Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38536696

RESUMO

Volatility forecasting is a problem in finance that attracts the attention of both academia and industry. While existing approaches typically utilize a discrete-time latent process that governs the volatility to forecast its future level, volatility is considered to evolve continuously, which makes discrete-time modeling inevitably lose some critical information about the evolution of volatility. In this article, a novel neural-network-based model, Continuous Volatility Forecasting Model, CVFM is proposed to tackle this problem. First, CVFM introduces a continuous-time latent process, whose evolution is modeled with neural differential equations (NDEs), to govern volatility, which effectively captures the continuous evolutionary behavior of volatility in a data-driven way. Second, a scale-similarity-based mechanism is designed to calibrate the evolution equation of the latent process with real-world observations in the absence of high-frequency data. CVFM is tested on six real-world stock index datasets. The main experimental results show that CVFM can significantly outperform existing models in terms of both forecasting accuracy and high-volatility recognition.

2.
Dev Comp Immunol ; 156: 105174, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38548001

RESUMO

The exosomal miRNA plays a crucial role in the intercellular communication response to environmental stress and pathogenic stimulation. In the present study, the expression of exosomal miRNAs in the Pacific oyster Crassostrea gigas after high-temperature stress or Vibrio splendidus stimulation was investigated through high-throughput sequencing. The exosomes were identified to be teardrop-like vesicles with the average size of 81.7 nm by transmission electron microscopy. There were 66 known miRNAs and 33 novel miRNAs identified, of which 10 miRNAs were differentially expressed after both high-temperature stress and Vibrio stimulation compared to the control group. A total of 1868 genes were predicted as the putative targets of miRNAs, of which threonine aspartase 1-like was targeted by the highest number of related miRNAs. The robustness and reliability of miRNA expression from the sRNA sequencing data were verified by employing eight miRNAs for qPCR. GO and KEGG clustering analyses revealed that apoptosis was significantly enriched by the target genes of differentially expressed exosomal miRNAs after high-temperature stress, and autophagy and cytokine activity were significantly enriched after Vibrio stimulation. Energy metabolism was found to be significantly shared in the target gene enrichments after both high-temperature stress and Vibrio stimulation. These findings would improve our understanding of the regulatory mechanisms of exosomal miRNAs in C. gigas after high-temperature stress or Vibrio stimulation.


Assuntos
Crassostrea , Exossomos , MicroRNAs , Vibrio , Animais , Vibrio/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Exossomos/metabolismo , Exossomos/genética , Crassostrea/imunologia , Crassostrea/microbiologia , Crassostrea/genética , Estresse Fisiológico/genética , Apoptose , Autofagia/genética , Vibrioses/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Perfilação da Expressão Gênica , Metabolismo Energético/genética , Regulação da Expressão Gênica , Temperatura Alta , Resposta ao Choque Térmico/genética
3.
Adv Mater ; : e2400110, 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38494761

RESUMO

Bioelectronics, which converges biology and electronics, has attracted great attention due to their vital applications in human-machine interfaces. While traditional bioelectronic devices utilize nonliving organic and/or inorganic materials to achieve flexibility and stretchability, a biological mismatch is often encountered because human tissues are characterized not only by softness and stretchability but also by biodynamic and adaptive properties. Recently, a notable paradigm shift has emerged in bioelectronics, where living cells, and even viruses, modified via gene editing within synthetic biology, are used as core components in a new hybrid electronics paradigm. These devices are defined as "living synthelectronics," and they offer enhanced potential for interfacing with human tissues at informational and substance exchange levels. In this Perspective, the recent advances in living synthelectronics are summarized. First, opportunities brought to electronics by synthetic biology are briefly introduced. Then, strategic approaches to designing and making electronic devices using living cells/viruses as the building blocks, sensing components, or power sources are reviewed. Finally, the challenges faced by living synthelectronics are raised. It is believed that this paradigm shift will significantly contribute to the real integration of bioelectronics with human tissues.

4.
Environ Sci Technol ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359405

RESUMO

Cu(II)-catalyzed peracetic acid (PAA) processes have shown significant potential to remove contaminants in water treatment. Nevertheless, the role of coexistent H2O2 in the transformation from Cu(II) to Cu(I) remained contentious. Herein, with the Cu(II)/PAA process as an example, the respective roles of PAA and H2O2 on the Cu(II)/Cu(I) cycling were comprehensively investigated over the pH range of 7.0-10.5. Contrary to previous studies, it was surprisingly found that the coexistent deprotonated H2O2 (HO2-), instead of PAA, was crucial for accelerating the transformation from Cu(II) to Cu(I) (kHO2-/Cu(II) = (0.17-1) × 106 M-1 s-1, kPAA/Cu(II) < 2.33 ± 0.3 M-1 s-1). Subsequently, the formed Cu(I) preferentially reacted with PAA (kPAA/Cu(I) = (5.84 ± 0.17) × 102 M-1 s-1), rather than H2O2 (kH2O2/Cu(I) = (5.00 ± 0.2) × 101 M-1 s-1), generating reactive species to oxidize organic contaminants. With naproxen as the target pollutant, the proposed synergistic role of H2O2 and PAA was found to be highly dependent on the solution pH with weakly alkaline conditions being more conducive to naproxen degradation. Overall, this study systematically investigated the overlooked but crucial role of coexistent H2O2 in the Cu(II)/PAA process, which might provide valuable insights for better understanding the underlying mechanism in Cu-catalyzed PAA processes.

5.
Sci Total Environ ; 916: 170123, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38232842

RESUMO

In this study, a rainfall simulation device was employed to investigate the response mechanism of soil leachate and disinfection by-products formation potential (DBPsFP) to extreme precipitation events. The results revealed that the aromaticity of dissolved organic matter (DOM) and the concentration of hydrophobic DOM containing aromatic carbon groups in leachate decreased with rising temperature. The humification degree of DOM decreased at 25 °C (99 mm/h), while the humification degree and protein-like level of DOM increased under high temperatures droughts (45 °C and 65 °C). Higher temperatures resulted in the leach of more microbial-derived humus and low molecular phenolic compounds from soil and broadened the range of molecular weight distribution. Increasing temperature increased DBPsFP and DBPs species and caused the precursors of haloacetic acids (HAAs) in leachate to become more hydrophobic, while the precursors of trihalomethanes (THMs) became more hydrophilic. Most importantly, the increased temperature attenuated the rainfall-mediated dilution of organic pollutant concentration, and temperature has a more significant effect than extreme rainfall in DOM abundance and the formation potential (or species) of DBPs. The results help to better understand the impact of climate change on the physicochemical processes of water quality.

6.
Materials (Basel) ; 17(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38255605

RESUMO

The demand for energy continues to increase as the global economy continues to grow. The role of oilfield chemicals in the process of oil and gas exploration, development, and production is becoming more and more important, and the demand is rising year by year. The support of national policies and the formulation of environmental protection regulations have put forward higher requirements for oilfield chemical products, which has promoted the innovative research and development and market application of oilfield chemicals. Polyformaldehyde glycol ether polymer (PGEP) is simple to synthesize, easily biodegradable, green and environmentally friendly, and in line with the development trend of chemicals used in oil and gas development. The interfacial tension performance of PGEP after compounding with different surfactants can reach as low as 0.00034 mN/m, which meets the requirements of the oilfield (interfacial tension ≤ 5 × 10-3 mN/m). The best oil washing efficiency performance of PGEP compounded with different surfactants reached 78.2%, which meets the requirements of the oilfield (oil washing efficiency ≥ 40%). The fracturing fluid drainage efficiency of PGEP after compounding with different surfactants reaches 22%, which meets the requirements of the oilfield (drainage efficiency ≥ 15%). The surface interfacial tension of the system remains constant after the concentration exceeds 0.2% and decreases with lower concentrations. The drainage efficiency increases with increasing concentrations in the range below 0.6%. It was determined that PGEP can be used as a surfactant instead of fatty-alcohol ethoxylates (FAE) in oilfield development.

7.
Sci Total Environ ; 912: 169054, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38052386

RESUMO

N-nitrosodiethylamine (NDEA), which is the most toxic nitrosamine among the 9 detected species, has been widely detected in drinking water. Amines containing diethylamine (DEA) groups in the structure would generate NDEA during the disinfection processes. The aim of this study was to evaluate the feasibility of reducing NDEA formation from a commonly used dithiocarbamate pesticide sodium diethyldithiocarbamate (DEDTC) in subsequent chlorination and chloramination by pre-ozonation. The results demonstrated that NDEA could be generated directly during ozonation, its amounts increased from 0 to 14.34 µg/L with increasing ozone dosages (0-4 mg/L), which was higher than that chlorination (2.68 µg/L) and chloramination (4.91 µg/L) when the initial concentration of DEDTC was 20 µM. Pre-ozonation significantly raised NDEA formation from 2.68 to15.32 µg/L in subsequent chlorination; and that from 4.91 to 9.54 µg/L during subsequent chloramination processes. The addition of •OH scavenger tert-butanol (tBA) increased the production of NDEA from 8.14 to 20.80 µg/L during ozonation, and that from 6.76 to17.98 µg/L in O3/HClO process, 8.74 to 17.33 µg/L in O3/NH2Cl process. Except for NO3- and CO32-, most of the co-existing substances promoted NDEA generation from DEDTC under disinfection conditions. Based on the results of Gaussian theory calculations, GC/MS and UPLC-Q-TOFMS analysis, the influencing mechanisms of pre-ozonation on NDEA generation in the subsequent disinfection process were proposed. In addition, not only acute/chronic toxicity calculation but also luminescent bacteria test was performed to assess the possibility of pre-ozonation on the risk control of DEDTC. The research results fill a gap in the control of NDEA pollution and help to develop a safer ozone oxidation technology.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Halogenação , Dietilnitrosamina , Estudos de Viabilidade , Desinfecção/métodos , Ozônio/análise , Purificação da Água/métodos , Poluentes Químicos da Água/análise
8.
Molecules ; 28(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38138594

RESUMO

In this paper, a low-temperature thick oil demulsifier with high polarity was prepared by introducing ethylene oxide, propylene oxide block, and butylene oxide using m-diphenol as a starting agent. The main reasons for the difficulty involved in the low-temperature emulsification of extractive fluids were explained by analyzing the synthetic influencing factors and infrared spectra of the star comb polymer (PR-D2) and by analyzing the four fractions, interfacial energies, and zeta potentials of crude oils from the Chun and Gao fields. The effects of PR-D2 surfactant on the emulsification performance of crude oil recovery fluids were investigated via indoor and field experiments. The experimental results indicate that the optimal synthesis conditions for this emulsion breaker are as follows: a quality ratio of ionic reaction intermediates and meso-diphenol of R = 10:1; 1 g of the initiator; a polymerization temperature of 80 °C; and a reaction time of 8 h. Colloidal asphaltenes in the crude oil were the main factor hindering the low-temperature demulsification of the Gao oilfield's extractive fluids, and the reason for the demulsification difficulty of the extractive fluids in the Chun oilfield is that the temperature of demulsification is lower than the wax precipitation point. The demulsification rate of the Chun oilfield's extractive fluids reached more than 98% when the PR-D2 concentration reached 150 mg/L at 43 °C. The demulsification rate of the Gao oilfield's extractive fluids reached more than 98% at a PR-D2 concentration of 150 mg/L at 65 °C. The field experiments show that the Chun oilfield's extractive fluids can still demulsify after the temperature is reduced to 43 °C in winter. The emulsification temperature of the Gao oilfield's extractive fluids was reduced from 73 °C to 68 °C, with an excellent demulsification effect.

9.
Heliyon ; 9(12): e22461, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38125541

RESUMO

The bleomycin-induced pulmonary fibrosis mouse model is commonly used in idiopathic pulmonary fibrosis research, but its cellular and molecular changes and efficiency as a model at the molecular level are not fully understood. In this study, we used spatial transcriptome technology to investigate the cellular and molecular changes in the lungs of bleomycin-induced pulmonary fibrosis mouse models. Our analyses revealed cell dynamics during fibrosis in epithelial cells, mesenchymal cells, immunocytes, and erythrocytes with their spatial distribution available. We confirmed the differentiation of the alveolar type II (AT2) cell type expressing Krt8, and we inferred their trajectories from both the AT2 cells and club cells. In addition to the fibrosis process, we also noticed evidence of self-resolving, especially to identify possible self-resolving related genes, including Prkca. Our findings provide insights into the cellular and molecular mechanisms underlying fibrosis resolution and represent the first spatiotemporal transcriptome dataset of the bleomycin-induced fibrosis mouse model.

10.
Gels ; 9(12)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38131936

RESUMO

Hydrogel has been widely used in reservoir regulation for enhancing oil recovery, however, this process can experience negative influences on the properties and effects of the hydrogels. Therefore, developing novel hydrogels with excellent environmental responsiveness would improve the formation adaptability of hydrogels. In this study, novel polyvinyl polyamine hydrogels were synthesized by a ring-opening addition reaction between polyvinyl polyamines and polyethylene glycol glycidyl ether. The results of atomic force microscopy and transmission electron microscopy showed that the polyvinyl polyamine gel had a porous and irregular bulk structure and was endowed with water storage. With the temperature rising from 30 °C to 60 °C, the transmittance of diethylenetriamine hydrogel decreased from 84.3% to 18.8%, indicating that a phase transition had occurred. After the polyvinyl polyamine hydrogel with low initial viscosity was injected into the formation in the liquid phase, the increase of the reservoir temperature caused it to turn into an elastomer, thereby migrating to the depth of the reservoir and achieving effective plugging. Polyvinyl polyamine hydrogel could improve the profile of heterogeneous layers significantly by forcing subsequent fluids into the low permeability zone in the form of elastomers in the medium temperature reservoirs of 40-60 °C. The novel environmentally responsive polyvinyl polyamine hydrogels, capable of phase transformation with temperature, exhibited superior performance in recovering residual oil, which was beneficial for applications in reservoir profile control and oilfield development.

11.
Microsyst Nanoeng ; 9: 138, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37941763

RESUMO

High-performance micro-electro-mechanical system (MEMS) gyrocompasses for north-finding systems have been very popular for decades. In this paper, a MEMS north-finding system (NFS) based on virtual maytagging (VM) is presented for the first time. In stark contrast to previous schemes of MEMS-based NFSs (e.g., carouseling, maytagging) and the abandoning rate table, we developed a honeycomb disk resonator gyroscope (HDRG) and two commercial accelerometers for azimuth detection. Instead of the physical rotation of the integrated turntable in traditional NFSs, the vibratory working modes of the HDRG are rotated periodically with electronic control to reduce the uncertainty in the azimuth. After systematically analyzing the principle of NFSs with VM, we designed tests to verify the practicability at the sensor level. A bias instability of 0.0078°/h can be obtained during one day with VM in an HDRG. We also implemented comparative north-finding experiments to further check our strategy at the system level. The accuracy in the azimuth can reach 0.204° for 5 min at 28.2° latitude with VM and 0.172° with maytagging. The results show that without any mechanical turning parts, VM technology makes it possible to develop high-precision handheld MEMS NFSs.

12.
Molecules ; 28(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38005246

RESUMO

Focusing on the problem of poor demulsification performance of light crude oil emulsions in low-permeability oilfields at low temperatures, the composition of the emulsion samples, clay particle size distribution, and the viscosity-temperature relationship curve of samples were analyzed. Based on the results of emulsion composition analysis and characteristics, the bottle test method was used to analyze the demulsifying effect of different commercial types of demulsifiers, revealing the demulsification mechanism. The field tests confirm the demulsification capabilities of Polyoxyethylene polyoxypropylene quaternized polyoxyolefins surfactants (PR demulsifiers). The results reveal that PR demulsifiers combine the features of decreasing the interfacial tension between oil and water and adsorbing SiO2, allowing for quick demulsification and flocculation at low temperatures. This research serves as a theoretical and practical foundation for the study and advancement of low-temperature demulsification technology in oilfields.

13.
BMJ Open ; 13(10): e075714, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816558

RESUMO

OBJECTIVE: Do-not-attempt-resuscitation (DNAR) orders are designed to allow patients to opt out of receiving cardiopulmonary resuscitation in the event of a cardiac arrest. While DNAR has become a standard component of medical care, there is limited research available specifically focusing on DNAR orders in the context of emergency departments in China. This study aimed to fill that gap by examining the factors related to DNAR orders among patients in the emergency department of a general tertiary teaching hospital in China. DESIGN: Retrospective observational study. SETTING: Emergency department. PARTICIPANTS: This study and analysis on adult patients with DNAR or no DNAR data between 1 January 2022 and 1 January 2023 in the emergency department of a large academic comprehensive tertiary teaching hospital. A total of 689 were included in our study. PRIMARY OUTCOME MEASURES: Whether the patient received DNAR was our dependent variable. RESULTS: Among the total patients, 365 individuals (53.0%) had DNAR orders. The following variables, including age, sex, age-adjusted Charlson comorbidity index (ACCI), primary diagnosis of cardiogenic or cancer related, history of neurological dysfunction or cancer, were independently associated with the difference between the DNAR group and the no DNAR group. Furthermore, there were significant statistical differences observed in the choice of DNAR among patients with different stages of cancer. CONCLUSIONS: In comparison to the no DNAR group, patients with DNAR were characterised by being older, having a higher proportion of female patients, higher ACCI scores, a lower number of patients with a primary diagnosis of cardiogenic and a higher number of patients with a primary diagnosis of cancer related, history of neurological dysfunction or cancer.


Assuntos
Serviço Hospitalar de Emergência , Neoplasias , Humanos , Adulto , Feminino , Ordens quanto à Conduta (Ética Médica) , Estudos Retrospectivos , Hospitais de Ensino
14.
Micromachines (Basel) ; 14(10)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37893394

RESUMO

The MEMS gyroscope is one of the basic units of inertial navigation, whose performance and accuracy is noteworthy. Because of the limitations of processing technology and other factors, the relative manufacturing error of MEMS gyroscopes is usually large. Errors directly lead to a frequency mismatch of resonant structures and consequently restrict the performance improvement of the gyroscope. This study proposes a mechanical trimming technique combining the addition and removal of gold in a ring MEMS gyroscope. Firstly, the analysis of the gyroscope dynamics and error model and trimming theory provides theoretical guidance for the trimming process. Secondly, the method of adjusting the mass is investigated, and the ablation threshold of femtosecond laser parameters on gold is analyzed, which provides the process with parameters for the trimming experiment. Finally, the frequency trimming process is conducted in three steps, including the addition of gold spheres and the removal of gold spheres and gold film, which are applicable to the trimming process at different rates of frequency split. The results shows that the proposed method can reduce the frequency split of the gyroscope from 4.36 to 0.017 Hz.

15.
Am J Transl Res ; 15(7): 4727-4734, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560250

RESUMO

OBJECTIVE: To investigate the protective effect of Chondroitin Sulfate from Sturgeons on rat chondrocytes and its possible mechanism. METHODS: The model of chondrocyte injury induced by hydrogen peroxide was established and chondrocytes were cultured and divided into the following groups: control group, sham group, model group, Sofast group, Low dose of Chondroitin Sulfate from Sturgeon B (CSSB-L) group, Moderate dose of Chondroitin Sulfate from Sturgeon B (CSSB-M) group and High dose of Chondroitin Sulfate from Sturgeon B (CSSB-H) group. The cell proliferation was analyzed by Cell Counting Kit-8 (CCK-8) assay. The cell apoptosis was detected by flow cytometer. The expression levels of Interleukin-6 (IL-6), Interleukin-8 (IL-8) and Interferon gamma (IFN-γ) in cell supernatants were examined by Enzyme-linked immunosorbent assay (ELISA). Western blot analysis was used to detect the levels of proteins associated with Wnt signal pathway in chondrocytes. RESULTS: Compared with the control group and sham group, the cell proliferation was decreased significantly, cell apoptosis was increased obviously, and the levels of IL-6, IL-8 and IFN-γ were remarkably increased in the model group. For Wnt signal pathway related proteins, the levels of Wnt3a, Frizzled5, Dsh, ß-Catenin and C-myc proteins in the model group were significantly reduced, and p-GSK3ß expression level was obviously increased (all P<0.05). Compared with the model group, CSSB could promote cell viability, and inhibit cell apoptosis and the levels of IL-6, IL-8 and IFN-γ (all P<0.05). The levels of Wnt signaling pathways related proteins in the CSSB-M group and CSSB-H group were obviously expressed. CONCLUSIONS: Chondroitin sulfate from sturgeons protected rat chondrocytes from injuries induced by hydrogen peroxide, which may be associated with the Wnt signaling pathway.

16.
Plant Physiol ; 193(3): 2164-2179, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37610417

RESUMO

The lipid transport protein (LTP) product of the AsE246 gene of Chinese milk vetch (Astragalus sinicus) contributes to the transport of plant-synthesized lipids to the symbiosome membranes (SMs) that are required for nodule organogenesis in this legume. However, the mechanisms used by nodule-specific LTPs remain unknown. In this study, a functional protein in the DnaJ-like family, designated AsDJL1, was identified and shown to interact with AsE246. Immunofluorescence showed that AsDJL1 was expressed in infection threads (ITs) and in nodule cells and that it co-localized with rhizobium, and an immunoelectron microscopy assay localized the protein to SMs. Via co-transformation into Nicotiana benthamiana cells, AsDJL1 and AsE246 displayed subcellular co-localization in the cells of this heterologous host. Co-immunoprecipitation assays confirmed that AsDJL1 interacted with AsE246 in nodules. The essential interacting region of AsDJL1 was determined to be the zinc finger domain at its C-terminus. Chinese milk vetch plants transfected with AsDJL1-RNAi had significantly decreased numbers of ITs, nodule primordia and nodules as well as reduced (by 83%) nodule nitrogenase activity compared with the controls. By contrast, AsDJL1 overexpression led to increased nodule fresh weight and nitrogenase activity. RNAi-AsDJL1 also significantly affected the abundance of lipids, especially digalactosyldiacylglycerol, in early-infected roots and transgenic nodules. Taken together, the results of this study provide insights into the symbiotic functions of AsDJL1, which may participate in lipid transport to SMs and play an essential role in rhizobial infection and nodule organogenesis.


Assuntos
Astrágalo , Fabaceae , Rhizobium , Fixação de Nitrogênio/genética , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Proteínas de Transporte/metabolismo , Astrágalo/metabolismo , Nitrogenase/metabolismo , Lipídeos , Simbiose/genética , Nodulação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Phys Chem Chem Phys ; 25(35): 23588-23601, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37621251

RESUMO

As a ubiquitous protein tyrosine phosphatase, SHP2 is involved in PD-1/PD-L1 mediated tumor immune escape and undergoes substantial conformational changes. Therefore, it is considered an ideal target for tumor intervention. However, the allosteric mechanisms of SHP2 binding PD-1 intracellular ITIM/ITSM phosphopeptides remain unclear, which greatly hinders the development of novel structure-based anticancer allosteric inhibitors. In this work, the open and closed structural models of SHP2 are first constructed based on this knowledge; next their motion modes are investigated via elastic network models such as the Gaussian network model (GNM), anisotropic network model (ANM) and adaptive anisotropic network model (aANM); and finally, a possible allosteric signaling pathway is proposed using a neural relational inference molecular dynamics (NRI-MD) simulation embedded with an artificial intelligence (AI) strategy. In GNM and ANM, the N-SH2, C-SH2 and PTP domains all exhibit distinct dynamics partitions, and the N-SH2/C-SH2 regions show a rigid rotation relative to PTP. According to a series of intermediate snapshots given by aANM, N-SH2 is first identified with pY223 specifically, inducing a D'E-loop to change from ß-sheets to random coils, and then, C-SH2 serves as a fulcrum to drive N-SH2 to rotate 110° completely away from the original active sites of PTP. Finally, a possible allosteric signaling-transfer path for SHP2, namely R220-R138-T108-R32, is proposed based on NRI-MD sampling. This work provides a possible allosteric mechanism of SHP2, which is helpful for the following design of novel allosteric inhibitors and is expected to be used in clinical synergies with PD-1 monoclonal antibody.


Assuntos
Inteligência Artificial , Simulação de Dinâmica Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Regulação Alostérica , Receptor de Morte Celular Programada 1 , Proteína Tirosina Fosfatase não Receptora Tipo 11/química
18.
Cancer Med ; 12(14): 14949-14959, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37288833

RESUMO

BACKGROUND: EGFR-mutant (EGFR-M) and ALK-positive (ALK-P)are common in malignant pleural effusion (MPE) with metastatic non-small-cell lung cancer (NSCLC) (MPE-NSCLC). The impact of thoracic tumor radiotherapy on survival in such patients remains unclear. We aimed to investigate whether thoracic tumor radiotherapy could improve overall survival (OS) in such patients. METHODS: According to whether or not patients accepted thoracic tumor radiotherapy, 148 patients with EGFR-M or ALK-P MPE-NSCLC treated with targeted therapy were classified into two groups: DT group without thoracic tumor radiotherapy and DRT group with thoracic tumor radiotherapy. Propensity score matching (PSM) was performed to balance clinical baseline characteristics. Overall survival was analyzed by Kaplan-Meier, compared by log-rank test, and evaluated using Cox proportional hazards model. RESULTS: Median survival time (MST) was 25 months versus 17 months in the DRT group and DT group. The OS rates at 1, 2, 3, 5 years in the DRT group and DT group were 75.0%, 52.8%, 26.8%, 11.1% and 64.5%, 28.4%, 9.2%, 1.8%, respectively (χ2 = 12.028, p = 0.001). Compared with DT group, the DRT group still had better survival after PSM (p = 0.007). Before and after PSM, factors associated with better OS through multivariable analysis were that thoracic tumor radiotherapy, radiotherapy, N0-2 , and ALK-TKIs. Grades 4-5 radiation toxicities were not observed in patients; 8 (11.6%) and 7 (10.1%) out of the DRT group suffered from Grade 3 radiation esophagitis and radiation pneumonitis, respectively. CONCLUSION: Our results for EGFR-M or ALK-P MPE-NSCLC showed that thoracic tumor radiotherapy may be crucial factor in improving OS with acceptable toxicities. Potential biases should not be neglected: Further randomized controlled trials are necessary to confirm this result.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Derrame Pleural Maligno , Humanos , Carcinoma Pulmonar de Células não Pequenas/complicações , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/radioterapia , Derrame Pleural Maligno/etiologia , Derrame Pleural Maligno/tratamento farmacológico , Pontuação de Propensão , Receptores ErbB
19.
Sci Total Environ ; 894: 164847, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37331403

RESUMO

This study systematically compared the degradation kinetics, conversion pathways, formation of disinfection by-products (DBPs), and changes in toxicity for sulfamethazine and carbamazepine in UV/nitrate system. Additionally, the study simulated the generation of DBPs in the post-chlorination process after the introduction of bromine ions (Br-). The contributions of UV irradiation, hydroxyl radicals (•OH), and reactive nitrogen species (RNS) to SMT degradation were determined to be 28.70 %, 11.70 %, and 59.60 %, respectively. The contributions of UV irradiation, •OH, and RNS to CBZ degradation were found to be 0.00 %, 96.90 %, and 3.10 %, respectively. A higher dosage of NO3- facilitated the degradation of both SMT and CBZ. Solution pH posed almost no effect on SMT degradation, while acidic conditions favored CBZ removal. The degradation of SMT was found to be slightly promoted at low concentrations of Cl-, while the presence of HCO3- significantly accelerated the degradation. Cl-, as well as HCO3-, retarded the CBZ degradation. Natural organic matter (NOM) as a free radical scavenger and UV irradiation filter posed a substantial inhibitory effect on the degradation of SMT and CBZ. The degradation intermediates and transformation pathways of SMT and CBZ by UV/NO3- system were further elucidated. The results showed that the main reaction pathways were bond-breaking reaction, hydroxylation, and nitration/nitrosation reaction. The acute toxicity of most of the intermediates generated during SMT and CBZ degradation was reduced after UV/NO3- treatment. After treatment of SMT and CBZ in UV/nitrate system, the DBPs generated in subsequent chlorination were mainly trichloromethane and a small amount of nitrogen-containing DBPs. After bromine ions were introduced in UV/NO3- system, a large amount of the originally generated trichloromethane was converted to tribromomethane.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Nitratos , Sulfametazina , Cloro , Clorofórmio , Bromo , Carbamazepina , Benzodiazepinas , Halogenação , Raios Ultravioleta , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Cinética
20.
Chemosphere ; 336: 139202, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37331661

RESUMO

As a widely used and hard-to-degrade pharmaceuticals and personal care product (PPCP), ciprofloxacin (CIP) was frequently found in water environment and the detected concentration was gradually increased. Although zero-valent iron (ZVI) has been shown to be effective in destroying refractory organic pollutants, the practical application and sustained catalytic performance is not satisfactory. Herein, introduction of ascorbic acid (AA) and employment of pre-magnetized Fe0 was achieved to maintain a high-concentration of Fe2+ during persulfate (PS) activation. Pre-Fe0/PS/AA system presented the best performance for CIP degradation, achieving almost complete elimination of 5 mg/L CIP within 40 min in the reaction conditions of 0.2 g/L pre-Fe0,0.05 mM AA and 0.2 mM PS. The CIP degradation retarded as excess pre-Fe0 and AA were added, therefore, the optimum dosages of pre-Fe0 and AA were determined to be 0.2 g/L and 0.05 mM, respectively. The CIP degradation gradually decreased as the initial pH increased from 3.05 to 11.03. The presence of Cl-, HCO3-, Al3+, Cu2+ and humic acid significantly influenced the performance of CIP removal, while Zn2+, Mg2+, Mn2+, and NO3- slightly affected the CIP degradation. Combined with the results of HPLC analysis and previous literature, several possible degradation pathways of CIP were proposed.


Assuntos
Ciprofloxacina , Poluentes Químicos da Água , Ciprofloxacina/análise , Poluentes Químicos da Água/análise , Ferro/análise , Substâncias Húmicas/análise , Catálise , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...