLC25A46 (solute carrier family 25 member 46) mutations have been linked to various neurological diseases with recessive inheritance, including Leigh syndrome, optic atrophy, and lethal congenital pontocerebellar hypoplasia. SLC25A46 is expressed in the outer membrane of mitochondria, where it plays a critical role in mitochondrial dynamics. A deceased 7-month-old female infant was suspected to have Leigh syndrome. Clinical exome sequencing was non-diagnostic, but research reanalysis of the sequencing data identified two novel variants in SLC25A46: a missense (c.1039C>T, p.Arg347Cys; NM_138773, hg19) and a donor splice region variant (c.283+5G>A) in intron 1. Both variants were predicted to be damaging. Sanger sequencing of cDNA detected a single missense allele in the patient compared to control, and the SLC25A46 transcript levels were also reduced due to the splice region variant. Additionally, Western blot analysis of whole-cell lysate showed a decrease of SLC25A46 expression in proband fibroblasts, relative to control cells. Further, analysis of mitochondrial morphology revealed evidence of increased fragmentation of the mitochondrial network in proband fibroblasts, compared to control cells. Collectively, our findings suggest that these novel variants in SLC24A46, the donor splice one and the missense variant, are the cause of the neurological phenotype in this proband.

15.
Diabetes Res Clin Pract ; 179: 109003, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34391831

RESUMO

AIMS: To compare the safety of intermittent fasting (IF) with that of continuous energy-restricted diets (CERD) in patients with T2DM and metabolic syndrome who were overweight or obese and assess their effects on glycemic control and weight loss. MATERIALS AND METHODS: We searched MEDLINE (Ovid), Embase, and SINOMED databases up to September 13, 2020. The major outcome was glycemic control and secondary outcomes were change in weight, fasting insulin, and lipid profile. RESULTS: Of 84 retrieved studies, 5 met our inclusion criteria. Of these, four studies comprising 355 participants were included in the meta-analysis. Based on changes in HbA1c (-0.06, 95% confidence interval [CI] -0.27 to 0.16) and fasting plasma glucose (-0.27, 95% CI -0.76 to 0.22), IF and CERD had similar effects on glycemic control. Moreover, IF had a better effect on weight loss (-1.70, 95% CI -3.28 to -0.11 kg). Patients in both groups experienced similar improvements in fasting insulin and lipid profile as well as similar hypoglycemic events. CONCLUSIONS: IF is a safe diet pattern and could be implemented for patients with T2DM or metabolic syndrome. Further studies with a larger sample size are needed to verify the effectiveness and safety of IF in patients with T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Síndrome Metabólica , Glicemia , Dieta , Jejum , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto
16.
PLoS Genet ; 17(7): e1009639, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34232960

RESUMO

ARHGAP42 encodes Rho GTPase activating protein 42 that belongs to a member of the GTPase Regulator Associated with Focal Adhesion Kinase (GRAF) family. ARHGAP42 is involved in blood pressure control by regulating vascular tone. Despite these findings, disorders of human variants in the coding part of ARHGAP42 have not been reported. Here, we describe an 8-year-old girl with childhood interstitial lung disease (chILD), systemic hypertension, and immunological findings who carries a homozygous stop-gain variant (c.469G>T, p.(Glu157Ter)) in the ARHGAP42 gene. The family history is notable for both parents with hypertension. Histopathological examination of the proband lung biopsy showed increased mural smooth muscle in small airways and alveolar septa, and concentric medial hypertrophy in pulmonary arteries. ARHGAP42 stop-gain variant in the proband leads to exon 5 skipping, and reduced ARHGAP42 levels, which was associated with enhanced RhoA and Cdc42 expression. This is the first report linking a homozygous stop-gain variant in ARHGAP42 with a chILD disorder, systemic hypertension, and immunological findings in human patient. Evidence of smooth muscle hypertrophy on lung biopsy and an increase in RhoA/ROCK signaling in patient cells suggests the potential mechanistic link between ARHGAP42 deficiency and the development of chILD disorder.


Assuntos
Proteínas Ativadoras de GTPase/genética , Hipertensão/genética , Doenças Pulmonares Intersticiais/genética , Animais , Criança , Feminino , Homozigoto , Humanos , Leucocitose/genética , Leucocitose/imunologia , Doenças Pulmonares Intersticiais/patologia , Linfocitose/genética , Linfocitose/imunologia , Masculino , Camundongos , Linhagem , Sequenciamento do Exoma , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
17.
Int J Mol Sci ; 22(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072258

RESUMO

Mutations in striated preferentially expressed protein kinase (SPEG), a member of the myosin light chain kinase protein family, are associated with centronuclear myopathy (CNM), cardiomyopathy, or a combination of both. Burgeoning evidence suggests that SPEG plays critical roles in the development, maintenance, and function of skeletal and cardiac muscles. Here we review the genotype-phenotype relationships and the molecular mechanisms of SPEG-related diseases. This review will focus on the progress made toward characterizing SPEG and its interacting partners, and its multifaceted functions in muscle regeneration, triad development and maintenance, and excitation-contraction coupling. We will also discuss future directions that are yet to be investigated including understanding of its tissue-specific roles, finding additional interacting proteins and their relationships. Understanding the basic mechanisms by which SPEG regulates muscle development and function will provide critical insights into these essential processes and help identify therapeutic targets in SPEG-related disorders.


Assuntos
Suscetibilidade a Doenças , Expressão Gênica , Desenvolvimento Muscular , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Proteínas de Transporte/metabolismo , Acoplamento Excitação-Contração/genética , Regulação da Expressão Gênica , Humanos , Desenvolvimento Muscular/genética , Proteínas Musculares/química , Músculo Esquelético/metabolismo , Mutação , Miocárdio/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas , Proteínas Serina-Treonina Quinases/química , Regeneração/genética , Transdução de Sinais , Relação Estrutura-Atividade
18.
Mol Genet Genomic Med ; 9(6): e1683, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33978323

RESUMO

BACKGROUND: Nemaline myopathy 8 is a severe autosomal recessive muscle disorder characterized by fetal akinesia or hypokinesia, contractures, fractures, respiratory failure and swallowing difficulties apparent at birth. METHODS: An affected dizygotic twin pair from a non-consanguineous Chinese family presented with severe asphyxia, lethargy and no response to stimuli. The dysmorphic features included prominent nasal bridge, telecanthus, excessive hip abduction, limb edema, absent palmar and sole creases, acromelia, bilateral clubfoot, appendicular hypertonia and cryptorchidism. Both infants died in the first week of life. Whole-exome sequencing was used to identify the causative gene. RESULTS: Whole-exome sequencing identified a recurrent missense variant c.1516A>C and a novel splice-acceptor variant c.1153-1G>C in KLHL40 gene in both siblings. We estimated the disease incidence in Southern Chinese population to be 2.47/100,000 based on the cumulative allele frequency of pathogenic and likely pathogenic variants in our internal database. CONCLUSION: Our study expanded the mutation spectrum of KLHL40 and the condition could have been underdiagnosed before. We identified a recurrent missense variant c.1516A>C and provided evidence further supporting the founder effect of this variant in Southern Chinese population. Given the severity of the condition and the relative high incidence, this not-so-rare disorder should be included in expanded carrier screening panel for Chinese population.


Assuntos
Proteínas Musculares/genética , Miopatias da Nemalina/genética , Fenótipo , Frequência do Gene , Humanos , Recém-Nascido , Masculino , Mutação de Sentido Incorreto , Miopatias da Nemalina/patologia , Gêmeos Dizigóticos
19.
Neural Netw ; 141: 52-60, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33866302

RESUMO

A challenging issue in the field of the automatic recognition of emotion from speech is the efficient modelling of long temporal contexts. Moreover, when incorporating long-term temporal dependencies between features, recurrent neural network (RNN) architectures are typically employed by default. In this work, we aim to present an efficient deep neural network architecture incorporating Connectionist Temporal Classification (CTC) loss for discrete speech emotion recognition (SER). Moreover, we also demonstrate the existence of further opportunities to improve SER performance by exploiting the properties of convolutional neural networks (CNNs) when modelling contextual information. Our proposed model uses parallel convolutional layers (PCN) integrated with Squeeze-and-Excitation Network (SEnet), a system herein denoted as PCNSE, to extract relationships from 3D spectrograms across timesteps and frequencies; here, we use the log-Mel spectrogram with deltas and delta-deltas as input. In addition, a self-attention Residual Dilated Network (SADRN) with CTC is employed as a classification block for SER. To the best of the authors' knowledge, this is the first time that such a hybrid architecture has been employed for discrete SER. We further demonstrate the effectiveness of our proposed approach on the Interactive Emotional Dyadic Motion Capture (IEMOCAP) and FAU-Aibo Emotion corpus (FAU-AEC). Our experimental results reveal that the proposed method is well-suited to the task of discrete SER, achieving a weighted accuracy (WA) of 73.1% and an unweighted accuracy (UA) of 66.3% on IEMOCAP, as well as a UA of 41.1% on the FAU-AEC dataset.


Assuntos
Emoções , Redes Neurais de Computação , Fala , Criança , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...