Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Int J Med Inform ; 186: 105425, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38554589

RESUMO

OBJECTIVE: For patients in the Intensive Care Unit (ICU), the timing of intubation has a significant association with patients' outcomes. However, accurate prediction of the timing of intubation remains an unsolved challenge due to the noisy, sparse, heterogeneous, and unbalanced nature of ICU data. In this study, our objective is to develop a workflow for pre-processing ICU data and to develop a customized deep learning model to predict the need for intubation. METHODS: To improve the prediction accuracy, we transform the intubation prediction task into a time series classification task. We carefully design a sequence of data pre-processing steps to handle the multimodal noisy data. Firstly, we discretize the sequential data and address missing data using interpolation. Next, we employ a sampling strategy to address data imbalance and standardize the data to facilitate faster model convergence. Furthermore, we employ the feature selection technique and propose an ensemble model to combine features learned by different deep learning models. RESULTS: The performance is evaluated on Medical Information Mart for Intensive Care (MIMIC)-III, an ICU dataset. Our proposed Deep Feature Fusion method achieves an area under the curve (AUC) of the receiver operating curve (ROC) of 0.8953, surpassing the performance of other deep learning and traditional machine learning models. CONCLUSION: Our proposed Deep Feature Fusion method proves to be a viable approach for predicting intubation and outperforms other deep learning and classical machine learning models. The study confirms that high-frequency time-varying indicators, particularly Mean Blood Pressure (MeanBP) and peripheral oxygen saturation (SpO2), are significant risk factors for predicting intubation.


Assuntos
Aprendizado Profundo , Humanos , Curva ROC , Cuidados Críticos , Unidades de Terapia Intensiva , Aprendizado de Máquina
2.
Plant Cell ; 36(5): 1312-1333, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38226685

RESUMO

We are entering an exciting century in the study of the plant organelles in the endomembrane system. Over the past century, especially within the past 50 years, tremendous advancements have been made in the complex plant cell to generate a much clearer and informative picture of plant organelles, including the molecular/morphological features, dynamic/spatial behavior, and physiological functions. Importantly, all these discoveries and achievements in the identification and characterization of organelles in the endomembrane system would not have been possible without: (1) the innovations and timely applications of various state-of-art cell biology tools and technologies for organelle biology research; (2) the continuous efforts in developing and characterizing new organelle markers by the plant biology community; and (3) the landmark studies on the identification and characterization of the elusive organelles. While molecular aspects and results for individual organelles have been extensively reviewed, the development of the techniques for organelle research in plant cell biology is less appreciated. As one of the ASPB Centennial Reviews on "organelle biology," here we aim to take a journey across a century of organelle biology research in plants by highlighting the important tools (or landmark technologies) and key scientists that contributed to visualize organelles. We then highlight the landmark studies leading to the identification and characterization of individual organelles in the plant endomembrane systems.


Assuntos
Organelas , Plantas , Organelas/metabolismo , Organelas/fisiologia , Plantas/metabolismo , História do Século XX , História do Século XXI , Células Vegetais/fisiologia , Membranas Intracelulares/metabolismo
3.
Anal Chem ; 95(46): 16868-16876, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37947381

RESUMO

In Alzheimer's disease, hypochlorous acid involved in the clearance of invading bacteria or pathogens and butyrylcholinesterase engaged in the hydrolysis of the neurotransmitter acetylcholine are relatively significantly altered. However, there are few dual detection probes for hypochlorous acid and butyrylcholinesterase. In addition, single-response probes suffer from serious off-target effects and near-infrared probes do not easily penetrate the blood-brain barrier due to their excessive molecular weight. In this work, we constructed a two-photon fluorescent probe that recognizes hypochlorous acid and butyrylcholinesterase based on a dual-lock strategy. The thiocarbonyl group is oxidized in the presence of hypochlorous acid, and the hydrolysis occurs at the 7-position ester bond in the existence of butyrylcholinesterase, releasing a strongly fluorescent fluorophore, 4-methylumbelliferone. Excellent imaging was performed in PC12 cells using this probe, and deep two-photon imaging was observed in the brains of AD mice after tail vein injection with this probe. It indicates that the probe can provide a promising tool for the more precise diagnosis of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/diagnóstico por imagem , Butirilcolinesterase/metabolismo , Ácido Hipocloroso , Corantes Fluorescentes/química , Encéfalo/metabolismo
4.
Skin Res Technol ; 29(11): e13511, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38009039

RESUMO

BACKGROUND: Facial rejuvenation is becoming more and more popular, particularly among middle-aged persons. There are currently many techniques for improving the aforementioned situations, but each has its drawbacks. Our study aimed to discuss the treatment effect of a composited technique for reversing both lower eyelid and midface aging. METHODS: The patient's face was designed and measured before surgery. During surgery, a traditional lower blepharoplasty incision was made. The layer between the orbital septum and the orbicularis oculi muscle was separated to approximately 4-5 mm below the infraorbital, then the orbital septum and orbicularis retaining ligament were found to be released. A self-made suspension curving needle subconsciously passed through the brim of the superficial cheek fat pad via the "U-type" path and raised them to the proper location. Then sutured them to the infraorbital rim periosteum, as well as the suborbicularis oculi fat (SOOF) and the orbital septum fat. Secured the outside canthus to keep the lower lid position stable. RESULTS: From February 2020 to November 2022, 106 patients underwent the new surgical procedure and were successfully followed up for 20 ± 6.5 months postoperatively. The mean GAIS score was 2.42 ± 0.78, patient satisfaction rate was 95%. All of the Barton grades were decreased. The nasal base level suspension points were elevated to a level of 5 ± 2 mm. 3D measurement data revealed significant improvements. CONCLUSIONS: The composited technique is a safe and effective way to reverse the aging of the lower eyelid and midface.


Assuntos
Blefaroplastia , Remoção , Pessoa de Meia-Idade , Humanos , Envelhecimento , Pálpebras/cirurgia , Blefaroplastia/métodos , Face/cirurgia , Tecido Adiposo
5.
Int J Pharm ; 648: 123567, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37918495

RESUMO

This study aims to examine the impact of the microfluidic preparation process on the quality of poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) co-delivered with scutellarin (SCU) and paeoniflorin (PAE) in comparison to a conventional emulsification method and to evaluatethe potential cardio-protective effect of SCU-PAE PLGA NPs produced through emulsification method. As compared with microfluidics, the nanoparticles prepared by emulsification method exhibited a smaller size, higher encapsulation efficiency, higher drug loading and lower viscosity for injection. Subsequently, a rat myocardial ischemia (MI) was established using male Sprague-Dawley (SD) rats (250 ± 20 g) subcutaneously injected with 85 mg/kg isoproterenol (ISO) for two consecutive days. The pharmacokinetic findings demonstrated that our SCU-PAE PLGA NPs exhibited prolonged blood circulation time in MI rats, leading to increased levels of SCU and PAE in the heart. This resulted in significant improvements in electrocardiogram and cardiac index, as well as reduced serum levels of CK, LDH, AST. Histopathological analysis using H&E and TUNEL staining provided further evidence of improved cardiac function and decreased apoptosis. Additionally, experiments measuring SOD, MDA, GSH, NO, TNF-α and IL-6 levels indicated that SCU-PAE PLGA NPs may effectively treat MI through oxidative stress and inflammatory pathways, thereby establishing it as a promising therapeutic intervention.


Assuntos
Doença da Artéria Coronariana , Isquemia Miocárdica , Nanopartículas , Ratos , Masculino , Animais , Isoproterenol , Ratos Sprague-Dawley , Isquemia Miocárdica/induzido quimicamente , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/prevenção & controle
6.
Front Oncol ; 13: 1278467, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37817774

RESUMO

Background: Liver cancer, especially hepatocellular carcinoma (HCC), remains a significant global health challenge. Traditional prognostic indicators for HCC often fall short in providing comprehensive insights for individualized treatment. The integration of genomics and radiomics offers a promising avenue for enhancing the precision of HCC diagnosis and prognosis. Methods: From the Cancer Genome Atlas (TCGA) database, we categorized mRNA of HCC patients by Forkhead Box M1 (FOXM1) expression and performed univariate and multivariate studies to pinpoint autonomous HCC risk factors. We deployed subgroup, correlation, and interaction analyses to probe FOXM1's link with clinicopathological elements. The connection between FOXM1 and immune cells was evaluated using the CIBERSORTx database. The functions of FOXM1 were investigated through analyses of Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). After filtering through TCGA and the Cancer Imaging Archive (TCIA) database, we employed dual-region computed tomography (CT) radiomics technology to noninvasively predict the mRNA expression of FOXM1 in HCC tissues. Radiomic features were extracted from both tumoral and peritumoral regions, and a radiomics score (RS) was derived. The performance and robustness of the constructed models were evaluated using 10-fold cross-validation. A radiomics nomogram was developed by incorporating RS and clinical variables from the TCGA database. The models' discriminative abilities were assessed using metrics such as the area under the curve (AUC) of the receiver operating characteristic curves (ROC) and precision-recall (PR) curves. Results: Our findings emphasized the overexpression of FOXM1 as a determinant of poor prognosis in HCC and illustrated its impact on immune cell infiltration. After selecting arterial phase CT, we chose 7 whole-tumor features and 3 features covering both the tumor and its surroundings to create WT and WP models for FOXM1 prediction. The WT model showed strong predictive capabilities for FOXM1 expression by PR curve. Conversely, the WP model did not demonstrate the good predictive ability. In our study, the radiomics score (RS) was derived from whole-tumor regions on CT images. The RS was significantly associated with FOXM1 expression, with an AUC of 0.918 in the training cohort and 0.837 in the validation cohort. Furthermore, the RS was correlated with oxidative stress genes and was integrated with clinical variables to develop a nomogram, which demonstrated good calibration and discrimination in predicting 12-, 36-, and 60-month survival probabilities. Additionally, bioinformatics analysis revealed FOXM1's potential role in shaping the immune microenvironment, with its expression linked to immune cell infiltration. Conclusion: This study highlights the potential of integrating FOXM1 expression and radiomics in understanding HCC's complexity. Our approach offers a new perspective in utilizing radiomics for non-invasive tumor characterization and suggests its potential in providing insights into molecular profiles. Further research is needed to validate these findings and explore their clinical implications in HCC management.

8.
J Cell Physiol ; 238(9): 2090-2102, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37417912

RESUMO

Damaged mitochondria, a key factor in liver fibrosis, can be removed by the mitophagy pathway to maintain homeostasis of the intracellular environment to alleviate the development of fibrosis. PINK1 (PTEN-induced kinase 1) and NIPSNAP1 (nonneuronal SNAP25-like protein 1), which cooperatively regulate mitophagy, have been predicted to include the sites of lysine acetylation related to SIRT3 (mitochondrial deacetylase sirtuin 3). Our study aimed to discuss whether SIRT3 deacetylates PINK1 and NIPSNAP1 to regulate mitophagy in liver fibrosis. Carbon tetrachloride (CCl4 )-induced liver fibrosis as an in vivo model and LX-2 cells as activated cells were used to simulate liver fibrosis. SIRT3 expression was significantly decreased in mice in response to CCl4 , and SIRT3 knockout in vivo significantly deepened the severity of liver fibrosis, as indicated by increased α-SMA and Col1a1 levels both in vivo and in vitro. SIRT3 overexpression decreased α-SMA and Col1a1 levels. Furthermore, SIRT3 significantly regulated mitophagy in liver fibrosis, as demonstrated by LC3-Ⅱ/Ⅰ and p62 expression and colocalization between TOM20 and LAMP1. Importantly, PINK1 and NIPSNAP1 expression was also decreased in liver fibrosis, and PINK1 and NIPSNAP1 overexpression significantly improved mitophagy and attenuated ECM production. Furthermore, after simultaneously interfering with PINK1 or NIPSNAP1 and overexpressing SIRT3, the effect of SIRT3 on improving mitophagy and alleviating liver fibrosis was disrupted. Mechanistically, we show that SIRT3, as a mitochondrial deacetylase, specifically regulates the acetylation of PINK1 and NIPSNAP1 to mediate the mitophagy pathway in liver fibrosis. SIRT3-mediated PINK1 and NIPSNAP1 deacetylation is a novel molecular mechanism in liver fibrosis.


Assuntos
Cirrose Hepática , Sirtuína 3 , Animais , Camundongos , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Mitofagia , Proteínas Quinases/metabolismo , Sirtuína 3/genética , Sirtuína 3/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
9.
J Exp Clin Cancer Res ; 42(1): 138, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264406

RESUMO

BACKGROUND: Breast cancer (BC) negatively impacts the health of women worldwide. Circular RNAs (circRNAs) are a group of endogenous RNAs considered essential regulatory factor in BC tumorigenesis and progression. However, the underlying molecular mechanisms of circRNAs remain unclear. METHODS: Expression levels of circPAPD4, miR-1269a, CREBZF, and ADAR1 in BC cell lines and tissues were measured using bioinformatics analysis, RT-qPCR, ISH, and IHC. Cell proliferation and apoptosis were measured using CCK8, EdU staining, flow cytometry, and TUNEL assays. Pearson correlation analysis, RNA pull-down, dual-luciferase reporter, and co-immunoprecipitation assays were used to explore the correlation among circPAPD4, miR-1269a, CREBZF, STAT3, and ADAR1. Effects of circPAPD4 overexpression on tumor progression were investigated using in vivo assays. Moreover, CREBZF mRNA delivered by polymeric nanoparticles (CREBZF-mRNA-NPs) was used to examine application value of our findings. RESULTS: CircPAPD4 expression was low in BC tissues and cells. Functionally, circPAPD4 inhibited proliferation and promoted apoptosis in vitro and in vivo. Mechanistically, circPAPD4 biogenesis was regulated by ADAR1. And circPAPD4 promoted CREBZF expression by competitively binding to miR-1269a. More importantly, CREBZF promoted circPAPD4 expression by suppressing STAT3 dimerization and ADAR1 expression, revealing a novel positive feedback loop that curbed BC progression. Systematic delivery of CREBZF-mRNA-NPs effectively induced CREBZF expression and activated the positive feedback loop of circPAPD4/miR-1269a/CREBZF/STAT3/ADAR1, which might suppress BC progression in vitro and in vivo. CONCLUSION: Our findings firstly illustrated that circPAPD4/miR-1269a/CREBZF/STAT3/ADAR1 positive feedback loop mediated BC progression, and delivering CREBZF mRNA nanoparticles suppressed BC progression in vitro and in vivo, which might provide novel insights into therapeutic strategies for breast cancer.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , Neoplasias da Mama/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Mensageiro , Retroalimentação , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo
10.
Curr Opin Plant Biol ; 74: 102375, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37172364

RESUMO

Membrane vesiculation is an energy-costing process. Previous studies paid much attention to proteins with curvature-inducing motifs. Recent publications reveal that the liquid-like protein assembly on membrane surfaces provides an efficient yet structure-independent mechanism for increasing the membrane curvature, which plays important roles in vesicle transport in many aspects. Intrinsically disordered regions (IDRs) within the proteins are highly potent drivers of membrane curvature by providing large hydrodynamic radii to generate steric pressure. Biomolecular condensates formed by phase separation can provide a reaction platform for sequential processes or generate a wetting surface to sequestrate cargos and trigger membrane remodeling. We review the latest progress in yeast and mammalian cells, focus on the mechanism of clathrin-mediated endocytosis (CME) and autophagy initiation, and compare with what we know in model plant Arabidopsis. The comparison may give important insights into the understanding of basic membrane trafficking mechanisms in plant cells.


Assuntos
Arabidopsis , Animais , Saccharomyces cerevisiae , Endocitose , Transporte Biológico , Mamíferos
11.
Plant Physiol ; 192(3): 2243-2260, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37010107

RESUMO

The primary cell wall is a fundamental plant constituent that is flexible but sufficiently rigid to support the plant cell shape. Although many studies have demonstrated that reactive oxygen species (ROS) serve as important signaling messengers to modify the cell wall structure and affect cellular growth, the regulatory mechanism underlying the spatial-temporal regulation of ROS activity for cell wall maintenance remains largely unclear. Here, we demonstrate the role of the Arabidopsis (Arabidopsis thaliana) multicopper oxidase-like protein skewed 5 (SKU5) and its homolog SKU5-similar 1 (SKS1) in root cell wall formation through modulating ROS homeostasis. Loss of SKU5 and SKS1 function resulted in aberrant division planes, protruding cell walls, ectopic deposition of iron, and reduced nicotinamide adeninedinucleotide phosphate (NADPH) oxidase-dependent ROS overproduction in the root epidermis-cortex and cortex-endodermis junctions. A decrease in ROS level or inhibition of NADPH oxidase activity rescued the cell wall defects of sku5 sks1 double mutants. SKU5 and SKS1 proteins were activated by iron treatment, and iron over-accumulated in the walls between the root epidermis and cortex cell layers of sku5 sks1. The glycosylphosphatidylinositol-anchored motif was crucial for membrane association and functionality of SKU5 and SKS1. Overall, our results identified SKU5 and SKS1 as regulators of ROS at the cell surface for regulation of cell wall structure and root cell growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Parede Celular , Raízes de Plantas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Ferro/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
12.
Int J Nanomedicine ; 18: 1677-1693, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37020690

RESUMO

Background: Circular RNAs (circRNAs) are becoming vital biomarkers and therapeutic targets for malignant tumors due to their high stability and specificity in tissues. However, biological functions of circRNAs in hepatocellular carcinoma (HCC) are still not well studied. Methods: Gene Expression Omnibus (GEO) database and qRT-PCR were used to evaluate expression of circROBO1 (hsa_circ_0066568) in HCC tissues and cell lines. CCK-8, colony formation, EdU staining, flow cytometry for cell cycle analysis, and xenograft model assays were performed to detect the circROBO1 function in vitro and in vivo. RNA pull-down, RNA immunoprecipitation (RIP), and Luciferase reporter assays were used to investigate the relationship among circROBO1, miR-130a-5p, and CCNT2. More importantly, we developed nanoparticles made from poly lactic-co-glycolic acid (PLGA) and polyethylene glycol (PEG) chains as the delivery system of si-circROBO1 and then applied them to HCC in vitro and in mice. Results: circROBO1 was obviously upregulated in HCC tissues and cell lines, and elevated circROBO1 was closely correlated with worse prognosis for HCC patients. Functionally, knocking down circROBO1 significantly suppressed HCC cells growth in vitro and in mice. Mechanistically, circROBO1 acted as a competing endogenous RNA to downregulate miR-130a-5p, leading to CCNT2 expression upregulation. Furthermore, miR-130a-5p mimic or CCNT2 knockdown reversed the role of circROBO1 overexpression on HCC cells, which demonstrated that circROBO1 promoted HCC development via miR-130a-5p/CCNT2 axis. In addition, we developed nanoparticles loaded with si-circROBO1, named as PLGA-PEG (si-circROBO1) NPs, which significantly prevented the proliferation of HCC cells, and did not exhibit apparent toxicity to major organs in vivo. Conclusion: Our findings firstly demonstrate that circROBO1 overexpression promotes HCC progression by regulating miR-130a-5p/CCNT2 axis, which may serve as an effective nanotherapeutic target for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Nanopartículas , Humanos , Animais , Camundongos , RNA Circular , Glicóis , Proliferação de Células , Linhagem Celular Tumoral , Ciclina T
13.
Epigenetics ; 18(1): 2192438, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36989117

RESUMO

Ferroptosis is a newly characterized form of iron-dependent non-apoptotic cell death, which is closely associated with cancer progression. However, the functions and mechanisms in regulation of escaping from ferroptosis during hepatocellular carcinoma (HCC) progression remain unknown. In this study, we reported that the RNA binding motif single stranded interacting protein 1 (RBMS1) participated in HCC development,and functioned as a regulator of ferroptosis. Clinically, the downregulation of RBMS1 occurred in HCC tissues, and low RBMS1 expression was associated with worse HCC patients survival. Mechanistically, RBMS1 overexpression inhibited HCC cell growth by attenuating the expression of glutathione peroxidase 4 (GPX4)and further facilitated ferroptosis in vitro and in vivo. More importantly, a novel circIDE (hsa_circ_0000251) was identified to elevate RBMS1 expression via sponging miR-19b-3p in HCC cells. Collectively, our findings established circIDE/miR-19b-3p/RBMS1 axis as a regulator of ferroptosis, which could be a promising therapeutic target and prognostic factor.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/metabolismo , Ferroptose/genética , Linhagem Celular Tumoral , RNA Circular/genética , Metilação de DNA , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a RNA/genética
14.
Physiol Rep ; 11(4): e15604, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36823776

RESUMO

It is well known that the main forms of innervation are synapses and free nerve endings, while other forms of innervation have not been reported. Here, we explore a new way of innervating lymphoid organs. Male Sprague-Dawley rats were used for studying the innervation of sympathetic nerve fibers in lymph nodes by means of anterograde tracking, immunoelectron microscopy, three-dimension reconstruction analysis, and immunofluorescence labeling. The results showed that the Fluoro-Ruby labeled nerve endings targeted only a group of cells in the lymph nodes and entered the cells through the plasma membrane. The electron microscopy showed that the biotinylated glucan amine reaction elements were distributed in the cytoplasm, and most of the biotinylated glucan amine active elements were concentrated on the microtubule and microfilament walls. Birbeck particles with rod-shaped and/or tennis racket like structures can be seen in the labeled cells at high magnification, and Birbeck particles contain biotinylated glucan amine-reactive elements. The immunofluoresence results showed that the Fluoro-Ruby-labeled nerve innervating cells expressed CD207 and CD1a protein. This result confirmed that the labeled cells were Langerhans cells. Our findings suggested that Langerhans cells might serve as a "bridge cell" for neuroimmune cross-talking in lymph organs, which play an important role in transmitting signals of the nervous system to immune system. This study also opened up a new way for further study of immune regulation mechanism.


Assuntos
Linfonodos , Sistema Linfático , Animais , Masculino , Ratos , Glucanos/metabolismo , Linfonodos/inervação , Sistema Linfático/inervação , Fibras Nervosas/metabolismo , Ratos Sprague-Dawley
15.
J Exp Clin Cancer Res ; 42(1): 48, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36797769

RESUMO

BACKGROUND: Circular RNAs (circRNAs) have important regulatory functions in cancer, but the role of circRNAs in the tumor microenvironment (TME) remains unclear. Moreover, we also explore the effects of si-circRNAs loaded in nanoparticles as therapeutic agent for anti-tumor in vivo. METHODS: We conducted bioinformatics analysis, qRT-PCR, EdU assays, Transwell assays, co-culture system and multiple orthotopic xenograft models to investigate the expression and function of circRNAs. Additionally, PLGA-based nanoparticles loaded with si-circRNAs were used to evaluate the potential of nanotherapeutic strategy in anti-tumor response. RESULTS: We identified oncogene SERPINE2 derived circRNA, named as cSERPINE2, which was notably elevated in breast cancer and was closely related to poor clinical outcome. Functionally, tumor exosomal cSERPINE2 was shuttled to tumor associated macrophages (TAMs) and enhanced the secretion of Interleukin-6 (IL-6), leading to increased proliferation and invasion of breast cancer cells. Furthermore, IL-6 in turn increased the EIF4A3 and CCL2 levels within tumor cells in a positive feedback mechanism, further enhancing tumor cSERPINE2 biogenesis and promoting the recruitment of TAMs. More importantly, we developed a PLGA-based nanoparticle loaded with si-cSERPINE2, which effectively attenuated breast cancer progression in vivo. CONCLUSIONS: Our study illustrates a novel mechanism that tumor exosomal cSERPINE2 mediates a positive feedback loop between tumor cells and TAMs to promote cancer progression, which may serve as a promising nanotherapeutic strategy for the treatment of breast cancer.


Assuntos
Neoplasias da Mama , RNA Circular , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Interleucina-6/metabolismo , Macrófagos/metabolismo , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Serpina E2/metabolismo , Serpina E2/farmacologia , Microambiente Tumoral , Macrófagos Associados a Tumor/metabolismo , Animais
16.
Mol Pharm ; 20(4): 1996-2008, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36827081

RESUMO

Gastric ulcers are a common clinical presentation affecting anyone, regardless of their age or gender. Nanoparticles (NPs) containing Bletilla striata polysaccharide (BSP) and omeprazole (OME) were investigated in the study for their therapeutic effect on gastric ulcers. Ethanol-induced gastric ulcers in rats (240 ± 30 g) were established. Our OME-BSP NPs were more stable than free OME in the acidic environment and can increase the absorption of OME in rat stomach, which was confirmed by in situ gastric absorption and distribution experiments. The extended blood circulation of OME-BSP NPs was also observed in rats with gastric ulcer. More importantly, OME-BSP NPs not only decreased the area of gastric ulcer and inhibited gastric acid secretion but also reversed gastric tissue damage and cell apoptosis, as revealed by HE and TUNEL staining. Subsequent SOD, MDA, PGE2, IL-6, and TNF-α tests further verified the superiority of OME-BSP NPs against rat gastric ulcer, which properly originated from superior antioxidant and anti-inflammatory effects. As a result, our OME-BSP NPs' drug delivery system improved the stability and absorption of OME in the rat stomach and achieved targeted treatment of gastric ulcers.


Assuntos
Omeprazol , Úlcera Gástrica , Ratos , Animais , Omeprazol/uso terapêutico , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Etanol/efeitos adversos , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico
17.
Br J Radiol ; 96(1144): 20220948, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36715145

RESUMO

OBJECTIVE: To evaluate a series of vascular parameters derived from abdominal dual-phase contrast-enhanced CT as predictors of 14-day mortality and AKI within 7 days in septic shock. METHODS: 144 patients with septic shock and 60 negative cases were included. The vascular parameters from CT were measured and calculated, including aortic density in arterial (Dena-A) and venous phase (Dena-V), renal vein density in arterial (Denrv-A) and venous phase (Denrv-V), and renal vein-to-aortic density ratio in arterial (DenRrv/a-A) and venous phase (DenRrv/a-V). The parameters were compared between patients and controls, and between patients with different clinical outcomes, and assessed for predictive value of 14-day mortality and AKI within 7 days. RESULTS: Patients with septic shock presented significantly lower Denrv-A (p < 0.001) and DenRrv/a-A (p = 0.002) levels than the controls. In the septic shock group, patients who died had significantly lower Denrv-A (p = 0.001) and lower DenRrv/a-A (p < 0.001) than those who survived. Patients who developed AKI had significantly lower Denrv-A (p < 0.001) and DenRrv/a-A (p = 0.011) than those who did not. Multivariate analysis suggested DenRrv/a-A as an independent predictor of 14-day mortality (OR 0.012; 95% confidence interval [CI]:0.002,0.086; p < 0.001) and Denrv-A as an independent predictor of AKI (OR 0.989;95% CI:0.982,0.997; p = 0.006). CONCLUSION: In septic shock, significant decreases in Denrv-A and DenRrv/a-A were associated with the onset of AKI and predicted higher 14-day mortality. ADVANCES IN KNOWLEDGE: The renal vein density and renal vein-aortic density ratio in arterial phase of dual-phase contrast-enhanced CT may serve as good predictors of AKI and mortality in septic shock.


Assuntos
Injúria Renal Aguda , Choque Séptico , Humanos , Choque Séptico/diagnóstico por imagem , Choque Séptico/complicações , Veias Renais/diagnóstico por imagem , Prognóstico , Injúria Renal Aguda/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Estudos Retrospectivos , Fatores de Iniciação em Eucariotos
18.
Environ Toxicol ; 38(5): 1022-1037, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36715182

RESUMO

Microvascular invasion (MVI) is a crucial risk factor related to the metastasis of hepatocellular carcinoma (HCC), but the underlying mechanisms remain to be revealed. Characterizing the inherent mechanisms of MVI may aid in the development of effective treatment strategies to improve the prognosis of HCC patients with metastasis. Through the Gene Expression Omnibus (GEO) database, we identified that small nuclear ribonucleoprotein polypeptide A (SNRPA) was related to MVI in HCC. SNRPA was overexpressed in MVI-HCC and correlated with poor patient survival. Mechanistically, SNRPA promoted the epithelial-mesenchymal transition (EMT)-like process for HCC cells to accelerate metastasis by activating the NOTCH1/Snail pathway in vitro and in vivo. Importantly, circSEC62 upregulated SNRPA expression in HCC cells via miR-625-5p sponging. Taking these results together, our study identified a novel regulatory mechanism among SNRPA, miR-625-5p, circSEC62 and the NOTCH1/Snail pathway in HCC, which promoted metastasis of HCC and may provide effective suggestions for improving the prognosis of HCC patients with metastasis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Metástase Neoplásica , Fatores de Processamento de RNA , RNA Circular , Humanos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , MicroRNAs/genética , Peptídeos/genética , Peptídeos/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , RNA Circular/metabolismo
19.
Front Plant Sci ; 13: 1049144, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36582637

RESUMO

Root development and plasticity are assessed via diverse endogenous and environmental cues, including phytohormones, nutrition, and stress. In this study, we observed that roots in model plant Arabidopsis thaliana exhibited waving and oscillating phenotypes under normal conditions but lost this pattern when subjected to alkaline stress. We later showed that alkaline treatment disturbed the auxin gradient in roots and increased auxin signal in columella cells. We further demonstrated that the auxin efflux transporter PIN-FORMED 7 (PIN7) but not PIN3 was translocated to vacuole lumen under alkaline stress. This process is essential for root response to alkaline stress because the pin7 knockout mutants retained the root waving phenotype. Moreover, we provided evidence that the PIN7 vacuolar transport might not depend on the ARF-GEFs but required the proper function of an ESCRT subunit known as FYVE domain protein required for endosomal sorting 1 (FREE1). Induced silencing of FREE1 disrupted the vacuolar transport of PIN7 and reduced sensitivity to alkaline stress, further highlighting the importance of this cellular process. In conclusion, our work reveals a new role of PIN7 in regulating root morphology under alkaline stress.

20.
Huan Jing Ke Xue ; 43(10): 4639-4647, 2022 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-36224149

RESUMO

The study of soil organic carbon components in continuous cropping cotton fields in oases is helpful to reveal the change characteristics of the soil organic carbon stability mechanism in arid areas under the effects of man-land relationships. In this study, the contents of soil organic carbon, easily oxidized organic carbon, dissolved organic carbon, and microbial biomass carbon in cotton fields with different continuous cropping years (2 a, 5 a, 12 a, 20 a, and 35 a) were collected and analyzed by using space instead of the time series method. Through redundancy analysis, the relationship between soil organic carbon components and other soil physical and chemical factors was discussed. The results showed that:① continuous cropping for different years had a significant impact on the content of soil organic carbon components in the study area. The contents of soil organic carbon, easily oxidized organic carbon, dissolved organic carbon, and microbial biomass carbon in continuous cropping cotton fields for 12 a, 20 a, and 35 a were higher than those in continuous cropping cotton fields and wasteland for 2 a and 5 a. ω(soil organic carbon) reached the peak value (7.06 g·kg-1) in the cotton field in 20 a, which was 76.91% higher than that in the wasteland. The content of soil organic carbon decreased with the deepening of the soil layer. ② Based on the redundancy analysis of soil organic carbon content and soil environmental factors, the results showed that the content of soil organic carbon was positively correlated with total nitrogen, available phosphorus, and water content and negatively correlated with pH value and bulk density. The importance of soil environmental factors on the interpretation of soil organic carbon content was as follows:total N>available P>pH value>bulk density>water content>available K>total salt.


Assuntos
Carbono , Solo , Agricultura , Carbono/análise , Humanos , Nitrogênio/análise , Fósforo/análise , Solo/química , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...