Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
Sci Adv ; 10(16): eadj0268, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640247

RESUMO

Continuous monitoring of biomarkers at locations adjacent to targeted internal organs can provide actionable information about postoperative status beyond conventional diagnostic methods. As an example, changes in pH in the intra-abdominal space after gastric surgeries can serve as direct indicators of potentially life-threatening leakage events, in contrast to symptomatic reactions that may delay treatment. Here, we report a bioresorbable, wireless, passive sensor that addresses this clinical need, designed to locally monitor pH for early detection of gastric leakage. A pH-responsive hydrogel serves as a transducer that couples to a mechanically optimized inductor-capacitor circuit for wireless readout. This platform enables real-time monitoring of pH with fast response time (within 1 hour) over a clinically relevant period (up to 7 days) and timely detection of simulated gastric leaks in animal models. These concepts have broad potential applications for temporary sensing of relevant biomarkers during critical risk periods following diverse types of surgeries.


Assuntos
Implantes Absorvíveis , Transdutores , Animais , Tecnologia sem Fio , Concentração de Íons de Hidrogênio , Biomarcadores
2.
Int Immunopharmacol ; 132: 111964, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38603856

RESUMO

The link between neuroinflammation and depression is a subject of growing interest in neuroscience and psychiatry; meanwhile, the precise mechanisms are still being unrevealed. However, glial cell activation, together with cytokine level elevation, suggests a connection between neuroinflammation and the development or exacerbation of depression. Glial cells (astrocytes) communicate with neurons via their extracellular neurotransmitter receptors, including glutamate receptors NMDARs. However, these receptor roles are controversial and enigmatic in neurological disorders, including depression. Therefore, we hypothesized whether NMDAR subnit NR2C deletion in the astrocytes exhibited anti-depressive effects concurrent with neuroinflammation prevention. To assess, we prepared astrocytic-NR2C knockout mice (G-2C: GFAPCre+Grin2Cflox/flox), followed by LPS administration, behavior tests, and biochemical analysis. Stimulatingly, astrocytic-NR2C knockout mice (G-2C) did not display depressive-like behaviors, neuroinflammation, and synaptic deficits upon LPS treatment. PI3K was impaired upon LPS administration in control mice (Grin2Cflox/flox); however, they were intact in the hippocampus of LPS-treated G-2C mice. Further, PI3K activation (via PTEN inhibition by BPV) restored neuroinflammation and depressive-like behavior, accompanied by altered synaptic protein and spine numbers in G-2C mice in the presence of LPS. In addition, NF-κB and JNK inhibitor (BAY, SP600125) treatments reversed the effects of BPV. Moreover, these results were further validated with an NR2C antagonist DQP-1105. Collectively, these observations support the astrocytic-NR2C contribution to LPS-induced neuroinflammation, depression, and synaptic deficits.


Assuntos
Astrócitos , Depressão , Hipocampo , Lipopolissacarídeos , Camundongos Knockout , Doenças Neuroinflamatórias , Receptores de N-Metil-D-Aspartato , Animais , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Depressão/imunologia , Camundongos , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/tratamento farmacológico , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo
3.
Opt Lett ; 49(6): 1636-1639, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489470

RESUMO

In this Letter, we propose a novel, to the best of our knowledge, neural network pre-equalizer based on the trial-and-error (TE) mechanism for visible light communication. This approach, unlike indirect learning (IL) architecture, does not require an additional auxiliary post-equalizer. Instead, it allows the pre-equalizer to be trained directly from the transmitter side through continuous interaction with the actual system. In a 1.95-Gbps 64-QAM carrier-less amplitude phase (CAP) free space optical transmission platform, the proposed scheme demonstrates superior nonlinear approximation capabilities and noise resilience. Specifically, the TE-recurrent neural network (RNN)-based pre-equalizer exhibits signal-to-noise ratio (SNR) gains of 0.8 dB and 1.8 dB over the IL-RNN-based and IL-Volterra-based pre-equalizers, respectively. We believe this is the first application of trial-and-error learning for training pre-equalizer in visible light communications.

4.
J Cell Mol Med ; 28(7): e18160, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38506067

RESUMO

Apolipoprotein E4 (ApoE4) is involved in the stress-response processes and is hypothesized to be a risk factor for depression by means of mitochondrial dysfunction. However, their exact roles and underlying mechanisms are largely unknown. ApoE4 transgenic mice (B6. Cg-ApoEtm1Unc Cdh18Tg( GFAP-APOE i4)1Hol /J) were subjected to stress (lipopolysaccharides, LPS) to elucidate the aetiology of ApoE4-induced depression. LPS treatment significantly aggravated depression-like behaviours, concurrent with neuroinflammation and impaired mitochondrial changes, and melatonin/Urolithin A (UA) + 5-aminoimidazole-4-carboxamide 1-ß-D-ribofuranoside (AICAR) reversed these effects in ApoE4 mice. Concurrently, ApoE4 mice exhibited mitophagy deficits, which could be further exacerbated by LPS stimulation, as demonstrated by reduced Atg5, Beclin-1 and Parkin levels, while PINK1 levels were increased. However, these changes were reversed by melatonin treatment. Additionally, proteomic profiling suggested mitochondria-related signalling and network changes in ApoE4 mice, which may underlie the exaggerated response to LPS. Furthermore, HEK 293T cells transfected with ApoE4 showed mitochondria-associated protein and mitophagy defects, including PGC-1α, TFAM, p-AMPKα, PINK1 and LC3B impairments. Additionally, it aggravates mitochondrial impairment (particularly mitophagy), which can be attenuated by triggering autophagy. Collectively, ApoE4 dysregulation enhanced depressive behaviour upon LPS stimulation.


Assuntos
Apolipoproteína E4 , Melatonina , Camundongos , Animais , Apolipoproteína E4/metabolismo , Apolipoproteína E4/farmacologia , Depressão , Melatonina/farmacologia , Melatonina/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Proteômica , Mitocôndrias/metabolismo , Apolipoproteínas E/metabolismo , Camundongos Transgênicos , Proteínas Quinases Ativadas por AMP/metabolismo
5.
Biosens Bioelectron ; 253: 116166, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428069

RESUMO

Eccrine sweat can serve as a source of biomarkers for assessing physiological health and nutritional balance, for tracking loss of essential species from the body and for evaluating exposure to hazardous substances. The growing interest in this relatively underexplored class of biofluid arises in part from its non-invasive ability for capture and analysis. The simplest devices, and the only ones that are commercially available, exploit soft microfluidic constructs and colorimetric assays with purely passive modes of operation. The most sophisticated platforms exploit batteries, electronic components and radio hardware for inducing sweat, for electrochemical evaluation of its content and for wireless transmission of this information. The work reported here introduces a technology that combines the advantages of these two different approaches, in the form of a cost-effective, easy-to-use device that supports on-demand evaluation of multiple biomarkers in sweat. This flexible, skin-interfaced, miniaturized system incorporates a hydrogel that contains an approved drug to activate eccrine sweat glands, electrodes and a simple circuit and battery to delivery this drug by iontophoresis through the surface of the skin, microfluidic channels and microreservoirs to capture the induced sweat, and multiple colorimetric assays to evaluate the concentrations of chloride, zinc, and iron. As demonstrated in healthy human participants monitored before and after a meal, such devices yield results that match those of traditional laboratory analysis techniques. Clinical studies that involve cystic fibrosis pediatric patients illustrate the use of this technology as a simple, painless, and reliable alternative to traditional hospital systems for measurements of sweat chloride.


Assuntos
Técnicas Biossensoriais , Suor , Humanos , Criança , Cloretos , Colorimetria , Biomarcadores
6.
Pharmaceutics ; 16(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38543200

RESUMO

Genistein (GEN) is an active pharmaceutical ingredient that presents the challenges of poor water solubility and low oral bioavailability. To tackle these challenges, a GEN solid dispersion was prepared by solvent rotary evaporation using polyvinylpyrrolidone K30 (PVP K30) as a carrier. The optimal formulation was determined by drug loading efficiency and in vitro release. The physical state of the solid dispersion was characterized by DSC, XRD, SEM and FT-IR. And the results of the in vitro release study indicate that the drug release of SD (1:7) increased 482-fold that of pure GEN at 60 min. Following oral administration to rats, the Cmax and AUC0-24 of SD (1:7) was increased 6.86- and 2.06-fold to that of pure GEN. The adipose fat index and body weight of the SD (1:7) group were significantly lower than those of the GEN group (p < 0.05). Meanwhile, the levels of TC and TG in the serum were significantly decreased in the SD (1:7) group compared with the GEN group (p < 0.05). All experiments revealed that solid dispersion could be a promising formulation approach to improve the dissolution rate, oral bioavailability, and effect on the reduction of lipid accumulation in high-fat diet-induced obesity mice.

7.
Science ; 383(6687): 1096-1103, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38452063

RESUMO

Monitoring homeostasis is an essential aspect of obtaining pathophysiological insights for treating patients. Accurate, timely assessments of homeostatic dysregulation in deep tissues typically require expensive imaging techniques or invasive biopsies. We introduce a bioresorbable shape-adaptive materials structure that enables real-time monitoring of deep-tissue homeostasis using conventional ultrasound instruments. Collections of small bioresorbable metal disks distributed within thin, pH-responsive hydrogels, deployed by surgical implantation or syringe injection, allow ultrasound-based measurements of spatiotemporal changes in pH for early assessments of anastomotic leaks after gastrointestinal surgeries, and their bioresorption after a recovery period eliminates the need for surgical extraction. Demonstrations in small and large animal models illustrate capabilities in monitoring leakage from the small intestine, the stomach, and the pancreas.


Assuntos
Implantes Absorvíveis , Fístula Anastomótica , Trato Gastrointestinal , Ultrassom , Animais , Humanos , Homeostase , Estômago , Trato Gastrointestinal/cirurgia , Fístula Anastomótica/diagnóstico por imagem , Modelos Animais
8.
Proc Natl Acad Sci U S A ; 121(14): e2400868121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547066

RESUMO

Partial cystectomy procedures for urinary bladder-related dysfunction involve long recovery periods, during which urodynamic studies (UDS) intermittently assess lower urinary tract function. However, UDS are not patient-friendly, they exhibit user-to-user variability, and they amount to snapshots in time, limiting the ability to collect continuous, longitudinal data. These procedures also pose the risk of catheter-associated urinary tract infections, which can progress to ascending pyelonephritis due to prolonged lower tract manipulation in high-risk patients. Here, we introduce a fully bladder-implantable platform that allows for continuous, real-time measurements of changes in mechanical strain associated with bladder filling and emptying via wireless telemetry, including a wireless bioresorbable strain gauge validated in a benchtop partial cystectomy model. We demonstrate that this system can reproducibly measure real-time changes in a rodent model up to 30 d postimplantation with minimal foreign body response. Studies in a nonhuman primate partial cystectomy model demonstrate concordance of pressure measurements up to 8 wk compared with traditional UDS. These results suggest that our system can be used as a suitable alternative to UDS for long-term postoperative bladder recovery monitoring.


Assuntos
Bexiga Urinária , Infecções Urinárias , Animais , Humanos , Bexiga Urinária/cirurgia , Urodinâmica/fisiologia , Próteses e Implantes , Cistectomia
9.
Exp Gerontol ; 187: 112375, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38320733

RESUMO

Stress response is a fundamental mechanism for cell survival, providing protection under unfavorable conditions. Mitochondrial stress, in particular, can trigger mitophagy, a process that restores cellular health. Exhaustive exercise (EE) is a form of acute mitochondrial stress. The objective of this current study is to investigate the impact of EE on tau pathology in pR5 mice, as well as the potential underlying mechanisms. To evaluate this, we examined the levels of total and phosphorylated tau in the hippocampus of pR5 mice, both with and without EE treatment. Furthermore, the application of weighted correlation network analysis (WGCNA) was employed to identify protein modules associated with the phenotype following the proteomic experiment. The findings of our study demonstrated a significant decrease in tau phosphorylation levels upon EE treatment, in comparison to the pR5 group. Moreover, the proteomic analysis provided additional insights, revealing that the mitigation of tau pathology was primarily attributed to the modulation of various pathways, such as translation factors and oxidative phosphorylation. Additionally, the analysis of heatmaps revealed a significant impact of EE treatment on the translation process and electron transport chain in pR5 mice. Furthermore, biochemical analysis provided further confirmation that EE treatment effectively modulated the ATP level in pR5 mice. In conclusion, our study suggests that the observed decrease in tau phosphorylation resulting from EE treatment may primarily be attributed to its regulation of the translation process and enhancement of mitochondrial function.


Assuntos
Doença de Alzheimer , Fenômenos Biológicos , Camundongos , Animais , Camundongos Transgênicos , Fosforilação , Proteínas tau/genética , Proteínas tau/metabolismo , Transporte de Elétrons , Proteômica , Fosforilação Oxidativa , Processamento de Proteína Pós-Traducional , Doença de Alzheimer/genética
10.
Sci Total Environ ; 919: 170897, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38346659

RESUMO

The potential increases in carbon stocks in arid regions due to recent shrub encroachment have attracted extensive interest among both ecologists and carbon policy analysts. Quantifying the shrub root biomass amount in these ecosystems is essential to understanding the ecological changes occurring. In this paper, we proposed a simple nondestructive method for estimating the coarse lateral root biomass of shrubs based on the root counts obtained from ground-penetrating radar (GPR) radargrams. Root data were gathered via field experiments using GPR with antenna center frequencies of 900 MHz and 400 MHz. Five Caragana microphylla Lam. shrubs of different sizes were selected for measuring objects, and a total of 40 GPR survey lines were established for GPR data acquisition. The soil profile wall excavation method was used to obtain the total root biomass from each radargram. A model for estimating the root biomass was built by establishing the relationship between the root biomass in each profile and the root counts interpreted from the radargrams. According to the mathematical relationship between the root diameter and root biomass, the proxy root radius was derived, which could explain the rationality of the proposed model from the biological mechanism. The established model provided high confidence in estimating the root dry biomass using the GPR data obtained at the two antenna frequencies (R2= 0.73 for 900 MHz and R2= 0.71 for 400 MHz). The leave-one-out cross-validation results showed that the model exhibits satisfactory performance. This study expands the application of geophysical methods in root research and offers a new simplified method for estimating the root biomass from GPR data under field conditions.


Assuntos
Caragana , Ecossistema , Biomassa , Radar , China , Carbono
11.
Adv Mater ; 36(19): e2309421, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38339983

RESUMO

Bioresorbable electronic devices as temporary biomedical implants represent an emerging class of technology relevant to a range of patient conditions currently addressed with technologies that require surgical explantation after a desired period of use. Obtaining reliable performance and favorable degradation behavior demands materials that can serve as biofluid barriers in encapsulating structures that avoid premature degradation of active electronic components. Here, this work presents a materials design that addresses this need, with properties in water impermeability, mechanical flexibility, and processability that are superior to alternatives. The approach uses multilayer assemblies of alternating films of polyanhydride and silicon oxynitride formed by spin-coating and plasma-enhanced chemical vapor deposition , respectively. Experimental and theoretical studies investigate the effects of material composition and multilayer structure on water barrier performance, water distribution, and degradation behavior. Demonstrations with inductor-capacitor circuits, wireless power transfer systems, and wireless optoelectronic devices illustrate the performance of this materials system as a bioresorbable encapsulating structure.


Assuntos
Eletrônica , Implantes Absorvíveis , Água/química , Tecnologia sem Fio , Materiais Biocompatíveis/química
12.
Biochem Biophys Res Commun ; 701: 149550, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38310688

RESUMO

The beneficial effect of a beta-lactam antibiotic, Ceftriaxone (CEF), to improve depressive-like symptoms has been documented previously, attributed to its modulation of glutamate neurotransmission. Here, we aimed to determine whether CEF could improve LPS-altered glutamatergic signaling associated with neuroinflammation-allied depression. To assess our goals, we established a neuroinflammation-allied depression mice model by injecting lipopolysaccharides (LPS), followed by behavioral and biochemical analysis. LPS-treated mice displayed depressive symptoms, neuroinflammation, dysregulated glutamate and its transporter (GLT-1) expression, altered expression of astrocyte reactive markers (GFAP, cxcl10, steap4, GBP2, and SRGN), and dysregulated BDNF/TrkB signaling. However, these changes were rescued by CEF treatment, as we found decreased neuroinflammation, relief of depression symptoms, and improved GLT-1 and BDNF/TrkB signaling upon CEF treatment. Moreover, GLT-1 and BDNF/TrkB regulation role of CEF was validated by K252a and DHK treatment. In summary, the anti-depressive effects of glutamate modulators, like CEF, are closely related to their anti-inflammatory role.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Ceftriaxona , Camundongos , Animais , Ceftriaxona/farmacologia , Ceftriaxona/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Lipopolissacarídeos , Doenças Neuroinflamatórias , Ácido Glutâmico/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo
13.
Angew Chem Int Ed Engl ; 63(9): e202317636, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38242844

RESUMO

The first total synthesis of incarnatapeptins A and B, two novel marine natural products, was accomplished from readily available (S)-1-benzyloxycarbonylhexahydropyridazine-3-carboxylic acid. This route, whose longest linear sequence was 12 steps, provided the incarnatapeptins A and B in yields of 26.5 % and 19.7 %, respectively, and enabled the structure and stereochemistry of both natural products to be unambiguously confirmed. Highlights of our synthesis include the photoredox-mediated decarboxylative 1,4-addition reaction and a novel and practical N-acylation paradigm promoted by silver carbonate. The unusual facile atropisomerism of some linear peptidic intermediates was also observed by TLC analysis in the course of this work.

14.
Eur J Pharmacol ; 966: 176333, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38278466

RESUMO

The µ-opioid receptor-biased agonist theory holds that Gio protein signaling mediates the analgesic effect of opioids and the related side effects via the ß-arrestin2 signaling pathway. A series of µ-opioid-biased agonists have been developed in accordance with this theory, and the FDA has approved TRV130 (as a representative of biased agonists) for marketing. However, several reports have raised the issue of opioid side effects associated with the use of agonists. In this study, five permeable peptides were designed to emulate 11 S/T phosphorylation sites at the µ-opioid receptor (MOR) carboxyl-terminal. In vitro experiments were performed to detect the activation level of G proteins from the cAMP inhibition assay and the ß-arrestin2 recruitment by the BRET assay. Designed peptides might effectively interfere with the activation of the Gio and ß-arrestin2 pathways when combined with morphine. The resulting morphine-induced tolerance, respiratory inhibition, and constipation in mice showed that the ß-arrestin2 pathway was responsible for morphine tolerance while the Gio signaling pathway was involved with respiratory depression and constipation and that these side effects were significantly related to phosphorylation sites S363 and T370. This study may provide new directions for the development of safer and more effective opioid analgesics, and the designed peptides may be an effective tool for exploring the mechanism by which µ-opioid receptors function, with the potential of reducing the side effects that are associated with clinical opioid treatment.


Assuntos
Analgésicos Opioides , Morfina , Camundongos , Animais , Morfina/efeitos adversos , Analgésicos Opioides/efeitos adversos , Analgésicos Opioides/metabolismo , Receptores Opioides mu/metabolismo , Transdução de Sinais , Constipação Intestinal/induzido quimicamente , Peptídeos/metabolismo , beta-Arrestina 2/metabolismo
15.
Curr Biol ; 34(2): 389-402.e5, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38215742

RESUMO

Aversive stimuli activate corticotropin-releasing factor (CRF)-expressing neurons in the paraventricular nucleus of hypothalamus (PVNCRF neurons) and other brain stress systems to facilitate avoidance behaviors. Appetitive stimuli also engage the brain stress systems, but their contributions to reward-related behaviors are less well understood. Here, we show that mice work vigorously to optically activate PVNCRF neurons in an operant chamber, indicating a reinforcing nature of these neurons. The reinforcing property of these neurons is not mediated by activation of the hypothalamic-pituitary-adrenal (HPA) axis. We found that PVNCRF neurons send direct projections to the ventral tegmental area (VTA), and selective activation of these projections induced robust self-stimulation behaviors, without activation of the HPA axis. Similar to the PVNCRF cell bodies, self-stimulation of PVNCRF-VTA projection was dramatically attenuated by systemic pretreatment of CRF receptor 1 or dopamine D1 receptor (D1R) antagonist and augmented by corticosterone synthesis inhibitor metyrapone, but not altered by dopamine D2 receptor (D2R) antagonist. Furthermore, we found that activation of PVNCRF-VTA projections increased c-Fos expression in the VTA dopamine neurons and rapidly triggered dopamine release in the nucleus accumbens (NAc), and microinfusion of D1R or D2R antagonist into the NAc decreased the self-stimulation of these projections. Together, our findings reveal an unappreciated role of PVNCRF neurons and their VTA projections in driving reward-related behaviors, independent of their core neuroendocrine functions. As activation of PVNCRF neurons is the final common path for many stress systems, our study suggests a novel mechanism underlying the positive reinforcing effect of stressful stimuli.


Assuntos
Hormônio Liberador da Corticotropina , Hormônios Liberadores de Hormônios Hipofisários , Camundongos , Animais , Hormônio Liberador da Corticotropina/metabolismo , Hormônios Liberadores de Hormônios Hipofisários/metabolismo , Hormônios Liberadores de Hormônios Hipofisários/farmacologia , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Hipotálamo/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Neurônios Dopaminérgicos/metabolismo
16.
Mol Neurobiol ; 61(1): 465-475, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37632679

RESUMO

The effects of HNK, I5, and I6 on the expression of protein in hippocampus of depressed mice were studied by isobaric tags for relative and absolute quantitation (iTRAQ) to explore the mechanism of their antidepressant action. HNK, I5, and I6 were administered intragastric administration once a day in the morning for 7 days. The drug was subsequently discontinued for 7 days (without any treatment). On the 15th day, mice in each group were given the drug (1.0, 10.0, 30.0 mg/kg) intragastric stimulation and mouse hippocampal tissues were taken to perform iTRAQ to identify differentially expressed proteins, and bioinformatics was used to analyze the functional enrichment of the differentially expressed proteins. Compared with Ctr group, the number of differentially expressed proteins in HNK, I5, and I6 treatment groups was 158, 88, and 105, respectively. The three groups shared 29 differentially expressed proteins. In addition, compared with HNK group, the number of differentially expressed proteins in I5 and I6 groups was 201 and 203, respectively. A total of 47 and 56 differentially expressed proteins were co-expressed in I5 and I6 groups. Bioinformatics analysis showed that these differentially expressed proteins mainly had the functions of binding, biocatalysis, and transport, and mainly participated in cellular process, biological regulation process, biological metabolism process, and stress reaction process. GO and KEGG pathway analysis found that these differentially expressed proteins were involved long-term potentiation, G13 pathway, platelet activation pathway, and MAPK signaling pathway. HNK, I5, and I6 antidepressants are closely related to sudden stress sensitivity, stress resistance, neurotransmitter, and metabolic pathways. This study provides a scientific basis to further elucidate the mechanism and clinical application of HNK, I5, and I6 antidepressants.


Assuntos
Ketamina , Proteômica , Camundongos , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antidepressivos/metabolismo , Ketamina/farmacologia , Transdução de Sinais
17.
Huan Jing Ke Xue ; 44(12): 6992-7003, 2023 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-38098422

RESUMO

To explore the influences of chemical oxidation on the physiological and ecological functions of indigenous microorganisms during contaminated soil remediation, three oxidants, including KMnO4, Na2S2O8, and O3, were selected to investigate their remediation effects on PAHs and the responses to indigenous microorganisms under different liquid-solid ratios, in this study. The results showed that:when the ΣPAHs concentration was 679.1 mg·kg-1 and the dosage of KMnO4 and Na2S2O8 was 1%, the removal efficiency of ΣPAHs reached up to 96.9% and 95.7% under the liquid-solid ratio of 6:1; for the O3 treatment, the removal efficiency of ΣPAHs was the highest(82.3%) at the O3 dosage and the liquid-solid ratio of 72 mg·min-1 and 8:1, respectively. The removal efficiency of low ring(3-4 rings) PAHs was higher than that of high ring(5-6 rings) PAHs under different liquid-solid ratios. The highest removal efficiencies were observed for phenanthrene and acenaphthene, whereas for benzo[a]pyrene, only the KMnO4treatment provided an effective performance, showing the highest removal efficiency of 97.4%. The microbial quantity analysis indicated that the quantity of soil microorganisms in the soil dropped sharply after being treated with KMnO4, decreasing from 108 copies·g-1 to 105 copies·g-1, whereas it changed only slightly after being treated with Na2S2O8 and O3. The community structure analysis showed that Proteobacteria were predominant in the contaminated soil, with the relative abundance of 99.5%. The addition of KMnO4 and Na2S2O8 significantly increased the microbial diversity; in particular, the relative abundance of a variety of microorganisms(such as Ralstonia and Acinetobacter) that can degrade PAHs was remarkably increased. The analysis of microbial metabolic function pathways revealed that chemical oxidation could simultaneously increase the relative abundance of PAHs-degrading bacteria and improve the ability of organic metabolism. Overall, the KMnO4 treatment greatly altered the quantity of microorganisms and the structure of the microbial community and the relative abundance of PAHs-degrading microorganisms at the liquid-solid ratio of 6:1.


Assuntos
Coque , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Oxidantes/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Coque/análise , Poluentes do Solo/análise , Biodegradação Ambiental , Solo/química , Microbiologia do Solo
18.
Eur J Pharmacol ; 961: 176174, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37939993

RESUMO

Dopamine receptors can form heteromeric interactions with other receptors, including glutamate receptors, and present a novel pharmacological target because it contribute to dopamine-dysregulated brain disorders such as addiction and other motor-related diseases. In addition, dopamine receptors D2 (D2Rs) and glutamate NMDA receptors subtype-NR2B have been implicated in morphine use disorders; however, the molecular mechanism underlying the heteromeric complex of these two receptors in morphine use disorders is unclear. Herein, we focus on interactions between D2R and NR2B in morphine-induced conditioned place preference (CPP) and hyperlocomotion mice models. We found that the D2R-NR2B complex significantly increases in morphine-induced mice models, accompanied by ERK signaling impairment, implying the complex could contribute to the morphine addiction pathophysiological process. Further, we design a brain-penetrant interfering peptide (TAT-D2-KT), which could disrupt interactions of D2R-NR2B and decrease addictive-like behaviors concurrent to ERK signaling improvement. In summary, our data provided the first evidence for a D2R-NMDAR complex formation in morphine use disorders and its underlying mechanism of ERK signaling, which could present a novel therapeutic target with direct implications for morphine acquisition and relapse treatment.


Assuntos
Dependência de Morfina , Morfina , Camundongos , Animais , Morfina/farmacologia , Receptores de Dopamina D2/metabolismo , Condicionamento Clássico , Encéfalo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de Dopamina D1/metabolismo
19.
Molecules ; 28(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37959861

RESUMO

Total synthesis of the proposed noursamycin A has been accomplished, which disproves the original structural assignments. The synthetic strategy described herein has also been employed in the first total synthesis of nicrophorusamide A, a cyclopeptide that is structurally related to noursamycin A.

20.
Transl Psychiatry ; 13(1): 352, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978167

RESUMO

The translational defect has emerged as a common feature of neurological disorders. Studies have suggested that alterations between opposing and balanced synaptic protein synthesis and turnover processes could lead to synaptic abnormalities, followed by depressive symptoms. Further studies link this phenomenon with eIF4E and TrkB/BDNF signaling. However, the interplay between the eIF4E and TrkB/BDNF signaling in the presence of neuroinflammation is yet to be explored. To illuminate the role of eIF4E activities within LPS-induced neuroinflammation and depression symptomology, we applied animal behavioral, biochemical, and pharmacological approaches. In addition, we sought to determine whether eIF4E dysregulated activities correlate with synaptic protein loss via the TrkB/BDNF pathway. Our results showed that LPS administration induced depressive-like behaviors, accompanied by neuroinflammation, reduced spine numbers, and synaptic protein dysregulation. Concurrently, LPS treatment enhanced eIF4E phosphorylation and TrkB/BDNF signaling defects. However, eFT508 treatment rescued the LPS-elicited neuroinflammation and depressive behaviors, as well as altered eIF4E phosphorylation, synaptic protein expression, and TrkB/BDNF signaling. The causal relation of eIF4E with BDNF signaling was further explored with TrkB antagonist K252a, which could reverse the effects of eFT508, validating the interplay between the eIF4E and TrkB/BDNF signaling in regulating depressive behaviors associated with neuroinflammation via synaptic protein translational regulation. In conclusion, our results support the involvement of eIF4E-associated translational dysregulation in synaptic protein loss via TrkB/BDNF signaling, eventually leading to depressiven-like behaviors upon inflammation-linked stress.


Assuntos
Antidepressivos , Lipopolissacarídeos , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Lipopolissacarídeos/metabolismo , Fosforilação , Doenças Neuroinflamatórias , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptor trkB/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...