Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Oral Biol ; 167: 106055, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39067325

RESUMO

OBJECTIVE: The molecular regulation of odontoblasts in dentin formation remains largely uncharacterized. Using neohesperidin (NEO), a well-documented osteoblast regulator, we investigated whether and how NEO participates in odontoblast regulation through longitudinal treatments using various doses of NEO. DESIGN: Mouse dental papilla cell-23 (MDPC-23) served as a model for odontoblasts. MDPC-23 were treated with various doses of NEO (0, 1, 5, 10, 15, 20 µmol/L). Proliferation was assessed using the Cell counting kit-8 assay. Survival/apoptosis was assayed by live/dead ratio. Migration capability was assessed using scratch healing and Transwell migration assays. Mineralization was assessed using alkaline phosphatase staining and alizarin red staining. The expression levels of four key genes (Runx2, osteocalcin [OCN], ß-catenin, and bone morphogenetic protein [BMP]-2) representing NEO-induced differentiation of MDPC-23 were measured by quantitative reverse transcription polymerase chain reaction. RESULTS: The proliferation trajectories of MDPC-23 treated with the five doses of NEO demonstrated similar curves, with a rapid increase in the 10 µmol/L NEO condition after 48 h of treatment. Similar dose-dependent trajectories were observed for survival/apoptosis. All four key genes representing odontogenic differentiation were upregulated in MDPC-23 induced by NEO treatments at two optimal doses (5 µmol/L and 10 µmol/L). Optimal migration and mobility trajectories were observed in MDPC-23 treated with 10 µmol/L NEO. Optimal mineralization was observed in MDPC-23 treated with 5 µmol/L NEO. CONCLUSION: NEO can subtly regulate odontoblast proliferation, differentiation, migration, and mineralization in vitro. NEO at 5-10 µmol/L offers a safe and effective perspective for clinical promotion of dentin bridge formation in teenagers.


Assuntos
Apoptose , Diferenciação Celular , Movimento Celular , Proliferação de Células , Papila Dentária , Hesperidina , Odontoblastos , Animais , Camundongos , Proliferação de Células/efeitos dos fármacos , Hesperidina/farmacologia , Hesperidina/análogos & derivados , Diferenciação Celular/efeitos dos fármacos , Odontoblastos/efeitos dos fármacos , Papila Dentária/citologia , Papila Dentária/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Osteocalcina/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Técnicas In Vitro , Proteína Morfogenética Óssea 2/farmacologia , Sobrevivência Celular/efeitos dos fármacos , beta Catenina/metabolismo , Fosfatase Alcalina/metabolismo , Células Cultivadas , Reação em Cadeia da Polimerase em Tempo Real
2.
Gene ; 915: 148396, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552750

RESUMO

Family with sequence similarity 20 member C (FAM20C) is a Golgi casein kinase that phosphorylates extracellularly-secreted regulatory proteins involved in bone development and mineralization, but its specific role in bone development is still largely unknown. In this study, to examine the specific mechanisms that FAM20C influences bone development, we cross-bred Osx-Cre with FAM20Cflox/flox mice to establish a Osx-Cre; FAM20Cflox/flox knockout (oKO) mouse model; FAM20C was KO in pre-osteoblasts. oKO development was examined at 1-10 weeks, in which compared to control FAM20Cflox/flox, they had lower body weights and bone tissue mineralization. Furthermore, oKO had lower bone volume fractions, thickness, and trabecular numbers, along with higher degrees of trabecular separation. These mice also had decreased femoral metaphyseal cartilage proliferation layer, along with thickened hypertrophic layer and increased apoptotic cell counts. Transcriptomic analysis found that differentially-expressed genes in oKO were concentrated in the osteoclast differentiation pathway, in line with increased osteoclast presence. Additionally, up-regulation of osteoclast-related, and down-regulation of osteogenesis-related genes, were identified, in which the most up-regulated genes were signal regulatory protein ß-1 family (Sirpb1a-c) and mitogen-activated protein kinase 13. Overall, FAM20C KO in pre-osteoblasts leads to abnormal long bone development, likely due to subsequent up-regulation of osteoclast differentiation-associated genes.


Assuntos
Desenvolvimento Ósseo , Proteínas de Ligação ao Cálcio , Caseína Quinase I , Diferenciação Celular , Camundongos Knockout , Osteoblastos , Osteoclastos , Osteogênese , Regulação para Cima , Animais , Camundongos , Desenvolvimento Ósseo/genética , Caseína Quinase I/metabolismo , Caseína Quinase I/genética , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogênese/genética , Masculino , Feminino
3.
Front Vet Sci ; 9: 1067880, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36524229

RESUMO

The Inner Mongolia Autonomous Region ranks first among the five major pastoral areas in terms of lamb breeding of China. The Inner Mongolia Autonomous Region has a vast territory, with many famous grasslands and thousands of forage plants and multiple local high-quality lamb breeds. After hundreds of years of artificial breeding and improvement, Mongolian sheep have developed many varieties. Different diets, feeding and treatment methods have effects on the production performance, lipid deposition and flavor composition of mutton sheep. Therefore, understanding the relationship among Inner Mongolian lamb, meat quality, and flavor will improve the production of high-quality mutton. The regulation of meat quality and flavor will have a profound impact on the deep processing and income-generating capabilities of mutton. Non-genetic factors affect the quality and flavor of mutton, which are more intuitive than genetic factors. In this review, we cover the contributions made by scientists to explore and improve the quality and flavor of Inner Mongolia lambs through non-genetic means, compare the differences between grazing and drylot-feeding in detail, and summarize some feed additives. We hope that based on our review, we can provide some inspiration to improve the meat quality of Mongolian sheep.

4.
PLoS One ; 14(5): e0214777, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31116757

RESUMO

Emission from ruminants has become one of the largest sources of anthropogenic methane emission in China. The structure of the rumen flora has a significant effect on methane production. To establish a more accurate prediction model for methane production, the rumen flora should be one of the most important parameters. The objective of the present study was to investigate the relationship among changes in rumen flora, nutrient levels, and methane production in sheep fed with the diets of different forage-to-concentration ratios, as well as to screen for significantly different dominant genera. Nine rumen-cannulated hybrid sheep were separated into three groups and fed three diets with forage-to-concentration ratios of 50:50, 70:30, and 90:10. Three proportions of the diets were fed according to a 3 × 3 incomplete Latin square, design during three periods of 15d each. The ruminal fluid was collected for real-time polymerase chain reaction (real-time PCR), high-throughput sequencing and in vitro rumen fermentation in a new real-time fermentation system wit. Twenty-two genera were screened, the abundance of which varied linearly with forage-to-concentration ratios and methane production. In addition, during the 12-hour in vitro fermentation, the appearance of peak concentration was delayed by 26-27min with the different structure of rumen bacteria. The fiber-degrading bacteria were positively correlated with this phenomenon, but starch-degrading and protein-degrading bacteria were negative correlated. These results would facilitate macro-control of rumen microorganisms and better management of diets for improved nutrition in ruminants. In addition, our findings would help in screening bacterial genera that are highly correlated with methane production.


Assuntos
Ração Animal/análise , Dieta/veterinária , Metano/metabolismo , Rúmen/microbiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fermentação , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Filogenia , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA