Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Oncol ; 46: 101996, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38795560

RESUMO

Recent studies indicate that circular RNAs (circRNAs) are crucial in the progression of colorectal cancer (CRC). Eukaryotic translation initiation factor 4A3 (EIF4A3) has been identified as a promoter of circRNA production. The biological roles and mechanisms of EIF4A3-derived circRNA (circEIF4A3) in CRC cell autophagy remain poorly understood. This study explores the effects of circEIF4A3 on CRC cell growth and autophagy, aiming to elucidate the underlying molecular mechanisms. We discovered that EIF4A3 and circEIF4A3 synergistically enhance CRC cell growth. CircEIF4A3 sequesters miR-3126-5p, consequently upregulating EIF4A3. Further, circEIF4A3 increases EIF4A3 expression, which promotes autophagy by stabilizing ATG5 mRNA and enhances ATG7 protein stability through the stabilization of USP14 mRNA, a deubiquitinating enzyme. Upregulation of ATG5 and ATG7 counteracts the growth-inhibitory effects of EIF4A3 knockdown on CRC cells. Moreover, our findings demonstrate that EIF4A3 induces the formation of circEIF4A3 in CRC cells. In conclusion, a positive feedback loop between circEIF4A3 and EIF4A3 supports CRC cell growth by facilitating autophagy.

2.
Environ Res ; 226: 115639, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36907348

RESUMO

Superabsorbent resin (SAR) saturated with heavy metals poses a threat to surrounding ecosystem. To promote the reutilization of waste, resins adsorbed by Fe2+ and Cu2+ were carbonized and used as catalysts (Fe@C/Cu@C) to activate persulfate (PS) for 2,4-dichlorophenol (2,4-DCP) degradation. The heterogeneous catalytic reaction was mainly responsible for 2,4-DCP removal. The synergistic effect of Fe@C and Cu@C was propitious to 2,4-DCP degradation. Fe@C/Cu@C with a ratio of 2:1 showed the highest performance of 2,4-DCP removal. 40 mg/L 2,4-DCP was completely removed within 90 min under reaction conditions of 5 mM PS, pH = 7.0 and T = 25 °C. The cooperation of Fe@C and Cu@C facilitated the redox cycling of Fe and Cu species to supply accessible PS activation sites, enhancing ROS generation for 2,4-DCP degradation. Carbon skeleton enhanced 2,4-DCP removal via radical/nonradical oxidation pathways and via its adsorption to 2,4-DCP. SO4˙-, HO˙ and O2•- were the dominate radical species involved in 2,4-DCP destruction. Meanwhile, the possible pathways of 2,4-DCP degradation were proposed based on GC-MS. Finally, recycling tests proved catalysts exhibited recyclable stability. Aiming to resource utilization, Fe@C/Cu@C with satisfactory catalysis and stability, is promising catalyst for contaminated water treatment.


Assuntos
Clorofenóis , Poluentes Químicos da Água , Ecossistema , Fenóis , Oxirredução , Metais , Poluentes Químicos da Água/análise
3.
Arch Public Health ; 80(1): 145, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614517

RESUMO

BACKGROUND: Aberrant alternative splicing (AS) events could be viewed as prognostic indicators in a large number of malignancies. This study aims to identify prognostic AS events, illuminate the function of the splicing variants biomarkers and provide reliable evidence for formulating public health strategies for gastric cancer (GC) surveillance. METHODS: RNA-Seq data, clinical information and percent spliced in (PSI) values were available in The cancer genome atlas (TCGA) and TCGA SpliceSeq data portal. A three-step regression method was conducted to identify prognostic AS events and construct multi-AS-based signatures. The associations between prognostic AS events and splicing factors were also investigated. RESULTS: We identified a total of 1,318 survival-related AS events in GC, parent genes of which were implicated in numerous oncogenic pathways. The final prognostic signatures stratified by seven types of AS events or not stratified performed well in risk prediction for GC patients. Moreover, five signatures based on AA, AD, AT, ES and RI events function as independent prognostic indicators after multivariate adjustment of other clinical variables. Splicing network also showed marked correlation between the expression of splicing factors and PSI value of AS events in GC patients. CONCLUSION: Our findings provide a landscape of AS events and regulatory network in GC, indicating that AS events might serve as prognostic biomarkers and therapeutic targets for GC.

4.
Biochem Biophys Res Commun ; 607: 73-80, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35367831

RESUMO

Increasing evidence has supported the idea that epithelial-to-mesenchymal transition (EMT)-based tubulointerstitial fibrosis and the apoptosis of renal tubular epithelial cells (TECs) play important roles in the occurrence and development of Diabetic kidney disease (DKD). Glis2 is abundantly expressed in renal tubules and is a member of the Kruppel-like zinc finger transcription factor family, which is involved in the regulation of normal renal development and function. Glis2 deficiency may be closely associated with tubular atrophy and fibrosis, but the role played by Glis2 in DKD remains unclear. In this study, we found that Glis2 protein expression was downregulated in kidney tissue samples obtained by biopsy from DKD patients as well as HK-2 cells cultured in high-glucose medium, and overexpression of the Glis2 plasmid inhibited the apoptosis and EMT of TECS under HG conditions. In addition, Glis2 overexpression obliterated the activation of the ß-catenin signalling pathway in HG-cultured HK-2 cells. Moreover, the ß-catenin inhibitor XAV939 or XAV939 combined with Glis2 overexpression markedly inhibited the apoptosis and EMT of HG-treated HK-2 cells. All these findings indicated that upregulation of Glis2 expression might attenuate the EMT and apoptosis of renal tubule cells via the ß-catenin signalling pathway under HG conditions. This outcome may lead to a better understanding of the pathogenesis of DKD and provide new insights into prevention and treatment strategies targeting DKD.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Fatores de Transcrição Kruppel-Like , Apoptose , Diabetes Mellitus/metabolismo , Nefropatias Diabéticas/metabolismo , Transição Epitelial-Mesenquimal , Fibrose , Humanos , Túbulos Renais/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , beta Catenina/metabolismo
5.
Neoplasma ; 68(4): 780-787, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34034499

RESUMO

circRNAs have been considered as a rising factor in cancers. However, the roles and mechanisms of circ-sirt1 in gastric cancer (GC) remain largely unknown. In this study, we found that the expressions of sirt1 and circ-sirt1 are decreased in tissues or serums of GC patients by real-time quantitative PCR (RT-qPCR). The expressions of miR-132-3p/miR-212-3p showed an opposite tendency in these samples. The co-transfection of miR-132-3p/miR-212-3p mimics counteracted the enhancement of sirt1 expression induced by circ-sirt1. The results of cell colony-formation assay and transwell assays demonstrated that the proliferation, migration, and invasion activities of BGC-823 cells were inhibited by circ-sirt1 overexpression or miR-132-3p/miR-212-3p knockdown, respectively. The xenograft tumor model result indicated that the circ-sirt1 overexpression suppressed the tumor growth of BGC-823 cells. The regulation of miR-132-3p/miR-212-3p between circ-sirt1 and sirt1 was verified in the mice tumor tissues. Thus, circ-sirt1 inhibited tumor growth and invasion probably by sponging miR-132-3p/miR-212-3p and upregulating sirt1 expression in GC. These findings may provide a theoretical basis for the classification of GC and a novel therapeutic target for GC patients.


Assuntos
MicroRNAs , Neoplasias Gástricas , Animais , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Camundongos , MicroRNAs/genética , Sirtuína 1/genética , Neoplasias Gástricas/genética
6.
Thorac Cancer ; 11(8): 2196-2208, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32602212

RESUMO

BACKGROUND: Circular RNAs (circRNAs) have been closely implicated in competing endogenous RNA (ceRNA) network among human cancers including non-small cell lung cancer (NSCLC). However, the role of most circRNAs in NSCLC remains to be determined. Here, we aimed to investigate the role of hsa_circ_0007385 (circ_0007385) in NSCLC cells. METHODS: Expression of hsa_circ_0007385 (circ_0007385), miRNA (miR)-519d-5p and high-mobility group box 1 (HMGB1) was measured by real-time quantitative PCR and western blotting. Functional experiments were evaluated by cell counting kit (CCK)-8, flow cytometry, fluorescein active caspase-3 staining kit, transwell assays, western blotting, and xenograft experiment. The relationship among circ_0007385,miR-519d-5p and HMGB1 was testified by dual-luciferase reporter assay. Kaplan-Meiersurvival curve identified overall survival in NSCLC patients. RESULTS: circ_0007385 expression was higher in NSCLC tissues and cell lines, and was associated with poor overall survival. Silencing circ_0007385 could suppress cell proliferation, migration and invasion in A549 and H1975 cells, as well as cisplatin (DDP) resistance. Moreover, circ_0007385 silence retarded tumor growth of A549 cells in vivo. Molecularly, there was a direct interaction between miR-519d-3p and either circ_0007385 or HMGB1; expression of miR-519d-3p was downregulated in NSCLC tumors in a circ_0007385-correlated manner, and circ_0007385 could indirectly regulate HMGB1 via miR-519d-3p. Functionally, both inhibiting miR-519d-3p and restoring HMGB1 could overturn the suppressive effect of circ_0007385 knockdown on cell proliferation, migration, invasion, and DDP resistance. CONCLUSIONS: Collectively, circ_0007385 deletion could function anti-tumor role in NSCLC by suppressing malignant behaviors and DDP resistance in vitro and in vivo via circ_0007385/miR-519d-3p/HMGB1 axis. These outcomes might enhance our understanding of the molecular mechanisms underlying the malignant progression of NSCLC. KEY POINTS: SIGNIFICANT FINDINGS OF THE STUDY: circ_0007385 was upregulated in NSCLC tissues and cells, and was associated with poor overall survival. Silenced circ_0007385 suppressed NSCLC cell proliferation, migration, invasion, and DDP resistance in vitro, and tumor growth in vivo. circ_0007385 was upregulated in NSCLC tissues and cells, and was associated with poor overall survival. WHAT THIS STUDY ADDS: miR-519d-3p could directly interact with circ_0007385 and HMGB1 in NSCLC cells. A promising circ_0007385/miR-519d-3p/HMGB1 regulatory pathway was determined in NSCLC cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cisplatino/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , MicroRNAs/metabolismo , RNA Circular/metabolismo , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , RNA Circular/genética , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Cell ; 182(1): 85-97.e16, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32579975

RESUMO

Small molecule covalent drugs provide desirable therapeutic properties over noncovalent ones for treating challenging diseases. The potential of covalent protein drugs, however, remains unexplored due to protein's inability to bind targets covalently. We report a proximity-enabled reactive therapeutics (PERx) approach to generate covalent protein drugs. Through genetic code expansion, a latent bioreactive amino acid fluorosulfate-L-tyrosine (FSY) was incorporated into human programmed cell death protein-1 (PD-1). Only when PD-1 interacts with PD-L1 did the FSY react with a proximal histidine of PD-L1 selectively, enabling irreversible binding of PD-1 to only PD-L1 in vitro and in vivo. When administrated in immune-humanized mice, the covalent PD-1(FSY) exhibited strikingly more potent antitumor effect over the noncovalent wild-type PD-1, attaining therapeutic efficacy equivalent or superior to anti-PD-L1 antibody. PERx should provide a general platform technology for converting various interacting proteins into covalent binders, achieving specific covalent protein targeting for biological studies and therapeutic capability unattainable with conventional noncovalent protein drugs.


Assuntos
Preparações Farmacêuticas/metabolismo , Proteínas/uso terapêutico , Sequência de Aminoácidos , Animais , Antineoplásicos/metabolismo , Antígeno B7-H1/química , Antígeno B7-H1/metabolismo , Membrana Celular/metabolismo , Proliferação de Células , Células Dendríticas/metabolismo , Humanos , Cinética , Ligantes , Ativação Linfocitária/imunologia , Camundongos , Monócitos/metabolismo , Fenótipo , Proteínas/química , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...