Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(23): e2405555121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38805268

RESUMO

The dimeric nuclear factor kappa B (NF-κB) transcription factors (TFs) regulate gene expression by binding to a variety of κB DNA elements with conserved G:C-rich flanking sequences enclosing a degenerate central region. Toward defining mechanistic principles of affinity regulated by degeneracy, we observed an unusual dependence of the affinity of RelA on the identity of the central base pair, which appears to be noncontacted in the complex crystal structures. The affinity of κB sites with A or T at the central position is ~10-fold higher than with G or C. The crystal structures of neither the complexes nor the free κB DNAs could explain the differences in affinity. Interestingly, differential dynamics of several residues were revealed in molecular dynamics simulation studies, where simulation replicates totaling 148 µs were performed on NF-κB:DNA complexes and free κB DNAs. Notably, Arg187 and Arg124 exhibited selectivity in transient interactions that orchestrated a complex interplay among several DNA-interacting residues in the central region. Binding and simulation studies with mutants supported these observations of transient interactions dictating specificity. In combination with published reports, this work provides insights into the nuanced mechanisms governing the discriminatory binding of NF-κB family TFs to κB DNA elements and sheds light on cancer pathogenesis of cRel, a close homolog of RelA.


Assuntos
DNA , Simulação de Dinâmica Molecular , NF-kappa B , Ligação Proteica , DNA/metabolismo , Humanos , NF-kappa B/metabolismo , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelA/genética , Sítios de Ligação , Cristalografia por Raios X
2.
Nat Commun ; 15(1): 239, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172138

RESUMO

Effective and easy regulation of hydrogel surface properties without changing the overall chemical composition is important for their diverse applications but remains challenging to achieve. We report a generalizable strategy to reconfigure hydrogel surface networks based on hydrogel-substrate interface dynamics for manipulation of hydrogel surface wettability and bioadhesion. We show that the grafting of hydrophobic yet flexible polymeric chains on mold substrates can significantly elevate the content of hydrophobic polymer backbones and reduce the presence of polar groups in hydrogel surface networks, thereby transforming the otherwise hydrophilic hydrogel surface into a hydrophobic surface. Experimental results show that the grafted highly dynamic hydrophobic chains achieved with optimal grafting density, chain length, and chain structure are critical for such substantial hydrogel surface network reconfiguration. Molecular dynamics simulations further reveal the atomistic details of the hydrogel network reconfiguration induced by the dynamic interface interactions. The hydrogels prepared using our strategy show substantially enhanced bioadhesion and transdermal delivery compared with the hydrogels of the same chemical composition but fabricated via the conventional method. Our findings provide important insights into the dynamic hydrogel-substrate interactions and are instrumental to the preparation of hydrogels with custom surface properties.

3.
J Med Syst ; 47(1): 125, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37999899

RESUMO

OBJECTIVES: To evaluate the effectiveness of four large language models (LLMs) (Claude, Bard, ChatGPT4, and New Bing) that have large user bases and significant social attention, in the context of medical consultation and patient education in urolithiasis. MATERIALS AND METHODS: In this study, we developed a questionnaire consisting of 21 questions and 2 clinical scenarios related to urolithiasis. Subsequently, clinical consultations were simulated for each of the four models to assess their responses to the questions. Urolithiasis experts then evaluated the model responses in terms of accuracy, comprehensiveness, ease of understanding, human care, and clinical case analysis ability based on a predesigned 5-point Likert scale. Visualization and statistical analyses were then employed to compare the four models and evaluate their performance. RESULTS: All models yielded satisfying performance, except for Bard, who failed to provide a valid response to Question 13. Claude consistently scored the highest in all dimensions compared with the other three models. ChatGPT4 ranked second in accuracy, with a relatively stable output across multiple tests, but shortcomings were observed in empathy and human caring. Bard exhibited the lowest accuracy and overall performance. Claude and ChatGPT4 both had a high capacity to analyze clinical cases of urolithiasis. Overall, Claude emerged as the best performer in urolithiasis consultations and education. CONCLUSION: Claude demonstrated superior performance compared with the other three in urolithiasis consultation and education. This study highlights the remarkable potential of LLMs in medical health consultations and patient education, although professional review, further evaluation, and modifications are still required.


Assuntos
Educação de Pacientes como Assunto , Urolitíase , Humanos , Escolaridade , Idioma , Encaminhamento e Consulta
4.
Aging (Albany NY) ; 15(20): 11268-11285, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37877967

RESUMO

Type-A aortic dissection (TAAD) is common life-threatening cardiovascular diseases with high-morbidity and mortality but the concrete etiology of disease remains unclear, which might disturb or delay the early diagnosis for TAAD. Anoikis is a special form of programmed cell-death (PCD) induced by detachment of anchorage-dependent cells from the extracellular matrix (ECM) or neighboring cells, and has been widely applied to identify anoikis-related biomarkers for the prediction and prognosis in oncological fields. However, the specific roles of anoikis-related genes (ARGs) in TAAD remain unclear. In this study, we first identified and validated eight diagnostic ARGs for TAAD based on multiple RNA-sequence datasets, including CHEK2, HIF1A, HK2, HMGA1, SERPINA1, PTPN1, SLC2A1 and VEGFA. The comprehensive functional annotation was evaluated by the integrated functional enrichments analysis. We identified the activation of inflammatory-related pathways, metabolic reprogramming and angiogenesis, and the inhibition of cardiovascular development pathways in TAAD. Immune cell infiltration (ICI) analysis further demonstrated that innate immune-cells were more dominant than adaptive immune-cells in TAAD tissues, especially in macrophages, monocytes, activated-DC, NKT cells and CD56+dim NK cells. The cellular landscape was further validated by single-cell RNA sequence technology with significant associations with anoikis in TAAD patients. Four vital ARGs (HIF1A, HMGA1, SERPINA1 and VEGFA) were ultimately identified along with the changes of differentiation trajectory, and major expressions were conformably concentrated on Macro1-3, Mono1-2 and Mono4 subtypes. These findings provide a promising diagnostic biomarker for the accurately diagnosing the disease and would be helpful to further explore the potential pathogenesis with anoikis process for TAAD.


Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Humanos , Anoikis/genética , Aneurisma da Aorta Torácica/genética , Proteína HMGA1a , Biomarcadores , Análise de Célula Única
5.
J Cell Mol Med ; 28(5): e17971, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37755125

RESUMO

Endometrial cancer (EC), a widely occurring cancer in the uterus, is among the top four most frequent malignancies in women. To improve approaches for combating this disease, it is essential to gain a more comprehensive comprehension of the intricate causes of EC. Accumulating evidence highlight the essential role of long non-coding RNA (LncRNA) in EC progression, while its biological and mechanical function has not been fully revealed. In this study, a LncRNA microarray analysis was performed using four pairs of paclitaxel (PTX) resistant EC cells, FGD5-AS1 was identified as a significantly upregulated gene. Biologically, it was found that FGD5-AS1 enhances chemoresistance of EC cells to PTX treatment and blocking immune escape via PD-1/PD-L1 checkpoint. Furthermore, FGD5-AS1 exerted an oncogene role in EC cells via promoting cell proliferation and migration. Mechanically, METTL3 could upregulate FGD5-AS1 expression via N6-methyladenosine (m6A) modification. The biological roles of METTL3 were exerted via modulating FGD5-AS1 expression in EC. Collectively, our research has shed light on the involvement of the METTL3/FGD5-AS1 axis in the development of PTX resistance in EC. This finding offers a new avenue for further exploration of the underlying mechanisms of chemoresistance in EC and provides valuable insights for the development of potential therapeutic targets in the treatment of EC.

6.
Front Oncol ; 13: 1210673, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37546397

RESUMO

The immune checkpoint inhibitor (ICI) is a promising strategy for treating cancer. However, the efficiency of ICI monotherapy is limited, which could be mainly attributed to the tumor microenvironment of the "cold" tumor. Prostate cancer, a type of "cold" cancer, is the most common cancer affecting men's health. Radiotherapy is regarded as one of the most effective prostate cancer treatments. In the era of immune therapy, the enhanced antigen presentation and immune cell infiltration caused by radiotherapy might boost the therapeutic efficacy of ICI. Here, the rationale of radiotherapy combined with ICI was reviewed. Also, the scheme of radiotherapy combined with immune checkpoint blockades was suggested as a potential option to improve the outcome of patients with prostate cancer.

7.
J Integr Plant Biol ; 65(8): 1874-1889, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37096648

RESUMO

Inorganic phosphate (Pi) availability is an important factor which affects the growth and yield of crops, thus an appropriate and effective response to Pi fluctuation is critical. However, how crops orchestrate Pi signaling and growth under Pi starvation conditions to optimize the growth defense tradeoff remains unclear. Here we show that a Pi starvation-induced transcription factor NIGT1 (NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR 1) controls plant growth and prevents a hyper-response to Pi starvation by directly repressing the expression of growth-related and Pi-signaling genes to achieve a balance between growth and response under a varying Pi environment. NIGT1 directly binds to the promoters of Pi starvation signaling marker genes, like IPS1, miR827, and SPX2, under Pi-deficient conditions to mitigate the Pi-starvation responsive (PSR). It also directly represses the expression of vacuolar Pi efflux transporter genes VPE1/2 to regulate plant Pi homeostasis. We further demonstrate that NIGT1 constrains shoot growth by repressing the expression of growth-related regulatory genes, including brassinolide signal transduction master regulator BZR1, cell division regulator CYCB1;1, and DNA replication regulator PSF3. Our findings reveal the function of NIGT1 in orchestrating plant growth and Pi starvation signaling, and also provide evidence that NIGT1 acts as a safeguard to avoid hyper-response during Pi starvation stress in rice.


Assuntos
Oryza , Fosfatos , Oryza/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transporte Biológico , Transdução de Sinais/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo
8.
Elife ; 122023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36779700

RESUMO

The mammalian NF-κB p52:p52 homodimer together with its cofactor Bcl3 activates transcription of κB sites with a central G/C base pair (bp), while it is inactive toward κB sites with a central A/T bp. To understand the molecular basis for this unique property of p52, we have determined the crystal structures of recombinant human p52 protein in complex with a P-selectin(PSel)-κB DNA (5'-GGGGTGACCCC-3') (central bp is underlined) and variants changing the central bp to A/T or swapping the flanking bp. The structures reveal a nearly two-fold widened minor groove in the central region of the DNA as compared to all other currently available NF-κB-DNA complex structures, which have a central A/T bp. Microsecond molecular dynamics (MD) simulations of free DNAs and p52 bound complexes reveal that free DNAs exhibit distinct preferred conformations, and p52:p52 homodimer induces the least amount of DNA conformational changes when bound to the more transcriptionally active natural G/C-centric PSel-κB, but adopts closed conformation when bound to the mutant A/T and swap DNAs due to their narrowed minor grooves. Our binding assays further demonstrate that the fast kinetics favored by entropy is correlated with higher transcriptional activity. Overall, our studies have revealed a novel conformation for κB DNA in complex with NF-κB and pinpoint the importance of binding kinetics, dictated by DNA conformational and dynamic states, in controlling transcriptional activation for NF-κB.


Assuntos
Subunidade p52 de NF-kappa B , NF-kappa B , Animais , Humanos , DNA/metabolismo , Mamíferos/metabolismo , NF-kappa B/metabolismo , Subunidade p52 de NF-kappa B/química , Ativação Transcricional , Multimerização Proteica
9.
Front Cell Dev Biol ; 10: 1073688, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531956

RESUMO

Stomach adenocarcinoma (STAD) is always characterized by high mortality and poor prognosis with drug resistance and recrudescence due to individual genetic heterogeneity. Adenosine-to-Inosine RNA editing (ATIRE) has been reported associated with multiple tumors but the potential connection between ATIRE-related signatures and STAD remains unclear. In this study, we comprehensively elevated the genetic characteristics of ATIRE in STAD patients and first screened five vital survival-related ATIRE sites to identify a novel ATIRE-Risk score. Based on the risk scores, we further divided the patients into two different subtypes with diverse clinical characteristics and immune landscapes including immune cell infiltration (ICI), tumor microenvironment (TME), and immune checkpoint expression analysis. The low-risk subgroups, associated with better survival prognosis, were characterized by activated immune-cells, higher immune scores in TME, and down-expression of immunotherapy checkpoints. Moreover, different expressional genes (DEGs) between the above subtypes were further identified and the activation of immune-related pathways were found in low-risk patients. The stratified survival analysis further indicated patients with low-risk and high-tumor mutation burden (TMB) exhibited the best prognosis outcomes, implying the role of TMB and ATIRE-Risk scores was synergistic for the prognosis of STAD. Interestingly, anti-tumor chemotherapeutic drugs all exhibited lower IC50 values in low-risk subgroups, suggesting these patients might obtain a better curative response from the combined chemotherapy of STAD. Finally, combined with classical clinical features and ATIRE-Risk scores, we successfully established a promising nomogram system to accurately predict the 1/3/5-years survival ratio of STAD and this model was also estimated with high diagnostic efficiency and stable C-index with calibration curves. These significant ATIRE sites are promising to be further explored and might serve as a novel therapeutic target for STAD treatment.

10.
PeerJ ; 10: e14087, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213501

RESUMO

Background: DNA binding with one finger (Dof) proteins are plant-specific transcription factor (TF) that plays a significant role in various biological processes such as plant growth and development, hormone regulation, and resistance to abiotic stress. The Dof genes have been identified and reported in multiple plants, but so far, the whole genome identification and analysis of Dof transcription factors in blueberry (Vaccinium corymbosum L.) have not been reported yet. Methods: Using the Vaccinium genome, we have identified 51 VcDof genes in blueberry. We have further analyzed their physicochemical properties, phylogenetic relationships, gene structure, collinear analysis, selective evolutionary pressure, cis-acting promoter elements, and tissue and abiotic stress expression patterns. Results: Fifty-one VcDof genes were divided into eight subfamilies, and the genes in each subfamily contained similar gene structure and motif ordering. A total of 24 pairs of colinear genes were screened; VcDof genes expanded mainly due to whole-genome duplication, which was subjected to strong purifying selection pressure during the evolution. The promoter of VcDof genes contains three types of cis-acting elements for plant growth and development, phytohormone and stress defense responsiveness. Expression profiles of VcDof genes in different tissues and fruit developmental stages of blueberry indicated that VcDof2 and VcDof45 might play a specific role in anthesis and fruit growth and development. Expression profiles of VcDof genes in different stress indicated that VcDof1, VcDof11, and VcDof15 were highly sensitive to abiotic stress. This study provides a theoretical basis for further clarifying the biological function of Dof genes in blueberry.


Assuntos
Mirtilos Azuis (Planta) , Fatores de Transcrição , Fatores de Transcrição/genética , Filogenia , Mirtilos Azuis (Planta)/genética , Sequência Conservada/genética , Família Multigênica/genética
11.
Adv Sci (Weinh) ; 9(31): e2203890, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36109187

RESUMO

Achieving robust underwater adhesion by bioadhesives remains a challenge due to interfacial water. Herein a coacervate-to-hydrogel strategy to enhance interfacial water repulsion and bulk adhesion of bioadhesives is reported. The polyethyleneimine/thioctic acid (PEI/TA) coacervate is deposited onto underwater substrates, which can effectively repel interfacial water and completely spread into substrate surface irregularities due to its liquid and water-immiscible nature. The physical interactions between coacervate and substrate can further enhance interfacial adhesion. Furthermore, driven by the spontaneous hydrophobic aggregation of TA molecules and strong electrostatic interaction between PEI and TA, the coacervate can turn into a hydrogel in situ within minutes without additional stimuli to develop enhanced matrix cohesion and robust bulk adhesion on diverse underwater substrates. Molecular dynamics simulations further reveal atomistic details of the formation and wet adhesion of the PEI/TA coacervate via multimode physical interactions. Lastly, it is demonstrated that the PEI/TA coacervate-derived hydrogel can effectively repel blood and therefore efficiently deliver the carried growth factors at wound sites, thereby enhancing wound healing in an animal model. The advantages of the PEI/TA coacervate-derived hydrogel including body fluid-immiscibility, strong underwater adhesion, adaptability to fit irregular target sites, and excellent biocompatibility make it a promising bioadhesive for diverse biomedical applications.


Assuntos
Hidrogéis , Água , Animais , Hidrogéis/química , Água/química , Cicatrização , Interações Hidrofóbicas e Hidrofílicas
12.
Food Chem ; 393: 133394, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35688087

RESUMO

Recent developments of hot-extrusion 3D printing (HE-3DP) have made it possible to manipulate starch digestibility. This work investigated the regulating mechanism of starch-catechin (EC) interactions on rice starch digestibility during HE-3DP by using modern analytical techniques and computational models. The results showed that the HE-3DP processing with starch-EC interactions could significantly decrease the starch digestibility (p < 0.05) due to the formation of ordered structures including short-range ordered structure, nano-aggregates and V-type crystalline structure. Meanwhile, molecular dynamics simulations were performed to reveal the mechanism of EC as an enzyme inhibitor to enhance the resistant starch contents of rice starch to 46.1%. Results showed that EC could loosely attach to starch chains, thereby facilitating binding to Trp59 of pancreatic α-amylase and preventing starch from binding to its active pocket. These findings provide useful structural information for EC to reduce starch digestibility in the HE-3DP environment.


Assuntos
Catequina , Oryza , Simulação por Computador , Digestão , Oryza/química , Impressão Tridimensional , Amido/química
13.
Front Genet ; 13: 828456, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719379

RESUMO

Endometrial cancer (EC) is the gynecological tumor with the highest incidence. In recent years, it has been proved that necroptosis is a method of cell death related to EC. However, the expression of necroptosis-related miRNA in EC and its correlation with prognosis still ill-defined. Use the Cancer Genome Atlas (TCGA) cohort to obtain prognostic data and related clinical data for ECs and normal endometrium tissues. In this study, we identified three necroptotic regulatory miRNAs that are necroptosis-related and survival-related miRNAs (DENSMs) between normal endometrium tissues and EC from 13 necroptosis-related miRNAs. The three DENSMs signature was built to develop prognostic model and classified all EC patients into a high or low risk group. EC patients in the low-risk group showed significantly higher survival possibilities than those in the high-risk group (p = 0.0242), and the risk score was found to be an independent prognosis factor for predicting the OS of EC patients (p = 0.0254) in multivariate Cox regression. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed dephosphorylation, microtubule, protein serine/threonine kinase activity, PI3K-Akt signaling pathway and MAPK signaling pathway are closely related to it. In conclusion, the risk prediction model based on necroptosis-related miRNAs can effectively predict the prognosis of EC patients.

14.
Int J Biol Macromol ; 212: 43-53, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35597377

RESUMO

Digestibility and retrogradation properties of starch are important for the nutrition and quality of starch-based foods. In this study, a new idea on the synchronous delay the starch digestion and retrogradation was proposed, and the regulation mechanism was explored from perspectives of structural evolution using 13C NMR, XRD and SAXS techniques as well as the molecular dynamics simulations. Results showed that the chestnut starch treated with hot extrusion and 8% catechins (HE-8% CA)## could reach highest anti-retrogradation rate (AR 76.63%) and lowest rapidly digestible starch content (RDS 64.55%) at day 24. The starch digestion was slowed down by increasing single/double helix, V-type crystallinity and compactness of aggregates, while retrogradation process was suppressed by inhibiting the packing of short-range ordered structure into long-range ordered structure. The hydrogen bonding and van der Waals forces were the main driving force for the interactions between flavonoid polyphenols and starch molecules. Overall, this study is instructive for further investigations on the synchronous modulation of functional properties of starch.


Assuntos
Digestão , Amido , Espalhamento a Baixo Ângulo , Amido/química , Difração de Raios X
15.
Water Sci Technol ; 85(5): 1454-1469, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35290225

RESUMO

For typical wastewater treatment processes of urban sewage, plants are often noneffective to improve water qualities of lightly polluted domestic sewage, and urban constructed water quality treatment (WQT) wetlands designed with engineering landscape methods are utilized to optimize both water qualities and landscape values in recent years. The research determines the effects of two typical ecological engineering landscaping projects of urban constructed WQT wetlands by analysing their effects of wastewater quality improvements. Differences of water quality indicators (WQI) respectively among different treatment stages of wetlands includes surface flow wetland, vertical flow wetland, floating wetland islands etc., which have been measured and compared. Evaluation of urban constructed WQT wetlands engineering landscaping has been concluded based on comparisons among hydrological indicators and water quality indicators, i.e. pH, DO, NH3-N, CODCr, TP. Removal effects of individual indicators, includes NH3-N, CODCr and TP during different treatment stages have been quantitatively analysed. In accordance with quantitative analysis, benefits and deficiencies of practical landscape design of urban constructed WQT wetlands are concluded. By adapting proper principles in engineering landscaping, environmental and economic benefits can be achieved to create sustainable landscapes of urban constructed WQT wetlands.


Assuntos
Purificação da Água , Áreas Alagadas , China , Melhoria de Qualidade , Qualidade da Água
16.
Sci Total Environ ; 823: 153714, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35143790

RESUMO

Bisphenol AF (BPAF), an endocrine-disrupting chemical, has been detected in various environmental media because of its wide industrial applications. Meanwhile, substances that are known to be toxic to the reproductive system have been observed to interfere with the development of the offspring following parental exposure. This study was aimed at determining the gender-dependent intergenerational effects of BPAF on offspring development following either paternal or maternal exposure of adult zebrafish to an environmental concentration of BPAF. Four-month-old zebrafish (F0) were exposed to 10 µg/L of BPAF for 28 days, the developmental endpoints of F1 embryos were then tested without further treatment with BPAF. The results show that paternal BPAF exposure decreased the hatching rate, increased mortality, and shortened the body lengths of F1 larval offspring. In addition, it changed DNA and m6A RNA methylation gene expression levels in F0 testes and F1 larvae. Although maternal exposure increased mortality and enhanced antioxidant enzyme activities in F1 larvae, only DNA methylation gene expression was altered in F0 ovaries and F1 larvae. In addition, a short term BPAF exposure of zebrafish embryos from 4 h post-fertilization (hpf) until 120 hpf similarly impaired the early development of the larvae but only at a level relatively higher than 10 µg/L; and DNA and RNA methylation gene expression was regulated to some extent in BPAF exposure groups. Overall, our results indicate the gender-specific effects of BPAF on offspring development and epigenetic modulations, suggesting a relatively high susceptibility within the exposure window during gametogenesis and early embryonic developmental stages to environmental chemicals.


Assuntos
Compostos Benzidrílicos , Peixe-Zebra , Animais , Compostos Benzidrílicos/metabolismo , Compostos Benzidrílicos/toxicidade , Epigênese Genética , Feminino , Fluorocarbonos , Fenóis/metabolismo , Fenóis/toxicidade
17.
Cell Death Dis ; 12(12): 1129, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34864822

RESUMO

Development of distant metastasis is the main cause of deaths in prostate cancer (PCa) patients. Understanding the mechanism of PCa metastasis is of utmost importance to improve its prognosis. The role of exosomal long noncoding RNA (lncRNA) has been reported not yet fully understood in the metastasis of PCa. Here, we discovered an exosomal lncRNA HOXD-AS1 is upregulated in castration resistant prostate cancer (CRPC) cell line derived exosomes and serum exosomes from metastatic PCa patients, which correlated with its tissue expression. Further investigation confirmed exosomal HOXD-AS1 promotes prostate cancer cell metastasis in vitro and in vivo by inducing metastasis associated phenotype. Mechanistically exosomal HOXD-AS1 was internalized directly by PCa cells, acting as competing endogenous RNA (ceRNA) to modulate the miR-361-5p/FOXM1 axis, therefore promoting PCa metastasis. In addition, we found that serum exosomal HOXD-AS1 was upregulated in metastatic PCa patients, especially those with high volume disease. And it is correlated closely with Gleason Score, distant and nodal metastasis, Prostatic specific antigen (PSA) recurrence free survival, and progression free survival (PFS). This sheds a new insight into the regulation of PCa distant metastasis by exosomal HOXD-AS1 mediated miR-361-5p/FOXM1 axis, and provided a promising liquid biopsy biomarker to guide the detection and treatment of metastatic PCa.


Assuntos
MicroRNAs , Neoplasias da Próstata , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Proteína Forkhead Box M1/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , RNA Longo não Codificante/metabolismo
18.
Bioact Mater ; 6(10): 3125-3135, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33778193

RESUMO

Fibronectin (Fn) is significant to the performance of biomaterials, and the chemistry of biomaterial surface play important roles in Fn adsorption and subsequent cell behavior. However, the "molecular scale" mechanism is still unclear. Herein, we combined experimental strategies with molecular simulations to solve this problem. We prepared self-assembled monolayers with varying chemistries, i.e., SAMs-CH3, SAMs-NH2, SAMs-COOH and SAMs-OH, and characterized Fn adsorption and cell behaviors on them. Next, Monte Carlo method and all-atom molecular dynamics simulations were employed to reveal the orientation/conformation of Fn on surfaces. We found that SAMs-CH3 strongly adsorbed Fn via hydrophobic interactions, but show poor bioactivity as the low exposure of RGD/PHSRN motifs and the deformation of Fn. SAMs-NH2 and SAMs-COOH could adsorb Fn efficiently via vdW interactions, electrostatic interactions, hydrogen bonds and salt bridges. Fn exhibited excellent bioactivity for cell adhesion, proliferation and osteogenic differentiation as high exposure of bioactive motifs on SAMs-NH2, or as the activation of other inferior cell-binding motifs on SAMs-COOH. SAMs-OH showed poor Fn adsorption as the water film. However, the adsorbed Fn displayed non-negligible bioactivity due to high exposure of PHSRN motif and large degree of protein flexibility. We believe that the revealed mechanism presents great potential to rationally design Fn-activating biomaterials.

19.
Biomaterials ; 264: 120446, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33069134

RESUMO

Although antimicrobial titanium implants can prevent biomaterial-associated infection (BAI) in orthopedics, they display cytotoxicity and delayed osseointegration. Therefore, versatile implants are desirable for simultaneously inhibiting BAI and promoting osseointegration, especially "statically-versatile" ones with nonessential external stimulations for facilitating applications. Herein, we develop a "statically-versatile" titanium implant by immobilizing an innovative fusion peptide (FP) containing HHC36 antimicrobial sequence and QK angiogenic sequence via sodium borohydride reduction promoted Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC-SB), which shows higher immobilization efficiency than traditional CuAAC with sodium ascorbate reduction (CuAAC-SA). The FP-engineered implant exhibits over 96.8% antimicrobial activity against four types of clinical bacteria (S. aureus, E. coli, P. aeruginosa and methicillin-resistant S. aureus), being stronger than that modified with mixed peptides. This can be mechanistically attributed to the larger bacterial accessible surface area of HHC36 sequence. Notably, the implant can simultaneously enhance cellular proliferation, up-regulate expressions of angiogenesis-related genes/proteins (VEGF and VEGFR-2) of HUVECs and osteogenesis-related genes/proteins (ALP, COL-1, RUNX-2, OPN and OCN) of hBMSCs. In vivo assay with infection and non-infection bone-defect model reveals that the FP-engineered implant can kill 99.63% of S. aureus, and simultaneously promote vascularization and osseointegration. It is believed that this study presents an excellent strategy for developing "statically-versatile" orthopedic implants.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Anti-Infecciosos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Escherichia coli , Osseointegração , Peptídeos/farmacologia , Staphylococcus aureus , Propriedades de Superfície , Titânio/farmacologia
20.
Biol Reprod ; 104(1): 94-105, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33106855

RESUMO

Actinomycin D (ActD) has been considered as one of the most effective and safe chemotherapeutic medications for treating a number of cancers. Although ActD has been used in the treatment of gynecological tumors and pediatric tumors for more than 50 years, the toxic effects of ActD on mammalian oocytes remain unknown. In this study, the influence of ActD on mouse and human oocyte maturation and the possible mechanisms were investigated. Notably, ActD inhibited oocyte maturation and arrested oocytes at the metaphase I (MI) stage in a dose-dependent manner. In addition, ActD arrested oocyte maturation when the oocytes were treated at different successive stages, including the germinal vesicle (GV), germinal vesicle breakdown, and MI stages. In ActD-treated oocytes, disordered chromosome condensation and irregular spindle assembly occurred, resulting in incomplete chromosome segregation and oocytes arresting at the MI phase; these results possibly occurred because ActD triggered the formation of reactive oxygen species, resulting in DNA damage and decreased ATP in mouse GV oocytes. Besides, in vivo treatment with ActD also inhibited mouse oocyte maturation. Similar effects were seen in human oocytes. Collectively, our results indicated that ActD exposure disrupted oocyte maturation by increasing DNA damage, which is a finding that might help with optimizing future methods for female fertility preservation before undergoing chemotherapy.


Assuntos
Segregação de Cromossomos/efeitos dos fármacos , Dactinomicina/farmacologia , Oócitos/efeitos dos fármacos , Oogênese/efeitos dos fármacos , Fuso Acromático/efeitos dos fármacos , Animais , Dano ao DNA/efeitos dos fármacos , Humanos , Técnicas de Maturação in Vitro de Oócitos , Camundongos , Camundongos Endogâmicos ICR , Oócitos/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...