Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pineal Res ; 76(4): e12960, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747028

RESUMO

Natural products, known for their environmental safety, are regarded as a significant basis for the modification and advancement of fungicides. Melatonin, as a low-cost natural indole, exhibits diverse biological functions, including antifungal activity. However, its potential as an antifungal agent has not been fully explored. In this study, a series of melatonin derivatives targeting the mitogen-activated protein kinase (Mps1) protein of fungal pathogens were synthesized based on properties of melatonin, among which the trifluoromethyl-substituted derivative Mt-23 exhibited antifungal activity against seven plant pathogenic fungi, and effectively reduced the severity of crop diseases, including rice blast, Fusarium head blight of wheat and gray mold of tomato. In particular, its EC50 (5.4 µM) against the rice blast fungus Magnaporthe oryzae is only one-fourth that of isoprothiolane (22 µM), a commercial fungicide. Comparative analyzes revealed that Mt-23 simultaneously targets the conserved protein kinase Mps1 and lipid protein Cap20. Surface plasmon resonance assays showed that Mt-23 directly binds to Mps1 and Cap20. In this study, we provide a strategy for developing antifungal agents by modifying melatonin, and the resultant melatonin derivative Mt-23 is a commercially valuable, eco-friendly and broad-spectrum antifungal agent to combat crop disease.


Assuntos
Antifúngicos , Melatonina , Melatonina/farmacologia , Melatonina/química , Melatonina/análogos & derivados , Antifúngicos/farmacologia , Antifúngicos/química , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química
2.
Protein Cell ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721690

RESUMO

One of the basic questions in the ageing field is whether there is fundamental difference between the ageing of lower invertebrates and mammals. A major difference between the lower invertebrates and mammals is the abundancy of noncoding RNAs, most of which are not conserved. We have previously identified a noncoding RNA Terc-53 that is derived from the RNA component of telomerase Terc. To study its physiological functions, we generated two transgenic mouse models overexpressing the RNA in wild-type and early-ageing Terc-/- backgrounds. Terc-53 mice showed age-related cognition decline and shortened life span, even though no developmental defects or physiological abnormality at early age was observed, indicating its involvement in normal ageing of mammals. Subsequent mechanistic study identified hyaluronan-mediated motility receptor (Hmmr) as the main effector of Terc-53. Terc-53 mediates the degradation of Hmmr, leading to an increase of inflammation in the affected tissues, accelerating organismal ageing. AAV-delivered supplementation of Hmmr in the hippocampus reversed the cognition decline in Terc-53 transgenic mice. Neither Terc-53 nor Hmmr has homologs in C. elegans. Neither do arthropods express hyaluronan (Stern 2017). These findings demonstrate the complexity of ageing in mammals, and open new paths for exploring noncoding RNA and Hmmr as means of treating age-related physical debilities and improving healthspan.

3.
Phytopathology ; 114(1): 73-83, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37535821

RESUMO

Downy mildew caused by Sclerospora graminicola is a systemic infectious disease affecting foxtail millet production in Africa and Asia. S. graminicola-infected leaves could be decomposed to a state where only the veins remain, resulting in a filamentous leaf tissue symptom. The aim of the present study was to investigate how S. graminicola influences the formation of the filamentous leaf tissue symptoms in hosts at the morphological and molecular levels. We discovered that vegetative hyphae expanded rapidly, with high biomass accumulated at the early stages of S. graminicola infection. In addition, S. graminicola could affect spikelet morphological development at the panicle branch differentiation stage to the pistil and stamen differentiation stage by interfering with hormones and nutrient metabolism in the host, resulting in hedgehog-like panicle symptoms. S. graminicola could acquire high amounts of nutrients from host tissues through secretion of ß-glucosidase, endoglucanase, and pectic enzyme, and destroyed host mesophyll cells by mechanical pressure caused by rapid expansion of hyphae. At the later stages, S. graminicola could rapidly complete sexual reproduction through tryptophan, fatty acid, starch, and sucrose metabolism and subsequently produce numerous oospores. Oospore proliferation and development further damage host leaves via mechanical pressure, resulting in a large number of degraded and extinct mesophyll cells and, subsequently, malformed leaves with only veins left, that is, "filamentous leaf tissue." Our study revealed the S. graminicola expansion characteristics from its asexual to sexual development stages, and the potential mechanisms via which the destructive effects of S. graminicola on hosts occur at different growth stages.


Assuntos
Oomicetos , Setaria (Planta) , Proteínas Hedgehog/metabolismo , Doenças das Plantas , Folhas de Planta
4.
J Pineal Res ; 75(2): e12896, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37458404

RESUMO

Melatonina natural harmless molecule-displays versatile roles in human health and crop disease control such as for rice blast. Rice blast, caused by the filamentous fungus Magnaporthe oryzae, is one devastating disease of rice. Application of fungicides is one of the major measures in the control of various crop diseases. However, fungicide resistance in the pathogen and relevant environmental pollution are becoming serious problems. By screening for possible synergistic combinations, here, we discovered an eco-friendly combination for rice blast control, melatonin, and the fungicide isoprothiolane. These compounds together exhibited significant synergistic inhibitory effects on vegetative growth, conidial germination, appressorium formation, penetration, and plant infection by M. oryzae. The combination of melatonin and isoprothiolane reduced the effective concentration of isoprothiolane by over 10-fold as well as residual levels of isoprothiolane. Transcriptomics and lipidomics revealed that melatonin and isoprothiolane synergistically interfered with lipid metabolism by regulating many common targets, including the predicted isocitrate lyase-encoding gene MoICL1. Furthermore, using different techniques, we show that melatonin and isoprothiolane interact with MoIcl1. This study demonstrates that melatonin and isoprothiolane function synergistically and can be used to reduce the dosage and residual level of isoprothiolane, potentially contributing to the environment-friendly and sustainable control of crop diseases.


Assuntos
Fungicidas Industriais , Magnaporthe , Melatonina , Oryza , Humanos , Fungicidas Industriais/farmacologia , Magnaporthe/genética , Melatonina/farmacologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
5.
New Phytol ; 239(1): 255-270, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37148193

RESUMO

As phospholipids of cell membranes, phosphatidylethanolamine (PE) and phosphatidylserine (PS) play crucial roles in glycerophospholipid metabolism. Broadly, some phospholipid biosynthesis enzymes serve as potential fungicide targets. Therefore, revealing the functions and mechanism of PE biosynthesis in plant pathogens would provide potential targets for crop disease control. We performed analyses including phenotypic characterizations, lipidomics, enzyme activity, site-directed mutagenesis, and chemical inhibition assays to study the function of PS decarboxylase-encoding gene MoPSD2 in rice blast fungus Magnaporthe oryzae. The Mopsd2 mutant was defective in development, lipid metabolism, and plant infection. The PS level increased while PE decreased in Mopsd2, consistent with the enzyme activity. Furthermore, chemical doxorubicin inhibited the enzyme activity of MoPsd2 and showed antifungal activity against 10 phytopathogenic fungi including M. oryzae and reduced disease severity of two crop diseases in the field. Three predicted doxorubicin-interacting residues are important for MoPsd2 functions. Our study demonstrates that MoPsd2 is involved in de novo PE biosynthesis and contributes to the development and plant infection of M. oryzae and that doxorubicin shows broad-spectrum antifungal activity as a fungicide candidate. The study also implicates that bacterium Streptomyces peucetius, which biosynthesizes doxorubicin, could be potentially used as an eco-friendly biocontrol agent.


Assuntos
Carboxiliases , Fungicidas Industriais , Magnaporthe , Oryza , Antifúngicos/farmacologia , Fungicidas Industriais/farmacologia , Oryza/microbiologia , Doenças das Plantas/microbiologia , Magnaporthe/genética
6.
Environ Sci Technol ; 57(11): 4533-4542, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36869003

RESUMO

Profound understanding of fouling behaviors and underlying mechanisms is fundamentally important for fouling control in membrane-based environmental applications. Therefore, it entails novel noninvasive analytical approaches for in situ characterizing the formation and development of membrane fouling processes. This work presents a characterization approach based on hyperspectral light sheet fluorescence microscopy (HSPEC-LSFM), which is capable of discriminating various foulants and providing their 2-dimensional/3-dimensional spatial distributions on/in membranes in a label-free manner. A fast, highly sensitive and noninvasive imaging platform was established by developing a HSPEC-LSFM system and further extending it to incorporate a laboratory-scale pressure-driven membrane filtration system. Hyperspectral data sets with a spectral resolution of ∼1.1 nm and spatial resolution of ∼3 µm as well as the temporal resolution of ∼8 s/plane were obtained, and the fouling formation and development process of foulants onto membrane surfaces, within the pores and on the pore walls were clearly observed during the ultrafiltration of protein and humic substances solutions. Pore blocking/constriction at short times while cake growth/concentration polarization at longer times was found to have coupled effects for the flux decline in these filtration tests, and yet the contribution of each effect as well as the transition of the governing mechanisms was found distinct. These results demonstrate in situ label-free characterization of membrane fouling evolution with the recognition of foulant species during filtration and provide new insights into membrane fouling. This work offers a powerful tool to investigate dynamic processes for a wide range of membrane-based explorations.


Assuntos
Ultrafiltração , Purificação da Água , Purificação da Água/métodos , Membranas Artificiais , Filtração/métodos , Substâncias Húmicas , Imagem Óptica
7.
J Pineal Res ; 74(1): e12839, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36314656

RESUMO

Melatonin is a low-cost natural small indole molecule with versatile biological functions. However, melatonin's fungicidal potential has not been fully exploited, and the mechanism remains elusive. Here, we report that melatonin broadly inhibited 13 plant pathogens. In the rice blast fungal pathogen Magnaporthe oryzae, melatonin inhibited fungal growth, formation of infection-specific structures named appressoria, and plant infection, reducing disease severity. Melatonin entered fungal cells efficiently and colocalized with the critical mitogen-activated protein kinase named Mps1, suppressing phosphorylation of Mps1. Melatonin's affinity for Mps1 via two hydrogen bonds was demonstrated using surface plasmon resonance and chemical modifications. To improve melatonin's efficiency, we obtained 20 melatonin derivatives. Tert-butyloxycarbonyl melatonin showed a 25-fold increase in fungicidal activities, demonstrating the feasibility of chemical modifications in melatonin modification. Our study demonstrated the broad-spectrum fungicidal effect of melatonin by suppressing Mps1 as one of the targets. Through further systematic modifications, developing an eco-friendly melatonin derivative of commercial values for agricultural applications appears promising.


Assuntos
Melatonina , Oryza , Antifúngicos/farmacologia , Proteínas Quinases , Fosforilação , Plantas , Doenças das Plantas/microbiologia
8.
Mol Plant Pathol ; 23(5): 720-732, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35191164

RESUMO

As with the majority of the hemibiotrophic fungal pathogens, the rice blast fungus Magnaporthe oryzae uses highly specialized infection structures called appressoria for plant penetration. Appressoria differentiated from germ tubes rely on enormous turgor pressure to directly penetrate the plant cell, in which process lipid metabolism plays a critical role. In this study, we characterized the MoPAH1 gene in M. oryzae, encoding a putative highly conserved phosphatidate phosphatase. The expression of MoPAH1 was up-regulated during plant infection. The MoPah1 protein is expressed at all developmental and infection stages, and is localized to the cytoplasm. Disruption of MoPAH1 causes pleiotropic defects in vegetative growth, sporulation, and heat tolerance. The lipid profile is significantly altered in the Mopah1 mutant. Lipidomics assays showed that the level of phosphatidic acid (PA) was increased in the mutant, which had reduced levels of diacylglycerol and triacylglycerol. Using a PA biosensor, we showed that the increased level of PA in the Mopah1 mutant was primarily accumulated in the vacuole. The Mopah1 mutant was blocked in both conidiation and the formation of appressorium-like structures at hyphal tips. It was nonpathogenic and failed to cause any blast lesions on rice and barley seedlings. RNA sequencing analysis revealed that MoPah1 regulates the expression of transcription factors critical for various developmental and infection-related processes. The Mopah1 mutant was reduced in the expression and phosphorylation of Pmk1 MAP kinase and delayed in autophagy. Our study demonstrates that MoPah1 is necessary for lipid metabolism, fungal development, and pathogenicity in M. oryzae.


Assuntos
Magnaporthe , Oryza , Ascomicetos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Metabolismo dos Lipídeos/genética , Oryza/microbiologia , Fosfatidato Fosfatase/genética , Fosfatidato Fosfatase/metabolismo , Doenças das Plantas/microbiologia , Esporos Fúngicos/fisiologia
9.
Water Res ; 185: 116240, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32798888

RESUMO

Membrane fouling restricts the wide applications of membrane technology and therefore, it is essential to develop novel analytical techniques to characterize membrane fouling and to further understand the mechanism behind it. In this work, we demonstrate a capability of high-resolution large-scale 3D visualization and quantification of the foulants on/in membranes during fouling process based on light sheet fluorescence microscopy as a noninvasive reproducible optical approach. The adsorption processes of dextran (DEX) on/in two polyvinylidene fluoride membranes with similar pore structure but distinct surface hydrophilicity were clearly observed. For a hydrophilic polyvinylidene fluoride (PVDF) membrane, the diffusion and adsorption of the DEX in membrane matrix were much slower compared to that for a hydrophobic membrane. A concentrated foulant layer was observed in the superficial potion of the hydrophilic membrane matrix while the foulants were observed quickly penetrating across the overall hydrophobic PVDF membrane during a short adsorption process. Both the inner concentrated fouling layer (in membrane superficial portion) and the foulant penetration (in membrane asymmetric structure) presented correlations with membrane fouling irreversibility, which could elucidate the microscopic events of hydrophilic membrane in resisting fouling. In addition, the imaging results could be correlated with the XDLVO analysis, suggesting how the membrane-foulant and foulant-foulant interfacial interactions resulted in a time-dependent membrane fouling process. This work provides a fast, highly-sensitive and noninvasive imaging platform for in situ characterization of membrane fouling evolution and should be useful for a wide range of membrane-based process explorations.


Assuntos
Membranas Artificiais , Purificação da Água , Adsorção , Interações Hidrofóbicas e Hidrofílicas , Membranas , Microscopia de Fluorescência , Ultrafiltração
10.
Int J Mol Sci ; 21(4)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059399

RESUMO

Sclerospora graminicola (Sacc.) Schroeter is a biotrophic pathogen of foxtail millet (Setaria italica) and increasingly impacts crop production. We explored the main factors for symptoms such as dwarfing of diseased plants and the "hedgehog panicle" by determining panicle characteristics of varieties infected with S. graminicola and analyzing the endogenous hormone-related genes in leaves of Jingu 21. Results indicated that different varieties infected by S. graminicola exhibited various symptoms. Transcriptome analysis revealed that the ent-copalyl diphosphate synthetase (CPS) encoded by Seita.2G144900 and ent-kaurene synthase (KS) encoded by Seita.2G144400 were up-regulated 4.7-fold and 2.8-fold, respectively. Results showed that the biosynthesis of gibberellin might be increased, but the gibberellin signal transduction pathway might be blocked. The abscisic acid (ABA) 8'-hydroxylase encoded by Seita.6G181300 was continuously up-regulated by 4.2-fold, 2.7-fold, 14.3-fold, and 12.9-fold from TG1 to TG4 stage, respectively. Seita.2G144900 and Seita.2G144400 increased 79-fold and 51-fold, respectively, at the panicle development stage, promoting the formation of a "hedgehog panicle". Jasmonic acid-related synthesis enzymes LOX2s, AOS, and AOC were up-regulated at the early stage of infection, indicating that jasmonic acid played an essential role in early response to S. graminicola infection. The expression of YUC-related genes of the auxin synthesis was lower than that of the control at TG3 and TG4 stages, but the amidase encoded by Seita.2G313400 was up-regulated by more than 30-fold, indicating that the main biosynthesis pathway of auxin had changed. The results suggest that there was co-regulation of the hormone pathways during the infection of foxtail millet by S. graminicola.


Assuntos
Perfilação da Expressão Gênica/métodos , Oomicetos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Setaria (Planta)/parasitologia , Ácido Abscísico/metabolismo , Alquil e Aril Transferases/genética , Vias Biossintéticas/genética , Vias Biossintéticas/fisiologia , Sistema Enzimático do Citocromo P-450/genética , Regulação da Expressão Gênica de Plantas , Infecções , Fenótipo , Proteínas de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...