Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 325
Filtrar
1.
J Adv Res ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39009133

RESUMO

INTRODUCTION: Since the outbreak of COVID-19, microplastics (MPs) and triclosan in pharmaceuticals and personal care products (PPCPs) are markedly rising. MPs and triclosan are co-present in the environment, but their interactions and subsequent implications on the fate of triclosan in plants are not well understood. OBJECTIVE: This study aimed to investigate effects of charged polystyrene microplastics (PS-MPs) on the fate of triclosan in cabbage plants under a hydroponic system. METHODS: 14C-labeling method and liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry (LC-QTOF-MS) analysis were applied to clarify the bioaccumulation, distribution, and metabolism of triclosan in hydroponics-cabbage system. The distribution of differentially charged PS-MPs in cabbage was investigated by confocal laser scanning microscopy and scanning electron microscopy. RESULTS: The results showed that MPs had a significant impact on bioaccumulation and metabolism of triclosan in hydroponics-cabbage system. PS-COO-, PS, and PS-NH3+ MPs decreased the bioaccumulation of triclosan in cabbage by 69.1 %, 81.5 %, and 87.7 %, respectively, in comparison with the non-MP treatment (control). PS-MPs also reduced the translocation of triclosan from the roots to the shoots in cabbage, with a reduction rate of 15.6 %, 28.3 %, and 65.8 % for PS-COO-, PS, and PS-NH3+, respectively. In addition, PS-NH3+ profoundly inhibited the triclosan metabolism pathways such as sulfonation, nitration, and nitrosation in the hydroponics-cabbage system. The above findings might be linked to strong adsorption between PS-NH3+ and triclosan, and PS-NH3+ may also potentially inhibit the growth of cabbage. Specially, the amount of triclosan adsorbed on PS-NH3+ was significantly greater than that on PS and PS-COO-. The cabbage biomass was reduced by 76.9 % in PS-NH3+ groups, in comparison with the control. CONCLUSION: The uptake and transformation of triclosan in hydroponics-cabbage system were significantly inhibited by charged PS-MPs, especially PS-NH3+. This provides new insights into the fate of triclosan and other PPCPs coexisted with microplastics for potential risk assessments.

2.
J Agric Food Chem ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979948

RESUMO

In planta expression of recombinant antibodies has been proposed as a strategy for herbicide resistance but is not well advanced yet. Here, an atrazine nanobody gene fused with a green fluorescent protein tag was transformed to Arabidopsis thaliana, which was confirmed with PCR, ELISA, and immunoblotting. High levels of nanobody accumulation were observed in the nucleus, cytoderm, and cytosol. The nanobody expressed in the plant had similar affinity, sensitivity, and selectivity as that expressed in Escherichia coli. The T3 homozygous line showed resistance in a dose-dependent manner up to 380 g ai/ha of atrazine, which is approximately one-third of the recommended field application rate. This is the first report of utilizing a nanobody in plants against herbicides. The results suggest that utilizing a high-affinity herbicide nanobody gene rather than increasing the expression of nanobodies in plants may be a technically viable approach to acquire commercial herbicide-resistant crops and could be a useful tool to study plant physiology.

3.
Exp Neurol ; : 114881, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38996864

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive cognitive deficits. Although the pathogenesis of AD is unclear, oxidative stress has been implicated to play a dominant role in its development. The flavonoid isoorientin (ISO) and its synthetic derivatives TFGF-18 selectively inhibit glycogen synthase kinase-3ß (GSK-3ß), a potential target of AD treatment. PURPOSE: To investigate the neuroprotective effect of TFGF-18 against oxidative stress via the GSK-3ß pathway in hydrogen peroxide (H2O2)-induced rat pheochromocytoma PC12 cells in vitro and scopolamine (SCOP)-induced AD mice in vivo. METHOD: The oxidative stress of PC12 cells was induced by H2O2 (600 µM) and the effects of TFGF-18 (2 and 8 µM) or ISO (12.5 and 50 µM) were observed. The AD mouse model was induced by SCOP (3 mg/kg), and the effects of TFGF-18 (2 and 8 mg/kg), ISO (50 mg/kg), and donepezil (DNP) (3 mg/kg) were observed. DNP, a currently accepted drug for AD was used as a positive control. The neuronal cell damages were analyzed by flow cytometry, LDH assay, JC-1 assay and Nissl staining. The oxidative stress was evaluated by the detection of MDA, SOD, GPx and ROS. The level of ACh, and the activity of AChE, ChAT were detected by the assay kit. The expressions of Bax, Bcl-2, caspase3, cleaved-caspase3, p-AKT (Thr308), AKT, p-GSK-3ß (Ser9), GSK-3ß, Nrf2, and HO-1, as well as p-CREB (Ser133), CREB, and BDNF were analyzed by western blotting. Morris water maze test was performed to analyze learning and memory ability. RESULTS: TFGF-18 inhibited neuronal damage and the expressions of Bax caspase3 and cleaved-caspase3, and increased the expression of Bcl-2 in vitro and in vivo. The level of MDA and ROS were decreased while the activities of SOD and GPx were increased by TFGF-18. Moreover, TFGF-18 increased the p-AKT, p-GSK-3ß (Ser9), Nrf2, HO-1, p-CREB, and BDNF expression reduced by H2O2 and SCOP. Meanwhile, MK2206, an AKT inhibitor, reversed the effect of TFGF-18 on the AKT/GSK-3ß pathway. In addition, the cholinergic system (ACh, ChAT, and AChE) disorders were retrained and the learning and memory impairments were prevented by TFGF-18 in SCOP-induced AD mice. CONCLUSIONS: TFGF-18 protects against neuronal cell damage and cognitive impairment by inhibiting oxidative stress via AKT/GSK-3ß/Nrf2 pathway.

4.
J Hazard Mater ; 476: 134873, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38908182

RESUMO

Xanthates, common mining flotation reagents, strongly bind thiophilic metals such as copper (Cu), lead (Pb), cadmium (Cd), and zinc (Zn) and consequentially change their bioavailability and mobility upon their discharge into the environment. However, accurate quantification of the metal-xanthate complexes has remained elusive. This study develops a novel and robust method that realizes the accurate quantification of the metal-xanthate complexes resulted from single and multiple reactions of three typical xanthates (ethyl, isopropyl, and butyl xanthates) and four thiophilic metals (Cu, Pb, Cd, and Zn) in water samples. This method uses sulfur (S2-) dissociation, followed by tandem solid phase extraction of C18 + PWAX and subsequent LC-MS/MS analysis. It has a wide linearity range (1-1000 µg/L, R2 ≥ 0.995), low method detection limits (0.002-0.036 µg/L), and good recoveries (70.6-107.0 %) at 0.01-10 mg/L of xanthates. Applications of this method showed ubiquitous occurrence of the metal-xanthate complexes as the primary species in flotation wastewaters, which the concentrations were 4.6-28.9-fold higher than those previously determined. It is the first quantitative method established for the analysis of metal-xanthate complexes in water samples, which is of great importance to comprehensively understand the fate and risks of xanthates in the environment.

5.
Sci Total Environ ; 946: 173858, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38876353

RESUMO

Increasing use and release of graphene nanomaterials and pharmaceutical and personal care products (PPCPs) in soil environment have polluted the environment and posed high ecological risks. However, little is understood about the interactive effects and mechanism of graphene on the behaviors of PPCPs in soil. In the present study, the effects of reduced graphene oxide nanomaterials (RGO) on the fate of triclosan in two typical soils (S1: silty loam; S2: silty clay loam) were investigated with 14C-triclosan, high-resolution mass spectrometry, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), density functional theory (DFT) calculations, and microbial community structure analysis. The results showed that RGO prolonged the half-life of triclosan by 23.6-51.3 %, but delayed the formation of transformed products such as methyl triclosan and dechlorinated dimer of triclosan in the two typical soils. Mineralization of triclosan to 14CO2 was inhibited by 48.2-79.3 % in 500 mg kg-1 RGO in comparison with that in the control, whereas the bound residue was 54.2-56.4 % greater than the control. RGO also reduced the relative abundances of triclosan-degrading bacteria (Pseudomonas and Sphingomonas) in soils. Compared to silty loam, RGO more effectively inhibited triclosan degradation in silty clay loam. Furthermore, the DFT calculations suggested a strong association of the adsorption of triclosan on RGO with the van der Waals forces and π-π interactions. These results revealed that RGO inhibited the transformation of 14C-triclosan in soil through strong adsorption and triclosan-degrading bacteria inhibition in soils. Therefore, the presence of RGO may potentially enhance persistence of triclosan in soil. Overall, our study provides valuable insights into the risk assessment of triclosan in the presence of GNs in soil environment.

6.
J Hazard Mater ; 471: 134439, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38677123

RESUMO

Microcystins (MCs) have a significant influence on aquatic ecosystems, but little is known about their terrestrial fate and impact. Here, we investigated the fate of two MCs (MC-LR and MC-RR) in the soil-earthworm system, with consideration of their congener-specific impact on earthworm health, soil bacteria, and soil metabolome. Although MCs had little acute lethal effect on earthworms, they caused obvious growth inhibition and setae rupture. Relative to MC-RR, MC-LR exhibited higher bioaccumulation and the resulting dermal lesions and deformation of longitudinal muscles. While the incorporation of both MCs into soils stimulated pathogenic bacteria and depressed oxidative stress tolerant bacteria, the response among soil nitrification and glutathione metabolism differed between the two congeners. The dissipation kinetics of MCs obeyed the first-order model. Earthworms stimulated soil N-cycling enzyme activities, increased the abundance of MC-degrading bacteria, and promoted bacterial metabolic functions related to glutathione metabolism, xenobiotics biodegradation, and metabolism of amino acids that comprise MCs, which accelerated the dissipation of MC-LR and MC-RR by 227% and 82%, respectively. These results provide evidence of significant congener differences in the terrestrial fate and impact of MCs, which will enable a better understanding of their role in mediating soil functions and ecosystem services.


Assuntos
Microcistinas , Oligoquetos , Microbiologia do Solo , Poluentes do Solo , Animais , Oligoquetos/metabolismo , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Microcistinas/metabolismo , Microcistinas/toxicidade , Solo/química , Glutationa/metabolismo , Biodegradação Ambiental , Bactérias/metabolismo , Bioacumulação
7.
Food Funct ; 15(9): 4682-4702, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38590246

RESUMO

Cereals are the main source of energy in the human diet. Compared to refined grains, whole grains retain more beneficial components, including dietary fiber, polyphenols, proteins, vitamins, and minerals. Dietary fiber and bound polyphenols (biounavailable) in cereals are important active substances that can be metabolized by the gut microorganisms and affect the intestinal environment. There is a close relationship between the gut microbiota structures and various disease phenotypes, although the consistency of this link is affected by many factors, and the specific mechanisms are still unclear. Remodeling unfavorable microbiota is widely recognized as an important way to target the gut and improve diseases. This paper mainly reviews the interaction between the gut microbiota and cereal-derived dietary fiber and polyphenols, and also summarizes the changes to the gut microbiota and possible molecular mechanisms of related glycolipid metabolism. The exploration of single active ingredients in cereals and their synergistic health mechanisms will contribute to a better understanding of the health benefits of whole grains. It will further help promote healthier whole grain foods by cultivating new varieties with more potential and optimizing processing methods.


Assuntos
Fibras na Dieta , Microbioma Gastrointestinal , Polifenóis , Grãos Integrais , Polifenóis/metabolismo , Fibras na Dieta/metabolismo , Fibras na Dieta/análise , Humanos , Grãos Integrais/química , Grãos Integrais/metabolismo , Animais , Grão Comestível/química
8.
J Agric Food Chem ; 72(13): 7354-7363, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38511857

RESUMO

The maize (Zea mays L.) glycosyltransferase family 1 comprises many uridine diphosphate glycosyltransferase (UGT) members. However, UGT activities and biochemical functions have seldom been revealed. In this study, the genes of two flavonoid di-O-glycosyltransferases ZmUGT84A1 and ZmUGT84A2 were cloned from maize plant and expressed in Escherichia coli. Phylogenetic analysis showed that the two enzymes were homologous to AtUGT84A1 and AtUGT84A3. The two recombinant enzymes showed a high conversion rate of luteolin to its glucosides, mainly 4',7-di-O-glucoside and minorly 3',7-di-O-glucoside in two-step glycosylation reactions in vitro. Moreover, the recombinant ZmUGT84A1 and ZmUGT84A2 had a broad substrate spectrum, converting eriodictyol, naringenin, apigenin, quercetin, and kaempferol to monoglucosides and diglucosides. The highly efficient ZmUGT84A1 and ZmUGT84A2 may be used as a tool for the effective synthesis of various flavonoid O-glycosides and as markers for crop breeding to increase O-glycosyl flavonoid content in food.


Assuntos
Flavonoides , Glicosiltransferases , Flavonoides/química , Glicosiltransferases/metabolismo , Zea mays/genética , Zea mays/metabolismo , Filogenia , Melhoramento Vegetal , Glicosídeos , Glucosídeos/metabolismo , Clonagem Molecular
9.
Plant Commun ; 5(5): 100830, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38297839

RESUMO

Neonicotinoids (NEOs), a large class of organic compounds, are a type of commonly used pesticide for crop protection. Their uptake and accumulation in plants are prerequisites for their intra- and intercellular movements, transformation, and function. Understanding the molecular mechanisms that underpin NEO uptake by plants is crucial for effective application, which remains elusive. Here, we demonstrate that NEOs enter plant cells primarily through the transmembrane symplastic pathway and accumulate mainly in the cytosol. Two plasma membrane intrinsic proteins discovered in Brassica rapa, BraPIP1;1 and BraPIP2;1, were found to encode aquaporins (AQPs) that are highly permeable to NEOs in different plant species and facilitate NEO subcellular diffusion and accumulation. Their conserved transport function was further demonstrated in Xenopus laevis oocyte and yeast assays. BraPIP1;1 and BraPIP2;1 gene knockouts and interaction assays suggested that their proteins can form functional heterotetramers. Assessment of the potential of mean force indicated a negative correlation between NEO uptake and the energy barrier of BraPIP1;1 channels. This study shows that AQPs transport organic compounds with greater osmolarity than previously thought, providing new insight into the molecular mechanisms of organic compound uptake and facilitating innovations in systemic pesticides.


Assuntos
Aquaporinas , Aquaporinas/metabolismo , Aquaporinas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Transporte Biológico , Neonicotinoides/metabolismo , Animais , Praguicidas/metabolismo , Xenopus laevis/metabolismo , Brassica rapa/metabolismo , Brassica rapa/genética , Oócitos/metabolismo , Inseticidas/metabolismo
10.
J Hazard Mater ; 465: 133317, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38218031

RESUMO

Antibiotics affect bacterial community structure and functions in soil. However, the response and adaptation of root-associated bacterial communities to antibiotic stress remains poorly understood. Here, rhizobox experiments were conducted with maize (Zea mays L.) upon exposure to antibiotics ciprofloxacin or tetracycline. High-throughput sequencing analysis of bacterial community and quantitative PCR analysis of nitrogen cycling genes show that ciprofloxacin and tetracycline significantly shift bacterial community structure in bulk soil, whereas plant host may mitigate the disturbances of antibiotics on bacterial communities in root-associated niches (i.e., rhizosphere and rhizoplane) through the community stabilization. Deterministic assembly, microbial interaction, and keystone species (e.g., Rhizobium and Massilia) of root-associated bacterial communities benefit the community stability compared with those in bulk soil. Meanwhile, the rhizosphere increases antibiotic dissipation, potentially reducing the impacts of antibiotics on root-associated bacterial communities. Furthermore, rhizospheric effects deriving from root exudates alleviate the impacts of antibiotics on the nitrogen cycle (i.e., nitrification, organic nitrogen conversion and denitrification) as confirmed by functional gene quantification, which is largely attributed to the bacterial community stability in rhizosphere. The present study enhances the understanding on the response and adaptation of root-associated bacterial community to antibiotic pollution.


Assuntos
Antibacterianos , Bactérias , Bactérias/genética , Zea mays/microbiologia , Solo , Tetraciclina , Ciprofloxacina , Nitrogênio , Microbiologia do Solo , Rizosfera , Raízes de Plantas/microbiologia
11.
Environ Toxicol ; 39(5): 2583-2595, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38205909

RESUMO

Tolfenpyrad, a highly effective and broad-spectrum insecticide and acaricide extensively utilized in agriculture, presents a potential hazard to nontarget organisms. This study was designed to explore the toxic mechanisms of tolfenpyrad on zebrafish embryos. Between 24 and 96 h after exposure of the fertilized embryos to tolfenpyrad at concentrations ranging from 0.001 to 0.016 mg/L (96 h-LC50 = 0.017 mg/L), lethal effects were apparent, accompanied with notable anomalies including pericardial edema, increased pericardial area, diminished heart rate, and an elongated distance between the venous sinus and the arterial bulb. Tolfenpyrad elicited noteworthy alterations in the expression of genes pertinent to cardiac development and apoptosis, with the most pronounced changes observed in the cardiac development-related genes of bone morphogenetic protein 2b (bmp2b) and p53 upregulated modulator of apoptosis (puma). The findings underscore that tolfenpyrad induces severe cardiac toxicity and mitochondrial damage in zebrafish embryos. This data is imperative for a comprehensive assessment of tolfenpyrad risks to aquatic ecosystems, particularly considering the limited knowledge regarding its detrimental impact on aquatic vertebrates.


Assuntos
Inseticidas , Pirazóis , Poluentes Químicos da Água , Animais , Peixe-Zebra/metabolismo , Inseticidas/toxicidade , Cardiotoxicidade/metabolismo , Ecossistema , Embrião não Mamífero , Estresse Oxidativo , Poluentes Químicos da Água/metabolismo
12.
Aquat Toxicol ; 268: 106834, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281391

RESUMO

Trifloxystrobin (TRI) is a methacrylate fungicide, and fluopyram (FLU) is a new pyridylethylbenzamide fungicide and nematicide. Both are often detected in water bodies and may be highly toxic to many aquatic organisms. Unfortunately, the aquatic biological risks of single FLU or a mixture of trifloxystrobin and fluopyram have not been reported. In this study, zebrafish was selected as the test organism to investigate the combined toxicity of trifloxystrobin and fluopyram to zebrafish. After zebrafish embryos exposed to three pesticide solutions, Alcian-blue staining, Alizarin-red staining and quantitative PCR (qPCR) were performed. The results indicated that 96h-LC50 of TRI was 0.159 mg·L-1 to zebrafish embryo, which was highly toxic. The 96h-LC50 of FLU to zebrafish embryos was 4.375 mg·L-1, being moderately toxic. The joint toxicity to zebrafish embryos(FLU at 96h-LC50 and TRI at 96h-LC50 in a 1:1 weight ratio to form a series of concentration treatment groups) was antagonistic. Both trifloxystrobin and fluopyram also inhibited the skeletal development of zebrafish and showed to be antagonistic. The results of qPCR indicated upregulations of different genes upon three different treatments. TRI mainly induced Smads up-expression, which may affect the BMP-smads pathway. FLU mainly induced an up-expression of extracellular BMP ligands and type I receptor (Bmpr-1a), which may affect the BMP ligand receptor pathway. The 1:1 mixture (weight ratio) of trifloxystrobin and fluopyram induced a reduction of the genes of extracellular BMP ligand (Smads) and type I receptor (Bmpr1ba), which may down-regulate BMP signaling and thus attenuating cartilage hyperproliferation, hypertrophy and mineralization. The results warren an interest in further studying the effect of the two fungicides in a mixture on zebrafish.


Assuntos
Acetatos , Benzamidas , Fungicidas Industriais , Iminas , Piridinas , Estrobilurinas , Poluentes Químicos da Água , Animais , Peixe-Zebra/metabolismo , Ligantes , Embrião não Mamífero , Poluentes Químicos da Água/toxicidade , Fungicidas Industriais/toxicidade , Desenvolvimento Ósseo
13.
Pest Manag Sci ; 80(2): 414-425, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37708309

RESUMO

BACKGROUND: Crop diseases caused by plant pathogenic fungi and bacteria have led to substantial losses in global food production. Chemical pesticides have been widely used as a primary means to mitigate these issues. Nevertheless, the persistent and excessive use of pesticides has resulted in the emergence of microbial resistance. Moreover, the improper application and excessive utilization of pesticides can contribute to environmental pollution and the persistence of pesticide residues. Consequently, the development of novel and highly effective bactericides and fungicides to combat plant pathogens holds immense practical importance. RESULTS: A series of uracil hydrazones IV-B was deliberately designed and evaluated for their antimicrobial efficacy. The results of bioassays indicated that most IV-B exhibited >80% inhibition against the fungal species Monilia fructigena and Sclerotium rolfsii, as well as the bacterial species Clavibacter michiganensis subsp. michiganensis, Xanthomonas oryzae pv. oryzae, and Ralstonia solanacearum, at 50 µg/mL in vitro. In vivo, IV-B20 showed 89.9% of curative and 71.8% of protective activities against C. michiganensis subsp. michiganensis at 100 µg/mL superior to thiodiazole copper and copper hydroxide. IV-B20 also showed excellent protective activity against M. fructigena (96.3% at 200 µg/mL) and S. rolfsii (80.4% at 1000 µg/mL), which were greater than chlorothalonil and equivalent to thifluzamide. Mechanistic studies revealed that IV-B20 induced oxidative damage in pathogenic bacteria and promoted the leakage of cellular contents. CONCLUSION: This study suggests that IV-B20 with uracil hydrazone skeleton has great potential as an antimicrobial candidate. These findings lay a foundation for practical application in agriculture. © 2023 Society of Chemical Industry.


Assuntos
Praguicidas , Xanthomonas , Uracila/farmacologia , Antibacterianos/farmacologia , Praguicidas/farmacologia , Doenças das Plantas , Testes de Sensibilidade Microbiana , Clavibacter
14.
Anal Bioanal Chem ; 416(1): 141-149, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37934249

RESUMO

In this study, two mutant strains, TBC and TBC+, able to biosynthesize a novel functional magnetosome-nanobody (Nb), were derived from the magnetotactic bacteria Magnetospirillum gryphiswaldense MSR-1. The magnetosome-Nbs biosynthesized by TBC+ containing multi-copies of the Nb gene had a higher binding ability to an environmental pollutant, tetrabromobisphenol A (TBBPA), than those biosynthesized by TBC containing only one copy of the Nb gene. The magnetosome-Nbs from TBC+ can effectively bind to TBBPA in solutions with high capacity without being affected by a broad range of NaCl and methanol concentrations as well as pH. Therefore, a magnetosome-Nb-based enzyme-linked immunosorbent assay (ELISA) was developed and optimized for the detection of TBBPA, yielding a half-maximum signal inhibition concentration of 0.23 ng/mL and a limit of detection of 0.025 ng/mL. The assay was used to detect TBBPA in spiked river water samples, giving average recoveries between 90 and 120% and coefficients of variation of 2.5-6.3%. The magnetosome-Nb complex could be reused 4 times in ELISA without affecting the performance of the assay. Our results demonstrate the potential of magnetosome-Nbs produced by TBC+ as cost-effective and environment-friendly reagents for immunoassays to detect small molecules in environmental waters.


Assuntos
Magnetossomos , Magnetossomos/metabolismo , Água , Ensaio de Imunoadsorção Enzimática , Proteínas de Bactérias/química
15.
Annu Rev Food Sci Technol ; 15(1): 473-493, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38134385

RESUMO

Pesticides protect crops against pests, and green pesticides are referred to as effective, safe, and eco-friendly pesticides that are sustainably synthesized and manufactured (i.e., green chemistry production). Owing to their high efficacy, safety, and ecological compatibility, green pesticides have become a main direction of global pesticide research and development (R&D). Green pesticides attract attention because of their close association with the quality and safety of agricultural produce. In this review, we briefly define green pesticides and outline their significance, current registration, commercialization, and applications in China, the European Union, and the United States. Subsequently, we engage in an in-depth analysis of the impact of newly launched green pesticides on the environment and ecosystems. Finally, we focus on the potential risks of dietary exposure to green pesticides and the possible hazards of chronic toxicity and carcinogenicity. The status of and perspective on green pesticides can hopefully inspire green pesticide R&D and applications to ensure agricultural production and safeguard human and ecological health.


Assuntos
Segurança Alimentar , Praguicidas , Humanos , Agricultura , Química Verde , Produtos Agrícolas , China , Estados Unidos
16.
Sci Total Environ ; 912: 169425, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38128666

RESUMO

Phytoremediation largely involves microbial degradation of organic pollutants in rhizosphere for removing organic pollutants like polycyclic aromatic hydrocarbons, phthalates and polychlorinated biphenyls. Microbial community in rhizosphere experiences complex processes of response-adaptation-feedback up on exposure to organic pollutants. This review summarizes recent research on the response and adaptation of rhizosphere microbial community to the stress of organic pollutants, and discusses the enrichment of the pollutant-degrading microbial community and genes in the rhizosphere for promoting bioremediation. Soil pollution by organic contaminants often reduces the diversity of rhizosphere microbial community, and changes its functions. Responses vary among rhizosphere microbiomes up on different classes of organic pollutants (including co-contamination with heavy metals), plant species, root-associated niches (e.g., rhizosphere, rhizoplane and endosphere), geographical location and soil properties. Soil pollution can deplete some sensitive microbial taxa and enrich some tolerant microbial taxa in rhizosphere. Furthermore, rhizosphere enriches pollutant-degrading microbial community and functional genes including different gene clusters responsible for biodegradation of organic pollutants and their intermediates, which improve the adaptation of microbiome and enhance the remediation efficiency of the polluted soil. The knowledge gaps and future research challenges are highlighted on rhizosphere microbiome in response-adaptation-feedback processes to organic pollution and rhizoremediation. This review will hopefully update understanding on response-adaptation-feedback processes of rhizosphere microbiomes and rhizoremediation for the soil with organic pollutants.


Assuntos
Poluentes Ambientais , Microbiota , Poluentes do Solo , Poluentes Ambientais/metabolismo , Biodegradação Ambiental , Poluentes do Solo/análise , Rizosfera , Microbiologia do Solo , Raízes de Plantas/metabolismo , Solo
17.
Environ Pollut ; 343: 123202, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38128711

RESUMO

Microplastics pollution has garnered significant attention in recent years. The unique cross-linked structure of polystyrene microplastics makes them difficult to biodegrade. In this study, we investigated the microbial community in landfill soil that has the ability to degrade polystyrene, as well as two isolated strains, named Lysinibacillus sp. PS-L and Pseudomonas sp. PS-P. The maximum weight loss of polystyrene film and microplastic in 30 days is 2.25% and 6.99% respectively. The water contact angle of polystyrene film decreased by a maximum of 35.70% during biodegradation. The increase in hydrophilicity is attributed to the oxidation reaction and formation of hydroxyl groups during the degradation of polystyrene. The carbon and oxygen element contents of polystyrene decreased and increased by a maximum of 3.81% and 0.79% respectively. The peak intensity changes at wavelengths of 3285-3648 cm-1 and 1652 cm-1 in Fourier transform infrared spectroscopy confirmed the formation of hydroxyl and carbonyl groups. Furthermore, quantitative PCR revealed the gene expression levels of alkane monooxygenase and alcohol dehydrogenase were upregulated by 8.8-fold and 8.5-fold respectively in PS biodegradation. Additionally, genome annotation of Pseudomonas sp. PS-P identified nine genes associated with polystyrene metabolism. These findings highlight Pseudomonas sp. PS-P as a potential candidate strain for polystyrene degradation enzymes or genes. Thus, they lay the groundwork for understanding the potential metabolic mechanisms and pathways involved in polystyrene degradation.


Assuntos
Plásticos , Poliestirenos , Poliestirenos/química , Plásticos/metabolismo , Microplásticos , Bactérias/metabolismo , Biodegradação Ambiental , Pseudomonas/genética , Pseudomonas/metabolismo
18.
J Agric Food Chem ; 71(48): 19045-19053, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37982559

RESUMO

Pyrrolizidine alkaloids (PAs) have been detected in tea and can threaten human health. However, the specific source of PAs in tea is still unclear. Here, 88 dried tea products collected from six major tea-producing areas in Anhui Province, China, were analyzed. The detection frequency was 76%. The content of total PAs in dried tea was between 1.1 and 90.5 µg/kg, which was all below the MRL recommended by the European Union (150 µg/kg). In the Shexian tea garden, PAs in the weeds and weed rhizospheric soil around tea plants and the fresh tea leaves were analyzed. Intermedine (Im), intermedine-N-oxide (ImNO), and jacobine-N-oxide (JbNO) were transferred through the weed-to-soil-to-tea route into the fresh tea leaves; only Im and ImNO were detected in dried tea samples. Potential risk of the total PAs in the tea infusion was assessed according to the margin of exposure method, and it might be a low concern for public health.


Assuntos
Camellia sinensis , Alcaloides de Pirrolizidina , Humanos , Alcaloides de Pirrolizidina/análise , Plantas Daninhas , Chá , Medição de Risco , Óxidos
19.
Environ Sci Technol ; 57(42): 16053-16064, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37824517

RESUMO

Rhizosphere microbiota are an important factor impacting plant uptake of pollutants. However, little is known about how microbial nitrogen (N) transformation in the rhizosphere affects the uptake and accumulation of antibiotics in plants. Here, we determined recruitment of N transformation functional bacteria upon ciprofloxacin (CIP) exposure, by comparing differences in assembly processes of both rhizospheric bacterial communities and N transformation between two choysum (Brassica parachinensis) varieties differing in CIP accumulation. The low accumulation variety (LAV) of CIP recruited more host bacteria (e.g., Nitrospiria and Nitrolancea) carrying nitrification genes (mainly nxrA) but fewer host bacteria carrying denitrification genes, especially narG, relative to the high accumulation variety (HAV) of CIP. The nxrA and narG abundance in the LAV rhizosphere were, respectively, 1.6-7.8 fold higher and 1.4-3.4 fold lower than those in the HAV rhizosphere. Considering that nitrate can decrease CIP uptake into choysum through competing for the proton motive force and energy, such specific bacteria recruitment in LAV favored the production and utilization of nitrate in its rhizosphere, thus limiting its CIP accumulation with 1.6-2.4 fold lower than the HAV. The findings give insight into the mechanism underlying low pollutant accumulation, filling the knowledge gap regarding the profound effects of rhizosphere microflora and N transformation processes on antibiotic accumulation in crops.


Assuntos
Brassica , Ciprofloxacina , Rizosfera , Nitratos , Nitrogênio/análise , Antibacterianos , Bactérias/genética , Plantas , Solo , Microbiologia do Solo
20.
Chemosphere ; 343: 140246, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37741374

RESUMO

Superworm (larve of Zophobas atratus) could consume foams of expanded polystyrene plastics. However, there is no sufficient understanding of the impact of microplastics on superworms and the degradation pathways of polystyrene. Herein, we explored the weight and survival change of superworms while fed with polystyrene microplastics, and found that survival rate and mean weight would reduce. In terms of gut microbial community structure of surperworms, significant shifts were detected with the relative abundance of Hafnia-Obesumbacterium sp. increasing. In addition, we domesticated two microbiota from the gut of superworms, and confirmed their ability to degrade PS in vitro. The last but most important, 1291 metabolites were identified by HPLC-TOF-MS/MS, and six metabolites related to polystyrene degradation were identified through comparative metabolomic analysis. According to the content and pathways of these metabolites, three metabolic pathways of polystyrene were (a) styrene-phenylacetyl-CoA-L-2-aminoadipic acid; (b) styrene-phenylacetyl-CoA-benzaldehyde; (c) styrene-2-hydroxyacetophenone. These results would help to further screen bacteria of PS degradation and investigate PS metabolic pathways in invertebrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...