Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 37(27): 8270-8280, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34210143

RESUMO

Herein, composite membranes based on a single-ion conducting polymer electrolyte (SIPE) and poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) were prepared by an electrospinning technology. The SIPE with hydrogen bonding was obtained via reversible addition-fragmentation chain transfer (RAFT) copolymerization of 2-(3-(6-methyl-4-oxo-1,4-dihydropyrimidin-2-yl)ureido)ethyl methacrylate (UPyMA), poly(ethylene glycol) methyl ether methacrylate (PEGMA), and lithium 4-styrenesulfonyl (phenylsulfonyl) imide (SSPSILi). The obtained composite membrane exhibited a highly porous network structure, superior thermal stability (>300 °C), and high mechanical strength (17.3 MPa). The fabricated SIPE/PVDF-HFP composite membrane without lithium salts possessed a high ionic conductivity of 2.78 × 10-5 S cm-1 at 30 °C, excellent compatibility with the lithium metal electrode, and high lithium-ion transference number (0.89). The symmetric Li//Li cell exhibited a superior cycle performance without short circuit, indicating the generation of a stable interface between SIPE and the lithium metal electrode during the process of lithium plating/stripping, which could inhibit lithium dendrite growth in lithium metal batteries (LMBs). The Li//LiFePO4 cell also exhibited superior cycle life and excellent rate capability at 60 or 25 °C. In consequence, the composite membrane exhibits a considerable future prospect for advanced LMBs.

2.
Langmuir ; 36(32): 9616-9625, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32787134

RESUMO

Porous membranes fabricated from poly(vinylidene fluoride) (PVDF) and a star polymer with linear poly(ethylene glycol) (PEG) arms and cycloPEG cores were fabricated via the phase-separation method. The porous gel polymer electrolytes (PGPEs) were obtained by immersing the porous membranes in the electrolyte solution. When the additive amount of star polymer was up to 20 wt %, the prepared membrane had the largest porosity and the pores were uniformly distributed in the membrane. The star polymer can not only decrease the crystallization of PVDF and enhance the absorption of liquid electrolyte but also offer ion conduction channels (cycloPEG cores). Therefore, the PGPE with 20 wt % star polymers exhibited competitive ionic conductivities of 1.27 mS cm-1 at 30 °C and 2.89 mS cm-1 at 80 °C. To stabilize the liquid electrolyte in the holes of porous membranes, a gelator was introduced in the liquid electrolyte to form gelled porous gel polymer electrolytes (GPGPEs), and the leakage of liquid electrolytes was thus remarkably reduced. The ionic conductivity of GPGPEs with 20 wt % star polymer and 1.5 wt % gelator was importantly improved at high temperatures (6.02 mS cm-1 at 80 °C). We systematically investigated the electrochemical performances of PGPEs without star polymer, PGPEs with star polymer, and GPGPEs with star polymer. The incorporation of star polymers with linear PEG arms and cycloPEG cores into the PGPEs and GPGPEs significantly improved the electrochemical performances of the lithium metal/LiFePO4 cell assembled with the PGPEs or GPGPEs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA