Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood Adv ; 8(2): 309-323, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-37967356

RESUMO

ABSTRACT: Ca2+/calmodulin-dependent protein kinase II γ (CAMKIIγ) has been identified as a potential target for treating cancer. Based on our previous study of berbamine (BBM) as a CAMKIIγ inhibitor, we have synthesized a new BBM derivative termed PA4. Compared with BBM, PA4 showed improved potency and specificity and was more cytotoxic against lymphoma and leukemia than against other types of cancer. In addition to indirectly targeting c-Myc protein stability, we demonstrated that its cytotoxic effects were also mediated via increased reactive oxygen species production in lymphoma cells. PA4 significantly impeded tumor growth in vivo in a xenograft T-cell lymphoma mouse model. Pharmacokinetics studies demonstrated quick absorption into plasma after oral administration, with a maximum concentration of 1680 ± 479 ng/mL at 5.33 ± 2.31 hours. The calculated oral absolute bioavailability was 34.1%. Toxicity assessment of PA4 showed that the therapeutic window used in our experiments was safe for future development. Given its efficacy, safety, and favorable pharmacokinetic profile, PA4 is a potential lead candidate for treating lymphoma.


Assuntos
Antineoplásicos , Benzilisoquinolinas , Leucemia , Linfoma de Células T , Humanos , Camundongos , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Benzilisoquinolinas/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
2.
J Org Chem ; 88(23): 16581-16588, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37976463

RESUMO

An iron-catalyzed efficient C-H amination for the construction of imidazole-fused-ring systems was developed under aerobic conditions. Compared to previous studies, this work exhibited green features. The reaction was conducted in the green solvent anisole, with water as the only byproduct. Four C(sp3)-H bonds were cleaved and three C-N bonds were formed in this transformation. Imidazo[1,5-a]pyridine-, imidazo[5,1-b]oxazole-, imidazo[5,1-b]thiazole-, imidazo[1,5-a]pyrazine-, and imidazo[1,5-a]imidazole-related N-heterocycles were obtained in acceptable-to-excellent yield.

3.
bioRxiv ; 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37873324

RESUMO

Background: The circadian clock exerts temporal control of metabolic pathways to maintain homeostasis, and its disruption leads to the development of obesity and insulin resistance. In adipose tissue, key regulators of clock machinery orchestrate adipogenic processes via the Wnt signaling pathway to impact mature adipocyte development. Methods: Based on the recent finding of chlorhexidine as a new clock activator, we determined its potential anti-adipogenic activities in distinct adipogenic progenitor models. Furthermore, we report the structural optimization of chlorhexidine leading to the discovery of analogs with improved efficacy in inhibiting adipogenesis. Results: In adipogenic progenitors with Per2::dLuc luciferase reporter, Chlorhexidine shortened clock period length with induction of core clock components. Consistent with its clock-activating function, Chlorhexidine robustly suppressed the lineage commitment and maturation of adipogenic mesenchymal precursors, with comparable effect on inhibiting preadipocyte terminal differentiation. Mechanistically, we show that Chlorhexidine induces signaling components of the Wnt pathway resulting in activation of Wnt activity. Via modification of its chemical scaffold, we generated analogs of chlorhexidine that led to the identification of CM002 as a new clock- activating molecule with improved anti-adipogenic activity. Conclusions: Collectively, our findings uncovered the anti-adipogenic functions of a new class of small molecule clock activators. These compounds provide novel chemical probes to dissect clock function in maintaining metabolic homeostasis and may have therapeutic implications in obesity and associated metabolic disorders.

4.
Mol Cell Biol ; 43(10): 500-514, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37724597

RESUMO

The circadian clock is driven by a transcriptional-translational feedback loop, and cryptochrome 2 (CRY2) represses CLOCK/BMAL1-induced transcription activation. Despite the established role of clock in adipogenic regulation, whether the CRY2 repressor activity functions in adipocyte biology remains unclear. Here we identify a critical cysteine residue of CRY2 that mediates interaction with Period 2 (PER2). We further demonstrate that this mechanism is required for repressing circadian clock-controlled Wnt signaling to promote adipogenesis. CRY2 protein is enriched in white adipose depots and robustly induced by adipogenic differentiation. Via site-directed mutagenesis, we identified that a conserved CRY2 cysteine at 432 within the loop interfacing with PER2 mediates heterodimer complex formation that confers transcription repression. C432 mutation disrupted PER2 association without affecting BMAL1 binding, leading to loss of repression of clock transcription activation. In preadipocytes, whereas CRY2 enhanced adipocyte differentiation, the repression-defective C432 mutant suppressed this process. Furthermore, silencing of CRY2 attenuated, while stabilization of CRY2 by KL001 markedly augmented adipocyte maturation. Mechanistically, we show that transcriptional repression of Wnt pathway components underlies CRY2 modulation of adipogenesis. Collectively, our findings elucidate a CRY2-mediated repression mechanism that promotes adipocyte development, and implicate its potential as a clock intervention target for obesity.


Assuntos
Fatores de Transcrição ARNTL , Adipogenia , Fatores de Transcrição ARNTL/metabolismo , Adipogenia/genética , Cisteína , Criptocromos/genética , Criptocromos/metabolismo , Ritmo Circadiano , Proteínas CLOCK
5.
Stem Cell Res Ther ; 14(1): 190, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37525228

RESUMO

BACKGROUND: The circadian clock is an evolutionarily conserved mechanism that exerts pervasive temporal control in stem cell behavior. This time-keeping machinery is required for orchestrating myogenic progenitor properties in regenerative myogenesis that ameliorates muscular dystrophy. Here we report a screening platform to discover circadian clock modulators that promote myogenesis and identify chlorhexidine (CHX) as a clock-activating molecule with pro-myogenic activities. METHODS: A high-throughput molecular docking pipeline was applied to identify compounds with a structural fit for a hydrophobic pocket within the key circadian transcription factor protein, Circadian Locomotor Output Cycles Kaput (CLOCK). These identified molecules were further screened for clock-modulatory activities and functional validations for pro-myogenic properties. RESULTS: CHX was identified as a clock activator that promotes distinct aspects of myogenesis. CHX activated circadian clock that reduced cycling period length and augmented amplitude. This action was mediated by the targeted CLOCK structure via augmented interaction with heterodimer partner Bmal1, leading to enhanced CLOCK/Bmal1-controlled transcription with upregulation of core clock genes. Consistent with its clock-activating function, CHX displayed robust effects on stimulating myogenic differentiation in a clock-dependent manner. In addition, CHX augmented the proliferative and migratory activities of myoblasts. CONCLUSION: Our findings demonstrate the feasibility of a screening platform to discover clock modulators with myogenic regulatory activities. Discovery of CHX as a pro-myogenic molecule could be applicable to promote regenerative capacities in ameliorating dystrophic or degenerative muscle diseases.


Assuntos
Relógios Circadianos , Relógios Circadianos/genética , Clorexidina , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Simulação de Acoplamento Molecular , Desenvolvimento Muscular/genética , Ritmo Circadiano
6.
Endocrinology ; 164(8)2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37327385

RESUMO

The circadian clock machinery exerts transcriptional control to modulate adipogenesis and its disruption leads to the development of obesity. Here, we report that Nobiletin, a circadian clock amplitude-enhancing molecule, displays antiadipogenic properties via activation of Wnt signaling pathway that is dependent on its clock modulation. Nobiletin augmented clock oscillatory amplitude with period lengthening in the adipogenic mesenchymal precursor cells and preadipocytes, accompanied by an induction of Bmal1 and clock components within the negative feedback arm. Consistent with its clock-modulatory activity, Nobiletin strongly inhibited the lineage commitment and terminal differentiation of adipogenic progenitors. Mechanistically, we show that Nobiletin induced the reactivation of Wnt signaling during adipogenesis via transcriptional up-regulation of key components within this pathway. Furthermore, Nobiletin administration in mice markedly reduced adipocyte hypertrophy, leading to a significant loss of fat mass and reduction of body weight. Last, Nobiletin inhibited the differentiation of primary preadipocytes, and this effect was dependent on a functional clock regulation. Collectively, our findings uncover a novel activity of Nobiletin in suppressing adipocyte development in a clock-dependent manner, implicating its potential application in countering obesity and associated metabolic consequences.


Assuntos
Adipogenia , Via de Sinalização Wnt , Animais , Camundongos , Diferenciação Celular , Obesidade
7.
bioRxiv ; 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36993226

RESUMO

The circadian clock is driven by a transcriptional-translational feedback loop, and Cryptochrome 2 (Cry2) represses CLOCK/Bmal1-induced transcription activation. Despite the established role of clock in adipogenic regulation, whether the Cry2 repressor activity functions in adipocyte biology remains unclear. Here we identify a critical cysteine residue of Cry2 that mediates interaction with Per2, and demonstrate that this mechanism is required for clock transcriptional repression that inhibits Wnt signaling to promote adipogenesis. Cry2 protein is enriched in white adipose depots and was robustly induced by adipocyte differentiation. Via site-directed mutagenesis, we identified that a conserved Cry2 Cysteine at 432 within the loop interfacing with Per2 mediates heterodimer complex formation that confers transcription repression. C432 mutation disrupted Per2 association without affecting Bmal1 binding, leading to loss of repression of clock transcription activation. In preadipocytes, whereas Cry2 enhanced adipogenic differentiation, the repression-defective C432 mutant suppressed this process. Furthermore, silencing of Cry2 attenuated, while stabilization of Cry2 by KL001 markedly augmented adipocyte maturation. Mechanistically, we show that transcriptional repression of Wnt pathway components underlies Cry2 modulation of adipogenesis. Collectively, our findings elucidate a Cry2-mediated repression mechanism that promotes adipocyte development, and implicate its potential as a clock intervention target for obesity.

8.
bioRxiv ; 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36798247

RESUMO

The circadian clock machinery exerts transcriptional control to modulate adipogenesis and its disruption leads to the development of obesity. Here we report that Nobiletin, a clock amplitude-enhancing molecule, displays anti-adipogenic properties via activating a clock-controlled Wnt signaling pathway that suppresses adipocyte differentiation. Nobiletin augmented clock oscillation with period length shortening in the adipogenic mesenchymal precursor cells and preadipocytes, accompanied by an induction of Bmal1 and core clock components. Consistent with its circadian clock-modulatory activity, Nobiletin inhibited the lineage commitment and terminal differentiation of adipogenic progenitors. Mechanistically, we show that Nobiletin induced the re-activation of Wnt signaling during adipogenic differentiation via transcriptional up-regulation of key components of this pathway. Furthermore, Nobiletin administration in mice markedly reduced adipocyte hypertrophy, leading to a significant loss of fat mass and body weight reduction. Lastly, Nobiletin inhibited the maturation of primary preadipocytes and this effect was dependent on a functional clock regulation. Collectively, our findings uncover a novel activity of Nobiletin in suppressing adipocyte development, implicating its potential therapeutic application in countering obesity and its associated metabolic consequences.

9.
Dev Biol ; 493: 103-108, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36423673

RESUMO

Drosophila ovary has been one of the most mature and excellent systems for studying the in vivo regulatory mechanisms of stem cell fate determination. It has been well-known that the bone morphogenetic protein (BMP) signaling released by the niche cells promotes the maintenance of germline stem cells (GSCs) through inhibiting the transcription of the bag-of-marbles (bam) gene, which encodes a key factor for GSC differentiation. However, whether Bam is regulated at the post-translational level remains largely unknown. Here we show that the E3 ligase Cullin-2 (Cul2) is involved in modulating Bam ubiquitination, which occurs probably at multiple lysine residues of Bam's C-terminal region. Genetic evidence further supports the notion that Cul2-mediated Bam ubiquitination and turnover are essential for GSC maintenance and proper germline development. Collectively, our data not only uncovers a novel regulatory mechanism by which Bam is controlled at the post-translational level, but also provides new insights into how Cullin family protein determines the differentiation fate of early germ cells.


Assuntos
Drosophila , Ubiquitina-Proteína Ligases , Feminino , Animais , Proteínas Culina/genética , Células Germinativas , Diferenciação Celular/genética
10.
J Mol Cell Biol ; 14(12)2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36581314

RESUMO

The morphological transformation of adipogenic progenitors into mature adipocytes requires dissolution of actin cytoskeleton with loss of myocardin-related transcription factor (MRTF)/serum response factor (SRF) activity. Circadian clock confers temporal control in adipogenic differentiation, while the actin cytoskeleton-MRTF/SRF signaling transduces extracellular physical niche cues. Here, we define a novel circadian transcriptional control involved in actin cytoskeleton-MRTF/SRF signaling cascade that modulates beige fat thermogenic function. Key components of actin dynamic-MRTF/SRF pathway display circadian regulation in beige fat depot. The core clock regulator, brain and muscle arnt-like 1 (Bmal1), exerts direct transcriptional control of genes within the actin dynamic-MRTF/SRF cascade that impacts actin cytoskeleton organization and SRF activity. Employing beige fat-selective gene-targeting models together with pharmacological rescues, we further demonstrate that Bmal1 inhibits beige adipogenesis and thermogenic capacity in vivo via the MRTF/SRF pathway. Selective ablation of Bmal1 induces beigeing with improved glucose homeostasis, whereas its targeted overexpression attenuates thermogenic induction resulting in obesity. Collectively, our findings identify the clock-MRTF/SRF regulatory axis as an inhibitory mechanism of beige fat thermogenic recruitment with significant contribution to systemic metabolic homeostasis.


Assuntos
Adipócitos Bege , Relógios Circadianos , Termogênese , Actinas/metabolismo , Adipócitos Bege/metabolismo , Fatores de Transcrição ARNTL/genética , Relógios Circadianos/genética , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Animais , Camundongos
11.
J Cell Sci ; 135(19)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36093830

RESUMO

The circadian clock is entrained to daily environmental cues. Integrin-linked signaling via actin cytoskeleton dynamics transduces physical niche cues from the extracellular matrix to myocardin-related transcription factor (MRTF)/serum response factor (SRF)-mediated transcription. The actin cytoskeleton organization and SRF-MRTF activity display diurnal oscillations. By interrogating disparate upstream events in the actin cytoskeleton-MRTF-A/SRF signaling cascade, we show that this pathway transduces extracellular niche cues to modulate circadian clock function. Pharmacological inhibition of MRTF-A/SRF by disrupting actin polymerization or blocking the ROCK kinase induced period lengthening with augmented clock amplitude, and genetic loss of function of Srf or Mrtfa mimicked the effects of treatment with actin-depolymerizing agents. In contrast, actin polymerization shortened circadian clock period and attenuated clock amplitude. Moreover, interfering with the cell-matrix interaction through blockade of integrin, inhibition of focal adhesion kinase (FAK, encoded by Ptk2) or attenuating matrix rigidity reduced the period length while enhancing amplitude. Mechanistically, we identified that the core clock repressors Per2, Nr1d1 and Nfil3 are direct transcriptional targets of MRTF-A/SRF in mediating actin dynamics-induced clock response. Collectively, our findings defined an integrin-actin cytoskeleton-MRTF/SRF pathway in linking clock entrainment with extracellular cues that might facilitate cellular adaptation to the physical niche environment.


Assuntos
Relógios Circadianos , Fator de Resposta Sérica , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Relógios Circadianos/genética , Sinais (Psicologia) , Integrinas , Proteínas Nucleares , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Transativadores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
FASEB J ; 34(5): 6613-6627, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32212194

RESUMO

Circadian clock confers temporal control in metabolism, with its disruption leading to the development of insulin resistance. Metabolic substrate utilization in skeletal muscle is coordinated with diurnal nutrient cycles. However, whether the molecular clock is involved in this coordination is largely unknown. Using a myocyte-selective genetic ablation mouse model of the essential clock activator Bmal1, here we identify muscle-intrinsic clock as a sensor of feeding cues to orchestrate skeletal muscle oxidation required for global nutrient flux. Bmal1 in skeletal muscle responds robustly to feeding in vivo and insulin induces its expression. Muscle Bmal1 deficiency impaired the transcriptional control of glucose metabolic pathway, resulting in markedly attenuated glucose utilization and fasting hyperglycemia. Notably, the loss of Bmal1 response to feeding abolished fasting-to-feeding metabolic fuel switch from fatty acids to glucose in skeletal muscle, leading to the activation of energy-sensing pathways for fatty acid oxidation. These altered metabolic substrate oxidations in Bmal1-deficient muscle ultimately depleted circulating lipid levels that prevented hepatic steatosis. Collectively, our findings highlight the key role of the metabolic-sensing function of skeletal muscle clock in partitioning nutrient flux between muscle and liver to maintain whole-body lipid and glucose homeostasis.


Assuntos
Fatores de Transcrição ARNTL/fisiologia , Relógios Circadianos , Glucose/química , Glucose/metabolismo , Homeostase , Fígado/metabolismo , Músculo Esquelético/metabolismo , Animais , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Camundongos , Camundongos Transgênicos
14.
Sci Rep ; 9(1): 4585, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872796

RESUMO

Rev-erbα is a ligand-dependent nuclear receptor and a key repressor of the molecular clock transcription network. Accumulating evidence indicate that the circadian clock machinery governs diverse biological processes in skeletal muscle, including muscle growth, repair and mass maintenance. The physiological function of Rev-erbα in myogenic regulation remains largely unknown. Here we show that Rev-erbα exerts cell-autonomous inhibitory effects on proliferation and differentiation of myogenic precursor cells, and these actions concertedly inhibit muscle regeneration in vivo. Mechanistic studies reveal Rev-erbα direct transcriptional control of two major myogenic mechanisms, proliferative pathway and the Wnt signaling cascade. Consistent with this finding, primary myoblasts lacking Rev-erbα display significantly enhanced proliferative growth and myogenic progression. Furthermore, pharmacological activation of Rev-erbα activity attenuates, whereas its inhibition by an antagonist promotes these processes. Notably, upon muscle injury, the loss-of-function of Rev-erbα in vivo augmented satellite cell proliferative expansion and regenerative progression during regeneration. Collectively, our study identifies Rev-erbα as a novel inhibitory regulator of myogenic progenitor cell properties that suppresses postnatal myogenesis. Pharmacological interventions to dampen Rev-erbα activity may have potential utilities to enhance regenerative capacity in muscle diseases.


Assuntos
Proteínas CLOCK/metabolismo , Regulação da Expressão Gênica , Desenvolvimento Muscular/genética , Receptores Nucleares Órfãos/genética , Animais , Biomarcadores , Proteínas CLOCK/genética , Diferenciação Celular/genética , Proliferação de Células , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares , Regeneração/genética , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Via de Sinalização Wnt
15.
Proc Natl Acad Sci U S A ; 114(50): 13206-13211, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29180412

RESUMO

TGF-ß/BMP (bone morphogenetic protein) signaling pathways play conserved roles in controlling embryonic development, tissue homeostasis, and stem cell regulation. Inhibitory Smads (I-Smads) have been shown to negatively regulate TGF-ß/BMP signaling by primarily targeting the type I receptors for ubiquitination and turnover. However, little is known about how I-Smads access the membrane to execute their functions. Here we show that Dad, the Drosophila I-Smad, associates with the cellular membrane via palmitoylation, thereby targeting the BMP type I receptor for ubiquitination. By performing systematic biochemistry assays, we characterized the specific cysteine (Cys556) essential for Dad palmitoylation and membrane association. Moreover, we demonstrate that dHIP14, a Drosophila palmitoyl acyl-transferase, catalyzes Dad palmitoylation, thereby inhibiting efficient BMP signaling. Thus, our findings uncover a modification of the inhibitory Smads that controls TGF-ß/BMP signaling activity.


Assuntos
Membrana Celular/metabolismo , Proteínas de Drosophila/metabolismo , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Proteínas Smad/metabolismo , Aciltransferases/metabolismo , Animais , Sítios de Ligação , Proteínas Morfogenéticas Ósseas/metabolismo , Drosophila , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Lipoilação , Ligação Proteica , Transporte Proteico , Proteínas Smad/química , Proteínas Smad/genética , Fator de Crescimento Transformador beta/metabolismo
16.
Cell Res ; 25(10): 1152-70, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26403189

RESUMO

Many stem cell populations are tightly regulated by their local microenvironment (niche), which comprises distinct types of stromal cells. However, little is known about mechanisms by which niche subgroups coordinately determine the stem cell fate. Here we identify that Yki, the key Hippo pathway component, is essential for escort cell (EC) function in promoting germline differentiation in Drosophila ovary. We found that Hedgehog (Hh) signals emanating primarily from cap cells support the function of ECs, where Cubitus interruptus (Ci), the Hh signaling effector, acts to inhibit Hippo kinase cascade activity. Mechanistically, we found that Ci competitively interacts with Hpo and impairs the Hpo-Wts signaling complex formation, thereby promoting Yki nuclear localization. The actions of Ci ensure effective Yki signaling to antagonize Sd/Tgi/Vg-mediated default repression in ECs. This study uncovers a mechanism explaining how subgroups of niche cells coordinate to determine the stem cell fate via Hh-Hippo signaling crosstalk, and enhances our understanding of mechanistic regulations of the oncogenic Yki/YAP signaling.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/citologia , Células Germinativas/citologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ovário/citologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Feminino , Proteínas Nucleares/metabolismo , Ovário/crescimento & desenvolvimento , Mapas de Interação de Proteínas , Transativadores/metabolismo , Proteínas de Sinalização YAP
17.
FEBS Lett ; 589(13): 1476-84, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-25937118

RESUMO

The transcription factor estrogen receptor ß (ERß) plays roles in the central nervous, endocrine, cardiovascular, and immune systems. ERß can be SUMOylated. However, the underlying mechanism remains unclear. Here, we show that RSRC1/SRrp53 interacts with ERß and SUMOylation of RSRC1 is required for regulation of PIAS1-mediated ERß SUMOylation. RSRC1 promotes ERß SUMOylation through enhanced interaction between ERß and PIAS1. RSRC1 represses ERß transcriptional activity through regulation of ERß SUMOylation. By establishing RSRC1 as a novel cofactor for SUMOylation, our data provide insight into regulation of ERß SUMOylation and indicate that SUMOylation of one protein can regulate another protein SUMOylation.


Assuntos
Receptor beta de Estrogênio/metabolismo , Proteínas Nucleares/metabolismo , Sumoilação , Transcrição Gênica , Linhagem Celular Tumoral , Receptor beta de Estrogênio/genética , Células HEK293 , Humanos , Immunoblotting , Proteínas Nucleares/genética , Ligação Proteica , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/metabolismo , Mapeamento de Interação de Proteínas , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...