Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(6): eadi7840, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38324689

RESUMO

Prolonged obstruction of the ureter, which leads to injury of the kidney collecting ducts, results in permanent structural damage, while early reversal allows for repair. Cell structure is defined by the actin cytoskeleton, which is dynamically organized by small Rho guanosine triphosphatases (GTPases). In this study, we identified the Rho GTPase, Rac1, as a driver of postobstructive kidney collecting duct repair. After the relief of ureteric obstruction, Rac1 promoted actin cytoskeletal reconstitution, which was required to maintain normal mitotic morphology allowing for successful cell division. Mechanistically, Rac1 restricted excessive actomyosin activity that stabilized the negative mitotic entry kinase Wee1. This mechanism ensured mechanical G2-M checkpoint stability and prevented premature mitotic entry. The repair defects following injury could be rescued by direct myosin inhibition. Thus, Rac1-dependent control of the actin cytoskeleton integrates with the cell cycle to mediate kidney tubular repair by preventing dysmorphic cells from entering cell division.


Assuntos
Túbulos Renais Coletores , Túbulos Renais Coletores/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Citoesqueleto/metabolismo , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo
2.
Ren Fail ; 45(1): 2188966, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37563795

RESUMO

BACKGROUND: Renal dysfunction and disruption of renal endothelial glycocalyx are two important events during septic acute kidney injury (AKI). Here, the role and mechanism of hyaluronidase 1 (HYAL1) in regulating renal injury and renal endothelial glycocalyx breakdown in septic AKI were explored for the first time. METHODS: BALB/c mice were injected with lipopolysaccharide (LPS, 10 mg/kg) to induce AKI. HYAL1 was blocked in vivo using lentivirus-mediated short hairpin RNA targeting HYAL1 (LV-sh-HYAL1). Biochemical assays were performed to measure the levels and concentrations of biochemical parameters associated with AKI as well as levels of inflammatory cytokines. Renal pathological lesions were determined by hematoxylin-eosin (HE) staining. Cell apoptosis in the kidney was detected using terminal-deoxynucleoitidyl transferase-mediated nick end labeling (TUNEL) assay. Immunofluorescence and immunohistochemical (IHC) staining assays were used to examine the levels of hyaluronic acid in the kidney. The protein levels of adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling, endothelial glycocalyx, and autophagy-associated indicators were assessed by western blotting. RESULTS: The knockdown of HYAL1 in LPS-subjected mice by LV-sh-HYAL1 significantly reduced renal inflammation, oxidative stress, apoptosis and kidney dysfunction in AKI, as well as alleviated renal endothelial glycocalyx disruption by preventing the release of hyaluronic acid to the bloodstream. Additionally, autophagy-related protein analysis indicated that knockdown of HYAL1 significantly enhanced autophagy in LPS mice. Furthermore, the beneficial actions of HYAL1 blockade were closely associated with the AMPK/mTOR signaling. CONCLUSION: HYAL1 deficiency attenuates LPS-triggered renal injury and endothelial glycocalyx breakdown in septic AKI in mice.


Assuntos
Injúria Renal Aguda , Hialuronoglucosaminidase , Animais , Camundongos , Injúria Renal Aguda/patologia , Proteínas Quinases Ativadas por AMP , Apoptose , Glicocálix/metabolismo , Glicocálix/patologia , Ácido Hialurônico , Hialuronoglucosaminidase/genética , Rim/patologia , Lipopolissacarídeos , Serina-Treonina Quinases TOR , Camundongos Endogâmicos BALB C
3.
Front Mol Biosci ; 8: 725319, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34513929

RESUMO

Nephrogenic proteins are re-expressed after ischemia/reperfusion (I/R) injury; however, the role of these proteins is still unknown. We found that sine oculis homeobox 1 (SIX1), a developmentally regulated homeoprotein, is reactivated in tubular epithelial cells after I/R injury associated with cell proliferation/migration and anti-inflammation. We demonstrated that SIX1 promoted cell proliferation by upregulating cyclin and glycolytic genes, and might increase cell migration by upregulating the expression of matrix metalloproteinase 9 (MMP9) directly or indirectly in the cell model. Notably, SIX1 targeted the promoters of the amino-terminal enhancer of split (AES) and fused in sarcoma (FUS), which are cofactors of nuclear factor-κB (NF-κB) subunit RELA, and then inhibited the transactivation function of RELA. The expression of monocyte chemotactic protein-1 (MCP-1) was decreased by the SIX1-mediated NF-κB pathway. Our results showed that the expression of cyclin, glycolytic genes, and MMP9 were significantly increased, and the infiltration of monocytes/macrophages (Mophs) was suppressed in SIX1 overexpression kidney at 1, 2, and 3 days after reperfusion. The overexpression of SIX1 resulted in reducing kidney damage from I/R injury in mice by promoting cell proliferation and migration and by inhibiting inflammation. Our study provides evidence that SIX1 involved in cell proliferation, migration, and anti-inflammation in the I/R model, which might be a potential therapeutic target that could be used to ameliorate kidney damage.

4.
Theranostics ; 11(18): 8797-8812, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34522212

RESUMO

Rationale: Neprilysin (NEP) is a major endogenous catabolic enzyme of amyloid ß (Aß). Previous studies have suggested that increasing NEP expression in animal models of Alzheimer's disease had an ameliorative effect. However, the underlying signaling pathway that regulates NEP expression remains unclear. The aryl hydrocarbon receptor (AhR) is a ligand-activated cytoplasmic receptor and transcription factor. Recent studies have shown that AhR plays essential roles in the central nervous system (CNS), but its physiological and pathological roles in regulating NEP are not entirely known. Methods: Western blotting, immunofluorescence, quantitative RT-PCR and enzyme activity assay were used to verify the effects of AhR agonists on NEP in a cell model (N2a) and a mouse model (APP/PS1). Luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay were conducted to investigate the roles of AhR in regulating NEP transcription. Object recognition test and the Morris water maze task were performed to assess the cognitive capacity of the mice. Results: Activating AhR by the endogenous ligand L-Kynurenine (L-KN) or FICZ, or by the exogenous ligand diosmin or indole-3-carbinol (I3C) significantly increases NEP expression and enzyme activity in N2a cells and APP/PS1 mice. We also found that AhR is a direct transcription factor of NEP. Diosmin treatment effectively ameliorated the cognitive disorder and memory deficit of APP/PS1 transgenic mice. By knocking down AhR or using a small molecular inhibitor targeting AhR or NEP, we found that diosmin enhanced Aß degradation through activated AhR and increased NEP expression. Conclusions: These results indicate a novel pathway for regulating NEP expression in neurons and that AhR may be a potential therapeutic target for the treatment of Alzheimer's disease.


Assuntos
Disfunção Cognitiva/metabolismo , Neprilisina/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/patologia , China , Cognição/fisiologia , Disfunção Cognitiva/genética , Modelos Animais de Doenças , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Hipocampo/patologia , Transtornos da Memória/patologia , Camundongos , Camundongos Transgênicos , Neprilisina/efeitos dos fármacos , Neprilisina/genética , Neurônios/metabolismo , Presenilina-1/genética , Receptores de Hidrocarboneto Arílico/fisiologia
5.
Med Sci Monit ; 26: e920421, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32467558

RESUMO

BACKGROUND The aim of this study was to evaluate the efficacy and safety of use of a ureteral catheter during arteriovenous fistula in end-stage renal disease patients with poor vascular status. MATERIAL AND METHODS Fifty patients with standard arteriovenous fistulas at Sir Run Run Hospital of Nanjing Medical University from April 2018 to April 2019 were included. Based on the use of ureteral catheter exploration and tourniquet hydraulic dilatation, patients were divided into study and control groups. The operative success rate, inner diameter of cephalic vein 1 day post-operatively, blood flow in the internal fistula, patency rate and blood flow in the internal fistula 3 months post-operatively, and complications 6 months post-operatively were compared between the 2 groups. RESULTS There were 25 cases in each group, with no significant differences in sex or age between the 2 groups. The operative success rate in the study group was higher than in the control group (96% vs. 88%) (F=1.087, P=0.297). The patency rates at 3 and 6 months post-operatively in the study group were higher than in the control group. The inner diameter of the cephalic vein 1 day post-operatively, the blood flow in the internal fistula, and the complications 6 months post-operatively in the study group were significantly superior to those of the control group (P=0.002). CONCLUSIONS In standard arteriovenous fistula, especially vascular catheter exploration of unhealthy vessels, the application of a ureteral catheter can improve the operative success rate and promote internal fistula maturity, with low cost and ease of use.


Assuntos
Falência Renal Crônica/terapia , Cateterismo Urinário/métodos , Cateteres Urinários/tendências , Adulto , Idoso , Fístula Arteriovenosa/cirurgia , Derivação Arteriovenosa Cirúrgica/métodos , Circulação Sanguínea , China , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Diálise Renal/métodos , Estudos Retrospectivos , Resultado do Tratamento , Grau de Desobstrução Vascular
6.
Nephrol Dial Transplant ; 34(4): 606-617, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29982796

RESUMO

BACKGROUND: Secondary hyperparathyroidism (SHPT) in patients with end-stage renal disease (ESRD) is characterized by hyperplasia of the parathyroid glands (PTGs), while the underlying mechanism is not completely understood. Previously we demonstrated a relationship between cyclooxygenase 2 (COX2) overexpression and parathyroid hyperplasia and here we investigate the role of COX2 downstream metabolic product prostaglandin E2 (PGE2) and its receptor EP2 in the pathogenesis of SHPT. METHODS: PTGs isolated from ESRD patients with advanced SHPT were used to test the expression of COX2-microsomal prostaglandin E synthase-1 (mPGES-1)-EP2 pathway. A diffuse proliferative section of the PTGs was used for tissue culture and treated with high phosphate (HPi) medium, COX2-PGE2-EP2 pathway inhibitors or agonists. EP2 short hairpin RNA (shRNA) lentivirus was locally applied to treat an SHPT rat model. RESULTS: In PTGs isolated from ESRD patients, enhanced immunoactivities of COX2, mPGES-1 and EP2 were observed. In primary cultured PTG tissues, HPi induced intact parathyroid hormone (iPTH) secretion, proliferating cell nuclear antigen (PCNA) expression and COX2 activity, while COX2 and EP2 inhibitors attenuated hyperparathyroidism promoted by HPi. Furthermore, PGE2 or EP2 agonist (butaprost) directly stimulated hyperparathyroidism, whereas EP2 receptor antagonist or cyclic adenosine monophosphate inhibitor attenuated the hyperparathyroidism promoted by PGE2 or butaprost. EP2 shRNA treatment significantly reduced excessive expressions of EP2 and PCNA in the PTGs of nephrectomy rats fed an HPi diet, diminished the size of PTGs and downregulated serum iPTH levels. CONCLUSIONS: The COX2 downstream PGE2 and its receptor EP2 may play an important role in HPi-induced parathyroid hyperplasia and may serve as a potential therapeutic target for SHPT in ESRD.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Hiperparatireoidismo Secundário/etiologia , Hiperplasia/etiologia , Falência Renal Crônica/complicações , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Animais , Ciclo-Oxigenase 2/genética , Humanos , Hiperparatireoidismo Secundário/metabolismo , Hiperparatireoidismo Secundário/patologia , Hiperplasia/metabolismo , Hiperplasia/patologia , Masculino , Hormônio Paratireóideo/metabolismo , Fosfatos/toxicidade , Ratos , Ratos Sprague-Dawley , Receptores de Prostaglandina E Subtipo EP2/genética
7.
J Proteomics ; 179: 42-52, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29526777

RESUMO

SHPT is one of the most common complications of CKD-MBD. Recent studies indicate that oxyphil cell proliferation is related to SHPT progression, while not inhibited by current treatments. The aim of this study was to analyze the correlation between oxyphil cell and clinical indicators in SHPT, further explore the protein expression differences of oxyphil cell. Among 33 MHD patients, 84.8% patients have one or more oxyphil dominant glands and the overall oxyphil cells proportion was 39.5 ±â€¯16.3%. Univariate correlation and multivariable linear regression model showed that oral calcitriol dosage and treatment duration were independently correlated to oxyphil cell ratio. Proteomic study showed that mitochondrial protein, protein synthesis, and cell cycle regulation were significantly altered in oxyphil cell nodules. DBP was downregulated in oxyphil nodules on protein level, which may contribute to calcitriol resistance by reducing vitamin D transport. Through KEGG and PPI network analysis, Wnt signaling, TGF-ß, ubiquitin mediated proteolysis and cell cycle pathways were significantly enriched in oxyphil cell nodules. Among which, MIF-CUL1 axis was significantly increased. These results suggest that the limitations of vitamin D in SHPT treatment is closely related to oxyphil cell and may be attributed to the dysregulation of vitamin D transport and ubiquitin regulation of oxyphil cell. SIGNIFICANCE: Secondary hyperparathyroidism in end stage renal patients is one of the major challenges nephrology field faces. Emerging data indicate that oxyphil cell may participate in the pathophysiology of secondary hyperparathyroidism, while both calcimimetics and vitamin D receptor activators treatments are underperformed in controlling oxyphil cell proliferation. In the present study, we validated that the proliferation of oxyphil cells is associated with calcitriol treatment, and discovered that oxyphil cell nodules were significantly different from chief cells nodules in protein expression of mitochondria, protein synthesis and cell cycle regulation. It is noteworthy that DBP was downregulated in oxyphil nodules on protein level and may therefore participate in the resistance of calcitriol therapy by reducing the vitamin D transport capacity. Wnt signaling, TGF-ß, ubiquitin mediated proteolysis and cell cycle pathways were significantly enriched in oxyphil cell nodules, among which, MIF-CUL1 axis may play an important role in the regulation of oxyphil proliferation and calcitriol resistance through ubiquitin mediated proteolysis. These results suggest that calcitriol treatment has limitations in oxyphil cell predominant SHPT, which may be attributed to the dysregulation of vitamin D transport and ubiquitin regulation of oxyphil cell, and the influence of microenvironment in uremia status may be the underlying reason.


Assuntos
Hiperparatireoidismo Secundário/metabolismo , Células Oxífilas/metabolismo , Proteômica , Espectrometria de Massas em Tandem , Uremia/metabolismo , Adulto , Calcitriol/metabolismo , Cromatografia Líquida , Feminino , Humanos , Hiperparatireoidismo Secundário/patologia , Masculino , Pessoa de Meia-Idade , Células Oxífilas/patologia , Uremia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...