Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.042
Filtrar
1.
Int J Surg ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38759695

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs) are found in primary and advanced tumours. They are primarily involved in tumour progression through complex mechanisms with other types of cells in the tumour microenvironment. However, essential fibroblasts-related genes (FRG) in bladder cancer still need to be explored, and there is a shortage of an ideal predictive model or molecular subtype for the progression and immune therapeutic assessment for bladder cancer, especially muscular-invasive bladder cancer based on the FRG. MATERIALS AND METHODS: CAF-related genes of bladder cancer were identified by analyzing single-cell RNA sequence datasets, and bulk transcriptome datasets and gene signatures were used to characterize them. Then, ten types of machine learning algorithms were utilized to determine the hallmark FRG and construct the FRG index (FRGI) and subtypes. Further molecular subtypes combined with CD8+ T-cells were established to predict the prognosis and immune therapy response. RESULTS: 54 BLCA-related FRG were screened by large-scale scRNA-sequence datasets. The machine learning algorithm established a 3-genes FRG index (FRGI). High FRGI represented a worse outcome. Then, FRGI combined clinical variables to construct a nomogram, which shows high predictive performance for the prognosis of bladder cancer. Furthermore, the BLCA datasets were separated into two subtypes - fibroblast hot and cold types. In five independent BLCA cohorts, the fibroblast hot type showed worse outcomes than the cold type. Multiple cancer-related hallmark pathways are distinctively enriched in these two types. In addition, high FRGI or fibroblast hot type shows a worse immune therapeutic response. Then, four subtypes called CD8-FRG subtypes were established under the combination of FRG signature and activity of CD8+ T-cells, which turned out to be effective in predicting the prognosis and immune therapeutic response of bladder cancer in multiple independent datasets. Pathway enrichment analysis, multiple gene signatures, and epigenetic alteration characterize the CD8-FRG subtypes and provide a potential combination strategy method against bladder cancer. CONCLUSIONS: In summary, we established a novel FRGI and CD8-FRG subtype by large-scale datasets and organized analyses, which could accurately predict clinical outcomes and immune therapeutic response of BLCA after surgery.

2.
Front Neurol ; 15: 1362061, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737351

RESUMO

Background: The efficacy and safety of combining epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) with whole-brain radiotherapy (WBRT) for treating brain metastases in non-small cell lung cancer patients remains to be determined. Methods: A systematic search was conducted using databases including PubMed, Embase, Web of Science, Cochrane, Wanfang, and China National Knowledge Infrastructure (CNKI), aiming to identify relevant clinical studies on the treatment of brain metastases originating from non-small cell lung cancer through the combination of EGFR-TKI and WBRT. Statistical analysis was performed utilizing Stata 17.0 software, covering clinical studies published until March 1, 2023. Results: This analysis incorporated 23 randomized controlled trials (RCTs), involving a total of 2,025 patients. Of these, 1,011 were allocated to the group receiving both EGFR-TKI and WBRT, while 1,014 were assigned to the WBRT alone group. The findings reveal that the combination of EGFR-TKI and WBRT significantly improves the intracranial objective remission rate (RR = 1.57, 95% CI: 1.42-1.74, p < 0.001), increases the intracranial disease control rate (RR = 1.30, 95% CI: 1.23-1.37, p < 0.001), and enhances the 1-year survival rate (RR = 1.48, 95% CI: 1.26-1.73, p < 0.001). Additionally, this combined treatment was associated with a significant survival advantage (RR = 1.48, 95% CI: 1.26-1.73, p < 0.001) and a reduced incidence of adverse effects (RR = 0.65, 95% CI: 0.51-0.83, p < 0.001), particularly with respect to nausea and vomiting (RR = 0.54, 95% CI: 0.37-0.81, p = 0.002) and myelosuppression (RR = 0.59, 95% CI: 0.40-0.87, p = 0.008). However, no statistically significant differences were observed for diarrhea (RR = 1.15, 95% CI: 0.82-1.62, p = 0.418), and skin rash (RR = 1.35, 95% CI: 0.88-2.07, p = 0.164). Conclusion: In contrast to WBRT alone, the combination of EGFR-TKI and WBRT significantly improves intracranial response, enhancing the objective response rate, disease control rate, and 1-year survival rate in NSCLC patients with brain metastases. Moreover, aside from mild cases of rash and diarrhea, there is no statistically significant increase in the incidence of additional adverse effects. Based on the comprehensive evidence collected, the use of third-generation EGFR-TKI combined with WBRT is recommended as the preferred treatment for NSCLC patients with brain metastases, offering superior management of metastatic brain lesions. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/#, CRD42023415566.

3.
Front Oncol ; 14: 1345656, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725628

RESUMO

Background: Remimazolam is a new ultrashort-acting benzodiazepine for sedation and anesthesia. The effects of remimazolam and the mechanism by which it functions in cancer cells have not been determined. This research aimed to explore the mechanism of remimazolam action in colon cancer treatment, using bioinformatics analysis and in vitro experiments. Methods: Cell cycle progression, colony formation, self-renewal capacity, and apoptosis detection were performed in HCT8 cells treated with or without remimazolam. Transcriptome sequencing, Gene Ontology, Kyoto Encyclopedia of Genes and Genome, Protein-Protein Interaction, Gene Set Enrichment Analysis, Western blotting, and qPCR were performed to investigate the mechanism of action of remimazolam in HCT8 colon cancer cells. Results: Remimazolam promoted proliferation and cell-cycle progression of HCT8 cells. After remimazolam treatment, a total of 1,096 differentially expressed genes (DEGs) were identified: 673 genes were downregulated, and 423 genes were upregulated. The DEGs were enriched mainly in "DNA replication", "cell cycle", and "G1/S transition" related pathways. There were 15 DEGs verified by qPCR, and representative biomarkers were detected by Western Bloting. The remimazolam-mediated promotion of cell proliferation and cell cycle was reversed by G1T28, a CDK4/6 inhibitor. Conclusion: Remimazolam promoted cell-cycle progression and proliferation in HCT8 colon cancer cells, indicating that the long-term use of remimazolam has potential adverse effects in the anesthesia of patients with colon cancer.

4.
Natl Sci Rev ; 11(6): nwad262, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38715704

RESUMO

Surface electrons in axion insulators are endowed with a topological layer degree of freedom followed by exotic transport phenomena, e.g., the layer Hall effect. Here, we propose that such a layer degree of freedom can be manipulated in a dissipationless way based on the antiferromagnetic [Formula: see text] with tailored domain structure. This makes [Formula: see text] a versatile platform to exploit the 'layertronics' to encode, process and store information. Importantly, the layer filter, layer valve and layer reverser devices can be achieved using the layer-locked chiral domain wall modes. The dissipationless nature of the domain wall modes makes the performance of the layertronic devices superior to those in spintronics and valleytronics. Specifically, the layer reverser, a layer version of the Datta-Das transistor, also fills up the blank in designing the valley reverser in valleytronics. Our work sheds light on constructing new generation electronic devices with high performance and low-energy consumption in the framework of layertronics.

5.
Int J Genomics ; 2024: 2439396, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716378

RESUMO

Pod dehiscence brings much loss for modern agricultural production, and multiple pod dehiscence components have been identified in many plant species. However, the pod dehiscence regulation factors in soybean are limited. In this study, we investigate the function of GmDIR26, a close homologues gene of pod dehiscence genes GmPdh1, PvPdh1, and CaPdh1, in the regulation of pod dehiscence in soybean. The secondary and tertiary structure analysis reveals that GmDIR26 protein has a similar structure with GmPdh1, PvPdh1, and CaPdh1 proteins. Synteny analysis of soybean and chickpea genomes shows that the genomic region surrounding GmDIR26 and CaPdh1 might be evolved from the same ancestor, and these two genes might have similar function. GmDIR26 shows an increased expression pattern during pod development and reaches a peak at beginning seed stage. Meanwhile, GmDIR26 exhibits high expression levels in dorsal suture and pod wall, but low expression pattern in ventral suture. In addition, GmDIR26 shows higher expression levels in pod dehiscence genotype than that in pod indehiscence accessions. Overexpression of GmDIR26 in soybean increases pod dehiscence in transgenic plants, of which the lignin layer in inner sclerenchyma pods is thicker and looser. The expression levels of several pod dehiscence genes are altered. Our study provides important information for further modification of pod dehiscence resistance soybean and characterization of soybean pod dehiscence regulation network.

6.
Ultrasonics ; 141: 107332, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38718460

RESUMO

BACKGROUND: Stroke is the second leading cause of death across the globe. Early screening and risk detection could provide early intervention and possibly prevent its incidence. Imaging modalities, including 1D-Transcranial Doppler Ultrasound (1D-TCD) or Transcranial Color-code sonography (TCCS), could only provide low spatial resolution or 2D image information, respectively. Notably, 3D imaging modalities including CT have high radiation exposure, whereas MRI is expensive and cannot be adopted in patients with implanted devices. This study proposes an alternative imaging solution for reconstructing 3D Doppler ultrasound geared towards providing a screening tool for the 3D vessel structure of the brain. METHODS: The system comprises an ultrasound phased array attached to a servo motor, which can rotate 180˚ at a speed of 2˚/s. We extracted the color Doppler ROI from the image before reconstructing it into a 3D view using a customized pixel-based algorithm. Different vascular diameters, flow velocity, and depth were tested using a vascular phantom with a pumped flow to confirm the system for imaging blood flow. These variables were set to mimic the vessel diameter, flow speed, and depth of the Circle of Willis (CoW) during a transcranial screening. RESULTS AND CONCLUSIONS: The lower values of absolute error and ratio were found in the larger vascular channels, and vessel diameter overrepresentation was observed. Under different flow velocities, such diameter overrepresentation in the reconstructed flow did not change much; however, it did change with different depths. Meanwhile, the setting of the velocity scale and the color gain affected the dimension of reconstructed objectives. Moreover, we presented a 3D image of CoW from a subject to demonstrate its potential. The findings of this work can provide a good reference for further studies on the reconstruction of the CoW or other blood vessels using Doppler imaging.

7.
mSphere ; : e0018224, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738873

RESUMO

The appearance and prevalence of multidrug-resistance (MDR) Gram-negative bacteria (GNB) have limited our antibiotic capacity to control bacterial infections. The clinical efficacy of colistin (COL), considered as the "last resort" for treating GNB infections, has been severely hindered by its increased use as well as the emergence and prevalence of mobile colistin resistance (MCR)-mediated acquired drug resistance. Identifying promising compounds to restore antibiotic activity is becoming an effective strategy to alleviate the crisis of increasing MDR. We first demonstrated that the combination of berberine (BBR) and EDTA substantially restored COL sensitivity against COL-resistant Salmonella and Escherichia coli. Molecular docking indicated that BBR can interact with MCR-1 and the efflux pump system AcrAB-TolC, and BBR combined with EDTA downregulated the expression level of mcr-1 and tolC. Mechanically, BBR combined with EDTA could increase bacterial membrane damage, inhibit the function of multidrug efflux pump, and promote oxidative damage, thereby boosting the action of COL. In addition, transcriptome analysis found that the combination of BBR and EDTA can accelerate the tricarboxylic acid cycle, inhibit cationic antimicrobial peptide (CAMP) resistance, and attenuate Salmonella virulence. Notably, the combination of BBR and EDTA with COL significantly reduced the bacterial load in the liver and spleen of a mice model infected with Salmonella. Our findings revealed that BBR and EDTA can be used as adjuvants collectively with COL to synergistically reverse the COL resistance of bacteria. IMPORTANCE: Colistin is last-resort antibiotic used to treat serious clinical infections caused by MDR bacterial pathogens. The recent emergence of transferable plasmid-mediated COL resistance gene mcr-1 has raised the specter of a rapid worldwide spread of COL resistance. Coupled with the fact of barren antibiotic development pipeline nowadays, a critical approach is to revitalize existing antibiotics using antibiotic adjuvants. Our research showed that berberine combined with EDTA effectively reversed COL resistance both in vivo and in vitro through multiple modes of action. The discovery of berberine in combination with EDTA as a new and safe COL adjuvant provides a therapeutic regimen for combating Gram-negative bacteria infections. Our findings provide a potential therapeutic option using existing antibiotics in combination with antibiotic adjuvants and address the prevalent infections caused by MDR Gram-negative pathogens worldwide.

8.
Sci Rep ; 14(1): 10397, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710758

RESUMO

I/II/III mixed mode fractures of intersecting joint fissures often occur in natural rock masses, and jointed rock masses are prone to rockbursts in deep underground engineering when subjected to long-term crustal stresses. However, most studies of the mechanical mechanisms of these intersected joints have been conducted by simplifying two-dimensional joint model tests. Furthermore, the fracture mechanisms of two-dimensional intersected joints under tension and compression are completely different from those of three-dimensional joints. This paper presents a novel prefabricated specimen with combinations of intersecting joints capable of detecting the failure behaviours of rock I/II/III mixed mode fractures under creep loading. Uniaxial compression and multistage creep tests are performed on prefabricated sandstone specimens with intersecting joints of 0°/0°, 0°/30°, 0°/60°, and 0°/90°. The experimental results show that with the increase in the number of prefabricated intersecting joints, the uniaxial compressive strength and elastic modulus values of the sandstone specimens gradually decrease. In addition, the sandstone specimens experience relatively few AE events and minor axial strain variations in the first creep stage and the second creep stage of the multistage creep test. The axial strain increases sharply due to the sharp increase in the number of AE events in the third creep stage. The 0°/60° sandstone specimen undergoes accelerated creep failure, resulting in mixed X-shaped tensile‒shear rupture. The RA value is high based on the quantification of the creeping cracks using the acoustic emission parameters of the rise angle (RA) and average frequency (AF). The AF values of the 0°/0°, 0°/30°, and 0°/90° sandstone specimens are high. The experimental results show that a larger joint intersection angle leads to greater mutual restraints and greater effects of prefabricated crack propagation in the rock specimens, thus increasing the final failure strength. Finally, based on the acoustic emission count, a characteristic variable D suitable for characterizing the creep damage evolution of a joint rock mass is established. The findings of this paper can facilitate an effective understanding of the creep effect of I/II/III mixed mode fracture and its micromechanism. The research results will have a certain reference value for the detection and risk mitigation of instantaneous and time-delayed rockbursts.

9.
Angew Chem Int Ed Engl ; : e202404978, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697945

RESUMO

Integrating aggregation-induced emission (AIE) into thermally activated delayed fluorescence (TADF) emitters holds great promise for the advancement of highly efficient organic light emitting diodes (OLEDs). Despite recent advancements, a thorough comprehension of the underlying mechanisms remains imperative for the practical application of such materials. In this work, we introduce a novel approach aimed at modulating the TADF process by manipulating dynamic processes in excited states through aggregation effect. Our findings reveal that aggregation not only enhances both prompt and delayed fluorescence simultaneously but also imposes constraints on molecular reorientation. This constraint reinforces spin-orbit coupling and reduces the energy gap between singlets and triplets. These insights deepen our understanding of the fundamental mechanisms governing the aggregation effect on TADF materials and provide valuable guidance for the design of high-efficiency photoluminescent materials.

10.
Mol Plant ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704640

RESUMO

Although both protein arginine methylation (PRMT) and jasmonate (JA) signaling are crucial for regulating plant development, the relationship between these processes in spikelet development control remains unclear. Here, we utilized CRISPR/Cas9 technology to generate two OsPRMT6a loss-of-function mutants exhibiting various abnormal spikelet structures. Additionally, we found that OsPRMT6a could methylate arginine residues in the JA signal repressors OsJAZ1 and OsJAZ7. Arginine methylation of OsJAZ1 increased the affinity of OsJAZ1 for the JA receptors OsCOI1a and OsCOI1b in the presence of jasmonates (JAs), subsequently promoting the ubiquitination of OsJAZ1 by the SCFOsCOI1a/OsCOI1b complex and degradation via the 26S proteasome. This process ultimately released OsMYC2, a core transcriptional regulator in the JA signaling pathway, to activate or repress JA-responsive genes, thereby maintaining normal plant (spikelet) development. However, in the osprmt6a-1 mutant, reduced arginine methylation of OsJAZ1 impaired the interaction between OsJAZ1 and OsCOI1a/OsCOI1b in the presence of JAs. As a result, OsJAZ1 proteins became more stable, repressing JA responses, thus causing the formation of abnormal spikelet structures. Moreover, we discovered that JA signaling reduced the OsPRMT6a mRNA level in an OsMYC2-dependent manner, thereby establishing a negative feedback loop to balance JA signaling. Furthermore, we found that OsPRMT6a-mediated arginine methylation of OsJAZ1 likely serves as a switch to tune JA signaling to maintain normal spikelet development under harsh environmental conditions such as high temperatures. Thus, our study established a direct molecular link between arginine methylation and the JA signaling pathway.

11.
Bioorg Chem ; 148: 107480, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38772291

RESUMO

A novel series of erythrina derivatives as PARP-1/FTase inhibitors were synthesized, and evaluated for their biological activities. Compound T9 had excellent inhibitory effects on cell viability (A549: IC50 = 1.74 µM; A549/5-Fu: IC50 = 1.03 µM) and in vitro enzyme activities (PARP-1: IC50 = 0.40 µM; FTase: IC50 = 0.067 µM). Molecular docking and point mutation assays demonstrated the interaction of compound T9 with key amino acid residues. The compound T9 exhibited potent anti-proliferation and anti-migration capabilities against A549 and A549/5-Fu cells. PCR array and western blot results showed that compound T9 could effectively inhibit EMT-related proteins in A549 and A549/5-Fu cells, thereby inhibiting the development of lung cancer. Importantly, compound T9 could significantly inhibit tumor growth in the A549 xenograft tumor model (TGI = 65.3 %). In conclusion, this study was the first presentation of the concept of dual-target inhibitors of the PARP-1/FTase enzymes. It also provides the basis for further research and development of novel PARP-1/FTase inhibitors.

12.
Nat Commun ; 15(1): 4250, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762497

RESUMO

Axion insulators possess a quantized axion field θ = π protected by combined lattice and time-reversal symmetry, holding great potential for device applications in layertronics and quantum computing. Here, we propose a high-spin axion insulator (HSAI) defined in large spin-s representation, which maintains the same inherent symmetry but possesses a notable axion field θ = (s + 1/2)2π. Such distinct axion field is confirmed independently by the direct calculation of the axion term using hybrid Wannier functions, layer-resolved Chern numbers, as well as the topological magneto-electric effect. We show that the guaranteed gapless quasi-particle excitation is absent at the boundary of the HSAI despite its integer surface Chern number, hinting an unusual quantum anomaly violating the conventional bulk-boundary correspondence. Furthermore, we ascertain that the axion field θ can be precisely tuned through an external magnetic field, enabling the manipulation of bonded transport properties. The HSAI proposed here can be experimentally verified in ultra-cold atoms by the quantized non-reciprocal conductance or topological magnetoelectric response. Our work enriches the understanding of axion insulators in condensed matter physics, paving the way for future device applications.

13.
J Am Chem Soc ; 146(19): 13391-13398, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38691098

RESUMO

Inverted p-i-n perovskite solar cells (PSCs) are easy to process but need improved interface characteristics with reduced energy loss to prevent efficiency drops when increasing the active photovoltaic area. Here, we report a series of poly ferrocenyl molecules that can modulate the perovskite surface enabling the construction of small- and large-area PSCs. We found that the perovskite-ferrocenyl interaction forms a hybrid complex with enhanced surface coordination strength and activated electronic states, leading to lower interfacial nonradiative recombination and charge transport resistance losses. The resulting PSCs achieve an enhanced efficiency of up to 26.08% for small-area devices and 24.51% for large-area devices (1.0208 cm2). Moreover, the large-area PSCs maintain >92% of the initial efficiency after 2000 h of continuous operation at the maximum power point under 1-sun illumination and 65 °C.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38752993

RESUMO

Two novel bacterial strains, designated as SYSU D00823T and SYSU D00873T, were isolated from sandy soil of the Gurbantunggut Desert in Xinjiang, north-west China. SYSU D00823T and SYSU D00873T shared 99.0 % 16S rRNA gene sequence identity, and were both most closely related to Pedobacter xinjiangensis 12157T with 96.1 % and 96.0 % similarities, respectively. Phylogenetic and phylogenomic analyses revealed that the two isolates and P. xinjiangensis 12157T formed a separate distinct cluster in a stable subclade with the nearby species Pedobacter mongoliensis 1-32T, as well as the genera Pararcticibacter and Arcticibacter. Furthermore, P. mongoliensis 1-32T formed a separate deep-branching lineage and did not form a cluster with members of the genus Pedobacter. The average nucleotide identity and digital DNA-DNA hybridization values between SYSU D00823T and SYSU D00873T and related species were well below the thresholds for species delineation (<81.0 % and <24.0 %, respectively). The genomes of SYSU D00823T and SYSU D00873T were 6.19 and 6.43 Mbp in size with 40.4 % and 40.5 % DNA G+C contents, respectively. The predominant fatty acids (>10 %) of SYSU D00823T and SYSU D00873T were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c). Menaquinone-7 was the only respiratory quinone. The major polar lipids were phosphatidylethanolamine, glycosphingolipid, aminoglycolipid/glycolipid, aminophospholipid and three or four unidentified polar lipids. These data indicated that strains SYSU D00823T and SYSU D00873T should be assigned to two novel species of a new genus within the family Sphingobacteriaceae, for which the names Desertivirga arenae gen. nov., sp. nov. and Desertivirga brevis sp. nov. are proposed. The type strains are SYSU D00823T (=CGMCC 1.18630T=MCCC 1K04973T=KCTC 82278T) and SYSU D00873T (=CGMCC 1.18629T=MCCC 1K04974T=KCTC 82281T), respectively. Accordingly, the reclassification of P. xinjiangensis as Desertivirga xinjiangensis comb. nov., and P. mongoliensis as Paradesertivirga mongoliensis gen. nov., comb. nov. are also proposed.


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Clima Desértico , Ácidos Graxos , Pedobacter , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Microbiologia do Solo , Vitamina K 2 , RNA Ribossômico 16S/genética , Pedobacter/genética , Pedobacter/classificação , Pedobacter/isolamento & purificação , Ácidos Graxos/química , China , DNA Bacteriano/genética , Vitamina K 2/análogos & derivados , Hibridização de Ácido Nucleico
16.
Jpn J Radiol ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700623

RESUMO

PURPOSE: To explore the positive predictors of the clinical outcome in acute ischemic stroke (AIS) patients with anterior circulation large vessel occlusion (ACLVO) after endovascular mechanical thrombectomy (EMT) at a 90-day follow-up, and to establish a nomogram model to predict the clinical outcome. MATERIALS AND METHODS: AIS patients with ACLVO detected by multimodal Computed Tomography imaging who underwent EMT were collected. Patients were divided into the favorable and the unfavorable groups according to the 90-day modified Rankin Scale (mRS) score. Univariate and multivariate analyses were performed to investigate predictors of the favorable outcome (mRS of 0-2). A nomogram model for predicting the clinical outcome after EMT was drawn, and the receiver operating characteristic (ROC) curve was used to evaluate its predictive value. RESULTS: Totally 105 patients including 65 patients in the favorable group and 40 in the unfavorable group were enrolled. Multivariate logistic regression analysis showed that admission National Institute of Health Stroke scale (NIHSS) score [0.858 (95% CI 0.778-0.947)], ACLVO at M2 [20.023 (95% CI 2.204-181.907)] and infarct core (IC) volume [0.943 (95% CI 0.917-0.969)] was positively correlated with favorable outcome. The accuracy of the nomogram model in predicting the outcome was 0.923 (95% CI 0.870-0.976), with a cutoff value of 119.6 points. The area under the ROC curve was 0.848 (95% CI 0.780-0.917; sensitivity, 79.7%; specificity, 90.0%). CONCLUSION: A low Admission NIHSS score, ACLVO at M2, and a small IC volume were positive predictors for favorable outcome. The nomogram model may well predict the outcome in AIS patients with ACLVO after EMT.

17.
Clin. transl. oncol. (Print) ; 26(4): 1012-1021, Abr. 2024. graf
Artigo em Inglês | IBECS | ID: ibc-VR-64

RESUMO

Purpose: This study aimed to assess the impact of ypT stage and tumor regression grade (TRG) on the long-term prognosis of patients with locally advanced rectal cancer (LARC) stage ypT1-4N0 after neoadjuvant chemoradiotherapy (NCRT). Methods: We retrospectively analyzed 585 patients with histologically diagnosed middle-low LARC (cT3-4 or cN + by pelvic MRI) from 2014 to 2019. All patients underwent NCRT, followed by total mesorectal excision. Disease-free survival (DFS) rates were compared among patients with different ypT stages and TRGs by Kaplan–Meier survival analysis. The chi-square test was used to analyze the relationship between clinicopathological or therapeutic factors and ypT stage. Results: The median follow‐up was 35.8 months (range 2.8–71.8 months). The 3-year DFS was 79.5%. A better 3-year DFS was achieved in patients with a pathologic complete response (94.0% vs. 74.3%, p < 0.001) and those in the ypT0-2 (86.5% vs. 66.6%, p < 0.001), ypN0 (85.0% vs. 60.2%, p < 0.001), and TRG0 + 1 (83.1% vs. 73.0%, p = 0.004) subgroups. A total of 309 patients (52.8%) achieved stage ypT1-4N0 after surgery. Among these patients, the ypT1-2N0 subgroup achieved a significantly higher 3-year DFS than the ypT3-4N0 subgroup (85.4% vs. 72.8%, p = 0.018); in contrast, the 3-year DFS did not significantly differ between the TRG1 and TRG2 + 3 subgroups (79.9% vs. 81.1%, p = 0.833). In the ypT1-2N0 or ypT3-4N0 subgroup, different TRG had no significant effect on failure patterns. Conclusions: For LARC patients with a ypT1-4N0 status after NCRT, ypT stage may be a more effective predictor of long-term prognosis than TRG.(AU)


Assuntos
Humanos , Terapia Neoadjuvante , Prognóstico , Estadiamento de Neoplasias , Resultado do Tratamento , Neoplasias Colorretais , Estudos Retrospectivos
18.
Opt Lett ; 49(7): 1810, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38560869

RESUMO

This publisher's note contains a correction to Opt. Lett.48, 6064 (2024)10.1364/OL.509275.

20.
Comput Struct Biotechnol J ; 23: 1348-1363, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38596313

RESUMO

Autoimmune diseases (ADs) are characterized by their complexity and a wide range of clinical differences. Despite patients presenting with similar symptoms and disease patterns, their reactions to treatments may vary. The current approach of personalized medicine, which relies on molecular data, is seen as an effective method to address the variability in these diseases. This review examined the pathologic classification of ADs, such as multiple sclerosis and lupus nephritis, over time. Acknowledging the limitations inherent in pathologic classification, the focus shifted to molecular classification to achieve a deeper insight into disease heterogeneity. The study outlined the established methods and findings from the molecular classification of ADs, categorizing systemic lupus erythematosus (SLE) into four subtypes, inflammatory bowel disease (IBD) into two, rheumatoid arthritis (RA) into three, and multiple sclerosis (MS) into a single subtype. It was observed that the high inflammation subtype of IBD, the RA inflammation subtype, and the MS "inflammation & EGF" subtype share similarities. These subtypes all display a consistent pattern of inflammation that is primarily driven by the activation of the JAK-STAT pathway, with the effective drugs being those that target this signaling pathway. Additionally, by identifying markers that are uniquely associated with the various subtypes within the same disease, the study was able to describe the differences between subtypes in detail. The findings are expected to contribute to the development of personalized treatment plans for patients and establish a strong basis for tailored approaches to treating autoimmune diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...