Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Small ; 20(11): e2306273, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37936322

RESUMO

A novel semiconductive Co/Fe-MOF embedded with Fe2 O3 nanocrystals (Fe2 O3 @CoFe-MOF) is developed as a trifunctional electrocatalyst for the urea oxidation reaction (UOR), oxygen evolution reaction (OER), and hydrogen evolution reaction for enhancing the efficiency of the hydrogen production via the urea-assisted overall water splitting. Fe2 O3 @CoFe-TPyP-MOF comprises unsaturated metal-nitrogen coordination sites, affording enriched defects, self-tuned d-band centers, and efficient π-π interaction between different layers. Density functional theory calculation confirms that the adsorption of urea can be optimized at Fe2 O3 @CoFe-TPyP-MOF, realizing the efficient adsorption of intermediates and desorption of the final product of CO2 and N2 characterized by the in situ Fourier transform infrared spectroscopy. The two-electrode urea-assisted water splitting device-assembled with Fe2 O3 @CoFe-TPyP-MOF illustrates a low cell voltage of 1.41 V versus the reversible hydrogen electrode at the current density of 10 mA cm-2 , attaining the hydrogen production rate of 13.13 µmol min-1 in 1 m KOH with 0.33 m urea. The in situ electrochemical Raman spectra and other basic characterizations of the used electrocatalyst uncover that Fe2 O3 @CoFe-TPyP-MOF undergoes the reversible structural reconstruction after the UOR test, while it demonstrates the irreversible reconstruction after the OER measurement. This work redounds the progress of urea-assisted water spitting for hydrogen production.

2.
Bioelectrochemistry ; 156: 108630, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38147788

RESUMO

In this work, a novel two-dimensional semiconducting metal covalent organic framework (CuTAPc-TFPP-COF) was synthesized and used as biosensing platform to construct aptasensor for trace detection of tetracycline (TC). The CuTAPc-TFPP-COF integrates the highly conjugated structure, large specific surface area, high porosity, abundant nitrogen functional groups, excellent electrochemical activity, and strong bioaffinity for aptamers, providing abundant active sites to effectively anchor aptamer strands. As a result, the CuTAPc-TFPP-COF-based aptasensor shows high sensitivity for detecting TC via specific recognition between aptamer and TC to form Apt-TC complex. An ultralow detection limit of 59.6 fM is deduced from the electrochemical impedance spectroscopy within a wide linear range of 0.1-100000 pM for TC. The CuTAPc-TFPP-COF-based aptasensor also exhibits good selectivity, reproducibility, stability, regenerability, and excellent applicability for real river water, milk, and pork samples. Therefore, the CuTAPc-TFPP-COF-based aptasensor will be promising for detecting trace harmful antibiotics residues in environmental water and food samples.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Isoindóis , Estruturas Metalorgânicas , Compostos Organometálicos , Porfirinas , Putrescina , Antibacterianos/análise , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Limite de Detecção , Estruturas Metalorgânicas/química , Putrescina/análogos & derivados , Reprodutibilidade dos Testes , Tetraciclina , Água
3.
Small ; 19(42): e2302600, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37322392

RESUMO

An n-n type heterojunction comprising with CuN and BN dual active sites is synthesized via in situ growth of a conductive metal-organic framework (MOF) [Cu3 (HITP)2 ] (HITP = 2,3,6,7,10,11-hexaiminotriphenylene) on hexagonal boron nitride (h-BN) nanosheets (hereafter denoted as Cu3 (HITP)2 @h-BN) for the electrocatalytic nitrogen reduction reaction (eNRR). The optimized Cu3 (HITP)2 @h-BN shows the outstanding eNRR performance with the NH3 production of 146.2 µg h-1 mgcat -1 and the Faraday efficiency of 42.5% due to high porosity, abundant oxygen vacancies, and CuN/BN dual active sites. The construction of the n-n heterojunction efficiently modulates the state density of active metal sites toward the Fermi level, facilitating the charge transfer at the interface between the catalyst and reactant intermediates. Additionally, the pathway of NH3 production catalyzed by the Cu3 (HITP)2 @h-BN heterojunction is illustrated by in situ FT-IR spectroscopy and density functional theory calculation. This work presents an alternative approach to design advanced electrocatalysts based on conductive MOFs.

4.
Adv Sci (Weinh) ; 10(8): e2205786, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36683249

RESUMO

A defect-rich 2D p-n heterojunction, Cox Ni3- x (HITP)2 /BNSs-P (HITP: 2,3,6,7,10,11-hexaiminotriphenylene), is constructed using a semiconductive metal-organic framework (MOF) and boron nanosheets (BNSs) by in situ solution plasma modification. The heterojunction is an effective catalyst for the electrocatalytic nitrogen reduction reaction (eNRR) under ambient conditions. Interface engineering and plasma-assisted defects on the p-n Cox Ni3-x (HITP)2 /BNSs-P heterojunction led to the formation of both Co-N3 and B…O dual-active sites. As a result, Cox Ni3-x (HITP)2 /BNSs-P has a high NH3 yield of 128.26 ± 2.27 µg h-1 mgcat. -1 and a Faradaic efficiency of 52.92 ± 1.83% in 0.1 m HCl solution. The catalytic mechanism for the eNRR is also studied by in situ FTIR spectra and DFT calculations. A Cox Ni3- x (HITP)2 /BNSs-P-based Zn-N2 battery achieved an unprecedented power output with a peak power density of 5.40 mW cm-2 and an energy density of 240 mA h gzn -1 in 0.1 m HCl. This study establishes an efficient strategy for the rational design, using defect and interfacial engineering, of advanced eNRR catalysts for ammonia synthesis under ambient conditions.

5.
J Colloid Interface Sci ; 631(Pt B): 101-113, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36399803

RESUMO

To obtain excellent electrocatalysts for improving H2O2 yield and selectivity, we formulated a novel method for embedding cobalt catalytic active sites in porous two-dimensional nitrogen-doped carbon network (CNy) network and employed them as excellent two-electron oxygen reduction reaction (2e--ORR) electrocatalysts. The polymeric cobalt-based metal-organic framework (polyCo-MOF) and melamine-cyanuric acid-complex (MCA) hybrid (denoted as polyCo-MOF@MCA) was used as a precursor for preparing a series of electrocatalysts comprising multiple active sites such as metallic Co, CoOx, or Co-N, which are homogeneously embedded in the porous two-dimensional CNy network through pyrolysis at high temperatures (600 °C, 700 °C, and 800 °C) under N2 atmosphere. The obtained CoOx/Co@CNy,700 hybrid by pyrolyzing polyCo-MOF@MCA at 700 °C displayed remarkably high H2O2 production and large selectivity in an alkaline solution. The possible catalytic mechanism of CoOx/Co@CNy,700 toward 2e--ORR was identified by determining the catalytic kinetics and control experiments. The cathode assembled with the CoOx/Co@CNy,700 hybrid showed the maximum H2O2 production of 405 mmol L-1gcat.-1h-1 with a high Faradaic efficiency of 88.9 % at 0.65 V. The present work demonstrated a novel strategy for identifying excellent electrocatalysts with homogeneously dispersed multiple active sites and high production and selectivity for H2O2 synthesis, extending the applications of porous organic frameworks to the field of clean energy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA