Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 456
Filtrar
1.
J Agric Food Chem ; 72(19): 11153-11163, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38695891

RESUMO

Maillard reaction (MR) plays a pivotal role in the food flavor industry, including a cascade of reactions starting with the reaction between amino compounds and reducing sugars, and thus provides various colors and flavors. A new group of volatile compounds called pyrazinones found in MR are now getting more attention. In this study, eight volatile pyrazinones were found in the asparagine MR systems, in which 3,5-dimethyl- and 3,6-dimethyl-2(1H)-pyrazinones were reported for the first time. The major formation pathways were the reactions between asparagine and α-dicarbonyls, with decarboxylation as a critical step. Besides, novel alternative pathways involving alanine amidation and successive reactions with α-dicarbonyls were explored and successfully formed eight pyrazinones. The major differences between alanine-amidated pathways and decarboxylation pathways are the amidation step and absence of the decarboxylation step. For the alanine-amidated pathways, the higher the temperature, the better the amidation effect. The optimal amidation temperature was 200 °C in this study. The reaction between the alanine amide and α-dicarbonyls after amidation can happen at low temperatures, such as 35 and 50 °C, proposing the possibility of pyrazinone formation in real food systems. Further investigations should be conducted to investigate volatile pyrazinones in various food systems as well as the biological effects and kinetic formation differences of the volatile pyrazinones.


Assuntos
Alanina , Asparagina , Reação de Maillard , Pirazinas , Compostos Orgânicos Voláteis , Pirazinas/química , Alanina/química , Asparagina/química , Compostos Orgânicos Voláteis/química , Aromatizantes/química
2.
Comput Biol Med ; 174: 108395, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599068

RESUMO

BACKGROUND: Intraoperative hypotension during cesarean section has become a serious complication for maternal and fetal healthy. It is commonly encountered by subarachnoid anesthesia. However, currently used control methods have varying degrees of side effects, such as drugs. The Root Cause Analysis (RCA) - Plan, Do, Check, Act (PDCA) is a new model of care that identifies the root causes of problems. The study aimed to demonstrate the usefulness of RCA-PDCA nursing methods in preventing intraoperative hypotension during cesarean section and to predict the occurrence of intraoperative hypotension through a machine learning model. METHODS: Patients who underwent cesarean section at Traditional Chinese Medicine of Southwest Medical University from January 2023 to December 2023 were retrospectively screened, and the data of their gestational times, age, height, weight, history of allergies, intraoperative vital signs, fetal condition, operative time, fluid out and in, adverse effects, use of vasopressor drugs, anxiety-depression-pain scores, and satisfaction were collected and analyzed. The statistically different features were screened and five machine learning models were used as predictive models to assess the usefulness of the RCA-PDCA model of care. RESULTS: (1) Compared with the general nursing model, the RCA-PDCA nursing model significantly reduces the incidence of intraoperative hypotension and postoperative complications in cesarean delivery, and the patient experience is comfortable and satisfactory. (2) Among the five machine learning models, the RF model has the best predictive performance, and the accuracy of the random forest model in preventing intraoperative hypotension is as high as 90%. CONCLUSION: Through computer machine learning model analysis, we prove the importance of the RCA-PDCA nursing method in the prevention of intraoperative hypotension during cesarean section, especially the Random Forest model which performed well and promoted the application of artificial intelligence computer learning methods in the field of medical analysis.


Assuntos
Cesárea , Hipotensão , Aprendizado de Máquina , Humanos , Feminino , Gravidez , Hipotensão/prevenção & controle , Adulto , Estudos Retrospectivos , Complicações Intraoperatórias/prevenção & controle
3.
Artigo em Inglês | MEDLINE | ID: mdl-38597816

RESUMO

Airflow sensors are in huge demand in many fields such as the aerospace industry, weather forecasting, environmental monitoring, chemical and biological engineering, health monitoring, wearable smart devices, etc. However, traditional airflow sensors can hardly meet the requirements of these applications in the aspects of sensitivity, response speed, detection threshold, detection range, and power consumption. Herein, this work reports high-performance airflow sensors based on suspended ultralong carbon nanotube (CNT) crossed networks (SCNT-CNs). The unique topologies of SCNT-CNs with abundant X junctions can fully exhibit the extraordinary intrinsic properties of ultralong CNTs and significantly improve the sensing performance and robustness of SCNT-CNs-based airflow sensors, which simultaneously achieved high sensitivity, fast response speed, low detection threshold, and wide detection range. Moreover, the capability for encapsulation also guaranteed the practicality of SCNT-CNs, enabling their applications in respiratory monitoring, flow rate display and transient response analysis. Simulations were used to unveil the sensing mechanisms of SCNT-CNs, showing that the piezoresistive responses were mainly attributed to the variation of junction resistances. This work shows that SCNT-CNs have many superiorities in the fabrication of advanced airflow sensors as well as other related applications.

4.
Org Lett ; 26(18): 3703-3708, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38668695

RESUMO

An iron-catalyzed photochemical sulfinamidation of hydrocarbons with N-sulfinylamines has been developed. The merger of ligand-to-metal charge transfer (LMCT) of FeCl3 with hydrogen atom transfer (HAT) process is the key for the generation of alkyl radicals from hydrocarbons, and the resultant alkyl radicals were readily trapped by N-sulfinylamines to produce structurally diverse sulfinamides. Contrary to traditional methods that inevitably use sensitive organometallic reagents and prefunctionalized substrates, our approach features simple operation and the wide availability of starting materials. Gratifyingly, the reaction is scalable, and the obtained sulfinamides can be conveniently converted to highly functionalized sulfur(VI) derivatives.

5.
J Agric Food Chem ; 72(18): 10570-10578, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38652024

RESUMO

Amadori rearrangement products (ARPs) are gaining more attention for their potential usage in the food flavor industry. Peptide-ARPs have been studied, but pyrazinones that were theoretically found in the Maillard reaction (MR) have not been reported to be formed from small peptide-ARPs. This study found four pyrazinones: 1-methyl-, 1,5-dimethyl-, 1,6-dimethyl-, and 1,5,6-trimethyl-2(1H)-pyrazinones in both MR and ARP systems. It was the first time 1-methyl-2(1H)-pyrazinone was reported, along with 1,5-dimethyl- and 1,5,6-trimethyl-2(1H)-pyrazinones being purified and analyzed by nuclear magnetic resonance for the first time. The primary formation routes of the pyrazinones were also proven as the reaction between diglycine and α-dicarbonyls, including glyoxal, methylglyoxal, and diacetyl. The pyrazinones, especially 1,5-dimethyl-2(1H)-pyrazinone, have strong fluorescence intensity, which may be the reason for the increase of fluorescence intensity in MR besides α-dicarbonyls. Cytotoxicity analysis showed that both Gly-/Digly-/Trigly-ARP and the three pyrazinones [1-methyl-, 1,5-dimethyl-, and 1,5,6-trimethyl-2(1H)-pyrazinones] showed no prominent cytotoxicity in the HepG2 cell line below 100 µg/mL, further suggesting that ARPs or pyrazinones could be used as flavor additives in the future. Further research should be conducted to investigate pyrazinones in various systems, especially the peptide-ARPs, which are ubiquitous in real food systems.


Assuntos
Reação de Maillard , Pirazinas , Pirazinas/química , Humanos , Aromatizantes/química , Compostos Orgânicos Voláteis/química , Peptídeos/química , Glioxal/química
6.
JAMA Neurol ; 81(5): 450-460, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38466274

RESUMO

Importance: Dual antiplatelet therapy has been demonstrated to be superior to single antiplatelet in reducing recurrent stroke among patients with transient ischemic attack or minor stroke, but robust evidence for its effect in patients with mild to moderate ischemic stroke is lacking. Objective: To evaluate whether dual antiplatelet therapy is superior to single antiplatelet among patients with mild to moderate ischemic stroke. Design, Setting, and Participants: This was a multicenter, open-label, blinded end point, randomized clinical trial conducted at 66 hospitals in China from December 20, 2016, through August 9, 2022. The date of final follow-up was October 30, 2022. The analysis was reported on March 12, 2023. Of 3065 patients with ischemic stroke, 3000 patients with acute mild to moderate stroke within 48 hours of symptom onset were enrolled, after excluding 65 patients who did not meet eligibility criteria or had no randomization outcome. Interventions: Within 48 hours after symptom onset, patients were randomly assigned to receive clopidogrel plus aspirin (n = 1541) or aspirin alone (n = 1459) in a 1:1 ratio. Main Outcomes and Measures: The primary end point was early neurologic deterioration at 7 days, defined as an increase of 2 or more points in National Institutes of Health Stroke Scale (NIHSS) score, but not as a result of cerebral hemorrhage, compared with baseline. The superiority of clopidogrel plus aspirin to aspirin alone was assessed based on a modified intention-to-treat population, which included all randomized participants with at least 1 efficacy evaluation regardless of treatment allocation. Bleeding events were safety end points. Results: Of the 3000 randomized patients, 1942 (64.6%) were men, the mean (SD) age was 65.9 (10.6) years, median (IQR) NIHSS score at admission was 5 (4-6), and 1830 (61.0%) had a stroke of undetermined cause. A total of 2915 patients were included in the modified intention-to-treat analysis. Early neurologic deterioration occurred in 72 of 1502 (4.8%) in the dual antiplatelet therapy group vs 95 of 1413 (6.7%) in the aspirin alone group (risk difference -1.9%; 95% CI, -3.6 to -0.2; P = .03). Similar bleeding events were found between 2 groups. Conclusions and Relevance: Among Chinese patients with acute mild to moderate ischemic stroke, clopidogrel plus aspirin was superior to aspirin alone with regard to reducing early neurologic deterioration at 7 days with similar safety profile. These findings indicate that dual antiplatelet therapy may be a superior choice to aspirin alone in treating patients with acute mild to moderate stroke. Trial Registration: ClinicalTrials.gov Identifier: NCT02869009.


Assuntos
Aspirina , Clopidogrel , Quimioterapia Combinada , AVC Isquêmico , Inibidores da Agregação Plaquetária , Humanos , Clopidogrel/uso terapêutico , Aspirina/uso terapêutico , Aspirina/administração & dosagem , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Inibidores da Agregação Plaquetária/uso terapêutico , Inibidores da Agregação Plaquetária/administração & dosagem , AVC Isquêmico/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico
7.
Science ; 383(6690): 1416, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38547296

RESUMO

A ferroelectric molecular crystal displays characteristics required for implantation.

8.
Angew Chem Int Ed Engl ; 63(19): e202400511, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38488202

RESUMO

As ferroelectrics hold significance and application prospects in wearable devices, the elastification of ferroelectrics becomes more and more important. Nevertheless, achieving elastic ferroelectrics requires stringent synthesis conditions, while the elastification of relaxor ferroelectric materials remains unexplored, presenting an untapped potential for utilization in energy storage and actuation for wearable electronics. The thiol-ene click reaction offers a mild and rapid reaction platform to prepare functional polymers. Therefore, we employed this approach to obtain an elastic relaxor ferroelectric by crosslinking an intramolecular carbon-carbon double bonds (CF=CH) polymer matrix with multiple thiol groups via a thiol-ene click reaction. The resulting elastic relaxor ferroelectric demonstrates pronounced relaxor-type ferroelectric behaviour. This material exhibits low modulus, excellent resilience, and fatigue resistance, maintaining a stable ferroelectric response even under strains up to 70 %. This study introduces a straightforward and efficient approach for the construction of elastic relaxor ferroelectrics, thereby expanding the application possibilities in wearable electronics.

9.
Opt Express ; 32(4): 5632-5640, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439284

RESUMO

Narrow linewidth lasers have a wide range of applications in the fields of coherent optical communications, atomic clocks, and measurement. Lithium niobate material possesses excellent electro-optic and thermo-optic properties, making it an ideal photonic integration platform for a new generation. The light source is a crucial element in large-scale photonic integration. Therefore, it is essential to develop integrated narrow linewidth lasers based on low-loss LNOI. This study is based on the multimode race-track type add-drop microring resonator with multimode interferometric coupler (MMRA-MRR) of the DFB laser self-injection-locked, to achieve the narrowing of linewidth to the laser. The microring external cavity was used to narrow the linewidth of the laser to 2.5 kHz. The output power of the laser is 3.18 mW, and the side-mode suppression ratio is 60 dB. This paper presents an integrated low-noise, narrow-linewidth laser based on thin-film lithium niobate material for the communication band. This is significant for achieving all-optical device on-chip integration of lithium niobate material in the future. It has great potential for use in high-speed coherent optical communication.

10.
J Am Chem Soc ; 146(8): 5614-5621, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38354217

RESUMO

With the emergence of wearable electronics, ferroelectrics are poised to serve as key components for numerous potential applications. Currently, intrinsically elastic ferroelectrics featuring a network structure through a precise "slight cross-linking" approach have been realized. The resulting elastic ferroelectrics demonstrate a combination of stable ferroelectric properties and remarkable resilience under various strains. However, challenges arose as the cross-linking temperature was too high when integrating ferroelectrics with other functional materials, and the Curie temperature of this elastic ferroelectric was comparatively low. Addressing these challenges, we strategically chose a poly(vinylidene fluoride)-based copolymer with high vinylidene fluoride content to obtain a high Curie temperature while synthesizing a cross-linker with carbene intermediate for high reactivity to reduce the cross-linking temperature. At a relatively low temperature, we successfully fabricated elastic ferroelectrics through carbene cross-linking. The resulting elastic polymer ferroelectrics exhibit a higher Curie temperature and show a stable ferroelectric response under strains up to 50%. These materials hold significant potential for integration into wearable electronics.

11.
Heliyon ; 10(4): e25685, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38384555

RESUMO

This study addresses the critical global challenge of climate change, primarily caused by the overconsumption of fossil fuels. Recognizing the urgent need for a transition to green energy (GE) sources such as wind, solar, hydro, and biomass, this research focuses on identifying effective strategies for fostering a sustainable and low-carbon energy future in China. The study employs a combination of the Analytical Hierarchy Process (AHP) and fuzzy Decision-making Trial and Evaluation Laboratory (DEMATEL), both well-established multi-criteria decision-making (MCDM) methods, to analyze various drivers, sub-drivers, and strategies crucial for this transition. Through an extensive literature review, we identified several key drivers and strategies aiding the shift towards GE for sustainable development. The AHP method was applied to evaluate and rank the major drivers and sub-drivers, such as policy, financing, and infrastructure and innovation, that are crucial for China's successful transition to GE. Simultaneously, fuzzy DEMATEL was utilized to prioritize vital strategies, including public awareness and education, financial incentives and support mechanisms, and policy and regulatory frameworks. The findings reveal that, in addition to strong policy and financial support, public awareness and education are critical for advancing GE development in China. This study underscores the importance of integrating various drivers and strategies for effective green energy development, aiming to mitigate the environmental impacts of fossil fuel use.

12.
Adv Mater ; : e2311472, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421081

RESUMO

Human-machine interaction (HMI) technology has undergone significant advancements in recent years, enabling seamless communication between humans and machines. Its expansion has extended into various emerging domains, including human healthcare, machine perception, and biointerfaces, thereby magnifying the demand for advanced intelligent technologies. Neuromorphic computing, a paradigm rooted in nanoionic devices that emulate the operations and architecture of the human brain, has emerged as a powerful tool for highly efficient information processing. This paper delivers a comprehensive review of recent developments in nanoionic device-based neuromorphic computing technologies and their pivotal role in shaping the next-generation of HMI. Through a detailed examination of fundamental mechanisms and behaviors, the paper explores the ability of nanoionic memristors and ion-gated transistors to emulate the intricate functions of neurons and synapses. Crucial performance metrics, such as reliability, energy efficiency, flexibility, and biocompatibility, are rigorously evaluated. Potential applications, challenges, and opportunities of using the neuromorphic computing technologies in emerging HMI technologies, are discussed and outlooked, shedding light on the fusion of humans with machines.

13.
Adv Mater ; 36(15): e2310061, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38227292

RESUMO

Integrating the advantages of homogeneous and heterogeneous catalysis has proved to be an optimal strategy for developing catalytic systems with high efficiency, selectivity, and recoverability. Supramolecular metal-organic cages (MOCs), assembled by the coordination of metal ions with organic linkers into discrete molecules, have performed solvent processability due to their tunable packing modes, endowing them with the potential to act as homogeneous or heterogeneous catalysts in different solvent systems. Here, the design and synthesis of a series of stable {Cu3} cluster-based tetrahedral MOCs with varied packing structures are reported. These MOCs, as homogeneous catalysts, not only show high catalytic activity and selectivity regardless of substrate size during the CO2 cycloaddition reaction, but also can be easily recovered from the reaction media through separating products and co-catalysts by one-step work-up. This is because that these MOCs have varied solubilities in different solvents due to the tunable packing of MOCs in the solid state. Moreover, the entire catalytic reaction system is very clean, and the purity of cyclic carbonates is as high as 97% without further purification. This work provides a unique strategy for developing novel supramolecular catalysts that can be used for homogeneous catalysis and recycled in a heterogeneous manner.

14.
Nat Commun ; 15(1): 537, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225374

RESUMO

In modern industries, the aerobic oxidation of C(sp3)-H bonds to achieve the value-added conversion of hydrocarbons requires high temperatures and pressures, which significantly increases energy consumption and capital investment. The development of a light-driven strategy, even under natural sunlight and ambient air, is therefore of great significance. Here we develop a series of hetero-motif molecular junction photocatalysts containing two bifunctional motifs. With these materials, the reduction of O2 and oxidation of C(sp3)-H bonds can be effectively accomplished, thus realizing efficient aerobic oxidation of C(sp3)-H bonds in e.g., toluene and ethylbenzene. Especially for ethylbenzene oxidation reactions, excellent catalytic capacity (861 mmol g cat-1) is observed. In addition to the direct oxidation of C(sp3)-H bonds, CeBTTD-A can also be applied to other types of aerobic oxidation reactions highlighting their potential for industrial applications.

15.
ACS Biomater Sci Eng ; 10(2): 1006-1017, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38252806

RESUMO

Osteochondral defects (OCDs) pose a significant challenge in clinical practice, and recent advancements in their repair indicate that satisfying subchondral bone repair may be critical for this. Herein, a series of hydroxyapatite/poly(ether ether ketone) (HA/PEEK) scaffolds were fabricated with varying mass percentages (0, 20, 30, and 40%) to induce subchondral bone regeneration. Subsequently, an optimal scaffold with 40% HA/PEEK was selected to establish osteochondral scaffolds with poly(ether urethane) urea-Danshensu (PUD) for repairing the OCD. The material characteristics of HA/PEEK and PUD were investigated using scanning electron microscopy, tensile, swelling, and fatigue tests, and cytological experiments. The effects of serial HA/PEEK scaffolds on subchondral bone repair were then assessed by using microcomputed tomography, hard tissue slicing, and histological staining. Furthermore, the optimal 40% HA/PEEK scaffold was used to develop osteochondral scaffolds with PUD to observe the effect on the OCD repair. HA/PEEK materials exhibited an even HA distribution in PEEK. However, when composited with HA, PEEK exhibited inferior mechanical strength. 40%HA/PEEK scaffolds showed an optimum effect on in vivo subchondral bone repair. Cartilage regeneration on 40%HA/PEEK scaffolds was pronounced. After PUD was introduced onto the HA/PEEK, the PUD@40%HA/PEEK scaffold produced the expected effect on the repair of the OCD in rabbits. Therefore, achieving satisfactory subchondral bone repair can benefit surficial cartilage repair. The PUD@40%HA/PEEK scaffold could induce subchondral bone regeneration to repair the OCD in rabbits and could provide a novel approach for the repair of the OCD in clinical practice.


Assuntos
Benzofenonas , Regeneração Óssea , Polímeros , Alicerces Teciduais , Animais , Coelhos , Microtomografia por Raio-X , Éteres
16.
Nano Lett ; 24(4): 1246-1253, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38198620

RESUMO

Two-dimensional (2D) ferromagnets have attracted widespread attention for promising applications in compact spintronic devices. However, the controlled synthesis of high-quality, large-sized, and ultrathin 2D magnets via facile, economical method remains challenging. Herein, we develop a hydrogen-tailored chemical vapor deposition approach to fabricating 2D Cr5Te8 ferromagnetic nanosheets. Interestingly, the time period of introducing hydrogen was found to be crucial for controlling the lateral size, and a Cr5Te8 single-crystalline nanosheet of lateral size up to ∼360 µm with single-unit-cell thickness has been obtained. These samples exhibit a leading role of domain wall nucleation in governing the magnetization reversal process, providing important references for optimizing the performances of associated devices. The nanosheets also show notable magnetotransport response, including nonmonotonous magnetic-field-dependent magnetoresistance and sizable anomalous Hall resistivity, demonstrating Cr5Te8 as a promising material for constructing high-performance magnetoelectronic devices. This study presents a breakthrough of large-sized CVD-grown 2D magnetic materials, which is indispensable for constructing 2D spintronic devices.

17.
Nat Commun ; 15(1): 815, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280849

RESUMO

Radiative cooling is a zero-energy technology that enables subambient cooling by emitting heat into outer space (~3 K) through the atmospheric transparent windows. However, existing designs typically focus only on the main atmospheric transparent window (8-13 µm) and ignore another window (16-25 µm), under-exploiting their cooling potential. Here, we show a dual-selective radiative cooling design based on a scalable thermal emitter, which exhibits selective emission in both atmospheric transparent windows and reflection in the remaining mid-infrared and solar wavebands. As a result, the dual-selective thermal emitter exhibits an ultrahigh subambient cooling capacity (~9 °C) under strong sunlight, surpassing existing typical thermal emitters (≥3 °C cooler) and commercial counterparts (as building materials). Furthermore, the dual-selective sample also exhibits high weather resistance and color compatibility, indicating a high practicality. This work provides a scalable and practical radiative cooling design for sustainable thermal management.

18.
Small ; 20(9): e2305798, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37849041

RESUMO

As the most popular liquid metal (LM), gallium (Ga) and its alloys are emerging as functional materials due to their unique combination of fluidic and metallic properties near room temperature. As an important branch of utilizing LMs, micro- and submicron-particles of Ga-based LM are widely employed in wearable electronics, catalysis, energy, and biomedicine. Meanwhile, the phase transition is crucial not only for the applications based on this reversible transformation process, but also for the solidification temperature at which fluid properties are lost. While Ga has several solid phases and exhibits unusual size-dependent phase behavior. This complex process makes the phase transition and undercooling of Ga uncontrollable, which considerably affects the application performance. In this work, extensive (nano-)calorimetry experiments are performed to investigate the polymorph selection mechanism during liquid Ga crystallization. It is surprisingly found that the crystallization temperature and crystallization pathway to either α -Ga or ß -Ga can be effectively engineered by thermal treatment and droplet size. The polymorph selection process is suggested to be highly relevant to the capability of forming covalent bonds in the equilibrium supercooled liquid. The observation of two different crystallization pathways depending on the annealing temperature may indicate that there exist two different liquid phases in Ga.

19.
Eur J Pain ; 28(2): 297-309, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37668323

RESUMO

BACKGROUND: Currently available therapies for neuropathic pain show limited efficacy. This study aimed to investigate the anti-nociceptive effect of the spirocyclopiperazinium salt compound LXM-15 in spinal nerve ligation (SNL) rats and to explore the potential mechanisms. METHODS: Mechanical allodynia and thermal hyperalgesia tests were used to evaluate the effects of LXM-15 in SNL rats. The expression of CaMKIIα, CREB, JAK2, STAT3, c-fos and TNF-α was detected by western blotting, ELISA or qRT-PCR analysis. Receptor blocking test was performed to explore possible target. RESULTS: Administration of LXM-15 (1, 0.5, 0.25 mg/kg, i.g.) dose-dependently attenuated mechanical allodynia and thermal hyperalgesia in rats subjected to SNL (p < 0.01, p < 0.05), and the effects were completely blocked by peripheral α7 nicotinic or M4 muscarinic receptor antagonist (p > 0.05). LXM-15 significantly decreased the overexpression of phosphorylated CaMKIIα, CREB, JAK2 and STAT3 proteins and the mRNA levels of TNF-α and c-fos (p < 0.01, p < 05). All of the effects could be blocked by α7 or M4 receptor antagonist. Furthermore, LXM-15 reduced the protein expression of TNF-α and c-fos (p < 0.01, p < 0.05). No significant acute toxicity or abnormal hepatorenal function was observed. CONCLUSIONS: This is the first study to report that LXM-15 exerts significant anti-nociceptive effect on SNL rats. This effect may occur by activating peripheral α7 nicotinic and M4 muscarinic receptors, further inhibiting the CaMKIIα/CREB and JAK2/STAT3 signalling pathways, and finally inhibiting the expression of TNF-α and c-fos. SIGNIFICANCE: Existing treatments for neuropathic pain show limited efficacy with severe adverse reactions. This paper is the first to report that LXM-15, a new spirocyclopiperazinium salt compound, exerts a significant anti-nociception in SNL rats without obvious toxicity. The underlying mechanisms include activating peripheral α7 nicotinic and M4 muscarinic receptors, then inhibiting the signalling pathways of CaMKIIα/CREB and JAK2/STAT3 and the expressions of TNF-α and c-fos. This study sheds new light on the development of novel analgesic drugs with fewer side effects.


Assuntos
Hiperalgesia , Neuralgia , Ratos , Animais , Hiperalgesia/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Neuralgia/tratamento farmacológico , Receptores Muscarínicos/uso terapêutico , Nervos Espinhais
20.
Glia ; 72(2): 396-410, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37909251

RESUMO

Neuropathic pain is a complex pain condition accompanied by prominent neuroinflammation involving activation of both central and peripheral immune cells. Metabolic switch to glycolysis is an important feature of activated immune cells. Hexokinase 2 (HK2), a key glycolytic enzyme enriched in microglia, has recently been shown important in regulating microglial functions. Whether and how HK2 is involved in neuropathic pain-related neuroinflammation remains unknown. Using a HK2-tdTomato reporter line, we found that HK2 was prominently elevated in spinal microglia. Pharmacological inhibition of HK2 effectively alleviated nerve injury-induced acute mechanical pain. However, selective ablation of Hk2 in microglia reduced microgliosis in the spinal dorsal horn (SDH) with little analgesic effects. Further analyses showed that nerve injury also significantly induced HK2 expression in dorsal root ganglion (DRG) macrophages. Deletion of Hk2 in myeloid cells, including both DRG macrophages and spinal microglia, led to the alleviation of mechanical pain during the first week after injury, along with attenuated microgliosis in the ipsilateral SDH, macrophage proliferation in DRGs, and suppressed inflammatory responses in DRGs. These data suggest that HK2 plays an important role in regulating neuropathic pain-related immune cell responses at acute phase and that HK2 contributes to neuropathic pain onset primarily through peripheral monocytes and DRG macrophages rather than spinal microglia.


Assuntos
Neuralgia , Traumatismos dos Nervos Periféricos , Humanos , Microglia/metabolismo , Hexoquinase/metabolismo , Hexoquinase/farmacologia , Doenças Neuroinflamatórias , Hiperalgesia/metabolismo , Macrófagos/metabolismo , Neuralgia/metabolismo , Gânglios Espinais/metabolismo , Medula Espinal/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...