Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142197

RESUMO

Powdery mildew caused by Blumeria graminis f. sp. tritici is a devastating disease that reduces wheat yield and quality worldwide. The exploration and utilization of new resistance genes from wild wheat relatives is the most effective strategy against this disease. Psathyrostachys huashanica Keng f. ex P. C. Kuo (2n = 2x = 14, NsNs) is an important tertiary gene donor with multiple valuable traits for wheat genetic improvement, especially disease resistance. In this study, we developed and identified a new wheat-P. huashanica disomic addition line, 18-1-5-derived from a cross between P. huashanica and common wheat lines Chinese Spring and CSph2b. Sequential genomic and multicolor fluorescence in situ hybridization analyses revealed that 18-1-5 harbored 21 pairs of wheat chromosomes plus a pair of alien Ns chromosomes. Non-denaturing fluorescence in situ hybridization and molecular marker analyses further demonstrated that the alien chromosomes were derived from chromosome 7Ns of P. huashanica. The assessment of powdery mildew response revealed that line 18-1-5 was highly resistant at the adult stage to powdery mildew pathogens prevalent in China. The evaluation of agronomic traits indicated that 18-1-5 had a significantly reduced plant height and an increased kernel length compared with its wheat parents. Using genotyping-by-sequencing technology, we developed 118 PCR-based markers specifically for chromosome 7Ns of P. huashanica and found that 26 of these markers could be used to distinguish the genomes of P. huashanica and other wheat-related species. Line 18-1-5 can therefore serve as a promising bridging parent for wheat disease resistance breeding. These markers should be conducive for the rapid, precise detection of P. huashanica chromosomes and chromosomal segments carrying Pm resistance gene(s) during marker-assisted breeding and for the investigation of genetic differences and phylogenetic relationships among diverse Ns genomes and other closely related ones.


Assuntos
Resistência à Doença , Triticum , Cromossomos de Plantas/genética , Resistência à Doença/genética , Erysiphe , Hibridização Genética , Hibridização in Situ Fluorescente , Filogenia , Melhoramento Vegetal , Doenças das Plantas/genética , Poaceae/genética , Triticum/genética
2.
BMC Plant Biol ; 19(1): 590, 2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31881925

RESUMO

BACKGROUND: Fusarium head blight (FHB) caused by the fungus Fusarium graminearum Schwabe and stripe rust caused by Puccinia striiformis f. sp. tritici are devastating diseases that affect wheat production worldwide. The use of disease-resistant genes and cultivars is the most effective means of reducing fungicide applications to combat these diseases. Elymus repens (2n = 6x = 42, StStStStHH) is a potentially useful germplasm of FHB and stripe rust resistance for wheat improvement. RESULTS: Here, we report the development and characterization of two wheat-E. repens lines derived from the progeny of common wheat-E. repens hybrids. Cytological studies indicated that the mean chromosome configuration of K15-1192-2 and K15-1194-2 at meiosis were 2n = 42 = 0.86 I + 17.46 II (ring) + 3.11 II (rod) and 2n = 42 = 2.45 I + 14.17 II (ring) + 5.50 II (rod) + 0.07 III, respectively. Genomic and fluorescence in situ hybridization karyotyping and simple sequence repeats markers revealed that K15-1192-2 was a wheat-E. repens 3D/?St double terminal chromosomal translocation line. Line K15-1194-2 was identified as harboring a pair of 7DS/?StL Robertsonian translocations and one 3D/?St double terminal translocational chromosome. Further analyses using specific expressed sequence tag-SSR markers confirmed that the wheat-E. repens translocations involved the 3St chromatin in both lines. Furthermore, compared with the wheat parent Chuannong16, K15-1192-2 and K15-1194-2 expressed high levels of resistance to FHB and stripe rust pathogens prevalent in China. CONCLUSIONS: Thus, this study has determined that the chromosome 3St of E. repens harbors gene(s) highly resistant to FHB and stripe rust, and chromatin of 3St introgressed into wheat chromosomes completely presented the resistance, indicating the feasibility of using these translocation lines as novel material for breeding resistant wheat cultivars and alien gene mining.


Assuntos
Basidiomycota , Cromossomos de Plantas , Elymus/genética , Fusarium , Doenças das Plantas/genética , Triticum/genética , Resistência à Doença/genética , Marcadores Genéticos , Hibridização in Situ Fluorescente , Meiose , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Translocação Genética , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA