Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 18(7): e2103734, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34825473

RESUMO

Multiresponsive flexile sensors with strain, temperature, humidity, and other sensing abilities serving as real electronic skin (e-skin) have manifested great application potential in flexible electronics, artificial intelligence (AI), and Internet of Things (IoT). Although numerous flexible sensors with sole sensing function have already been reported since the concept of e-skin, that mimics the sensing features of human skin, was proposed about a decade ago, the ones with more sensing capacities as new emergences are urgently demanded. However, highly integrated and highly sensitive flexible sensors with multiresponsive functions are becoming a big thrust for the detection of human body motions, physiological signals (e.g., skin temperature, blood pressure, electrocardiograms (ECG), electromyograms (EMG), sweat, etc.) and environmental stimuli (e.g., light, magnetic field, volatile organic compounds (VOCs)), which are vital to real-time and all-round human health monitoring and management. Herein, this review summarizes the design, manufacturing, and application of multiresponsive flexible sensors and presents the future challenges of fabricating these sensors for the next-generation e-skin and wearable electronics.


Assuntos
Inteligência Artificial , Dispositivos Eletrônicos Vestíveis , Eletrônica , Humanos , Umidade , Suor
2.
Mater Horiz ; 8(4): 1230-1241, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34821916

RESUMO

Traditional devices, including conventional rigid electronics and machines, as well as emerging wearable electronics and soft robotics, almost all have a single mechanical state for particular service purposes. Nonetheless, dynamic materials with interchangeable mechanical states, which enable more diverse and versatile applications, are urgently necessary for intelligent and adaptive application cases in the future electronic and robot fields. Here, we report a gel-like material composed of a crosslinking polymer network impregnated with a phase changing molten liquid, which undergoes an exceptional stiffness transition in response to a thermal stimulus. Vice versa, the material switches from a soft gel state to a rigid solid state with a dramatic stiffness change of 105 times (601 MPa versus 4.5 kPa) benefiting from the liquid-solid phase change of the crystalline polymer once cooled. Such reversibility of the phase and mechanical transition upon thermal stimuli enables the dynamic gel mechanical transformation, demonstrating potential applications in an adhesive thermal interface gasket (TIG) to facilitate thermal transport, a high-temperature warning sensor and an intelligent gripper. Overall, this dynamic gel with a tunable stiffness change paves a new way to design and fabricate adaptive smart materials toward intelligent control of versatile devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...