Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Neuropsychopharmacol Rep ; 44(1): 246-249, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37960997

RESUMO

Vascular endothelial growth factor (VEGF) signaling is known to be involved in the antidepressant-like effects of conventional antidepressants, such as desipramine (DMI), a tricyclic antidepressant, and fluoxetine (FLX), a selective serotonin reuptake inhibitor; however, the precise role of neuronal VEGF signaling in mediating these effects remains unclear. Using mice with excitatory neuron-specific deletion of VEGF and its receptor, fetal liver kinase 1 (Flk-1) in the forebrain, we examined the effects of forebrain excitatory neuron-specific deletion of VEGF or Flk-1 on the antidepressant-like effects of repeated DMI and chronic FLX administration in the forced swim test (FST). Repeated intraperitoneal (i.p.) injections of DMI (10, 10, and 20 mg/kg at 24, 4, and 1 h before the FST, respectively) significantly decreased immobility in control mice; however, this effect was completely blocked in mice with neuron-specific VEGF or Flk-1 deletion. Although chronic treatment with FLX (18 mg/kg/day, i.p.) did not impact immobility in control mice 1 day after the 22nd injection, immobility was significantly reduced 1 day after the preswim and the 23rd FLX injection. However, in mice with neuron-specific Flk-1 deletion, chronic FLX treatment significantly increased immobility in the preswim and failed to produce antidepressant-like effects. Collectively, these findings indicate that neuronal VEGF-Flk-1 signaling contributes to the antidepressant-like actions of conventional antidepressants.


Assuntos
Fluoxetina , Fator A de Crescimento do Endotélio Vascular , Camundongos , Animais , Fluoxetina/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Desipramina/metabolismo , Desipramina/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/farmacologia , Antidepressivos/farmacologia , Neurônios/metabolismo
2.
Neuropsychopharmacology ; 48(9): 1277-1287, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37142667

RESUMO

Alterations in glutamatergic and GABAergic function in the medial prefrontal cortex (mPFC) are prevalent in individuals with major depressive disorder, resulting in impaired synaptic plasticity that compromises the integrity of signal transfer to limbic regions. Scopolamine, a non-selective muscarinic receptor antagonist, produces rapid antidepressant-like effects by targeting M1-type acetylcholine receptors (M1R) on somatostatin (SST) interneurons. So far, these effects have been investigated with relatively short-term manipulations, and long-lasting synaptic mechanisms involved in these responses are still unknown. Here, we generated mice with conditional deletion of M1R (M1f/fSstCre+) only in SST interneurons to determine the role of M1R in modulating long-term GABAergic and glutamatergic plasticity in the mPFC that leads to attenuation of stress-relevant behaviors. We have also investigated whether the molecular and antidepressant-like effects of scopolamine could be mimicked or occluded in male M1f/fSstCre+ mice. M1R deletion in SST-expressing neurons occluded the rapid and sustained antidepressant-like effects of scopolamine, as well as scopolamine-induced increases in c-Fos+/CaMKIIα cells and proteins necessary for glutamatergic and GABAergic function in the mPFC. Importantly, M1R SST deletion resulted in resilience to chronic unpredictable stress in behaviors relevant to coping strategies and motivation, and to a lesser extent, in behaviors relevant to avoidance. Finally, M1R SST deletion also prevented stress-induced impairments in the expression of GABAergic and glutamatergic markers in the mPFC. These findings suggest that the antidepressant-like effects of scopolamine result from modulation of excitatory and inhibitory plasticity via M1R blockade in SST interneurons. This mechanism could represent a promising strategy for antidepressant development.


Assuntos
Transtorno Depressivo Maior , Camundongos , Masculino , Animais , Transtorno Depressivo Maior/tratamento farmacológico , Interneurônios/fisiologia , Antidepressivos/uso terapêutico , Escopolamina/farmacologia , Receptores Colinérgicos/metabolismo , Receptores Colinérgicos/uso terapêutico , Somatostatina/metabolismo , Córtex Pré-Frontal
3.
Anal Methods ; 15(1): 48-55, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36448577

RESUMO

Instrument-free visual quantitative detection in chemical and biochemical analysis is of great significance in practical applications especially in point-of-care testing and in places where resources are limited. In this paper, we report the development of a time-based instrument-free visual quantitative detection method by employing a clock reaction, a type of chemical reaction displaying characteristic clocking behavior. The feasibility of the method was illustrated by the quantitative detection of thrombin in buffer solution using the lapse of time as the readout signal. The linear range of detection was from 1.3 to 43 nM (r2 = 0.990, n = 3) with a LOD of 0.9 nM, which is lower than the physiological concentrations of thrombin in the resting and activated blood, which range from low nanomolar to low micromolar, respectively. This method was also validated by detecting thrombin in the serum and a good recovery of nearly 100 ± 8.0% was obtained. To the best of our knowledge, this work is the first report that uses the characteristic time of a clock reaction as the readout signal in instrument-free colorimetry for quantitative bioanalysis.


Assuntos
Soro , Trombina , Trombina/análise , Soro/química , Testes Imediatos , Colorimetria/métodos
4.
Int J Gen Med ; 15: 3977-3989, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35440872

RESUMO

Purpose: This study was to investigate the efficacy and safety of anlotinib combined with programmed cell death protein 1 (PD-1) blockades for patients with previously treated advanced epithelial ovarian cancer (EOC). Patients and Methods: Present study was designed as a retrospective study, a total of 32 patients with advanced EOC who progressed after at least two lines previously available standard therapy were included in this study. All the patients were administered with anlotinib combined with PD-1 blockades administration. Clinical activity was implemented and analyzed, which was assessed according to the change of target lesion by imaging evidence and all the subjects were followed up regularly. Safety profile were collected and documented during the treatment. Univariate analysis was carried out using log rank test and multivariate analysis were adjusted by Cox regression analysis. Results: The best overall response suggested that partial response was noted in 12 patients, stable disease was observed in 14 patients, progressive disease was found in 6 patients. Therefore, the objective response rate (ORR) of the 32 patients was 37.5% (95% CI: 21.1-56.3%), disease control rate (DCR) of the patients was 81.3% (95% CI: 63.6-92.8%). The median follow-up duration of this study was 17.5 months (follow-up range: 0.9-33.5 months). And the median PFS and OS of the 32-patient cohort was 6.8 months (95% CI: 2.64-10.96) and 18.5 months (95% CI: 14.08-22.92), respectively. The most common treatment-related adverse reactions were fatigue (68.8%), nausea and vomiting (56.3%), hypertension (50.0%) and diarrhea (40.6%). Multivariate Cox regression analysis for PFS indicated that ECOG performance status and FIGO stage were independent factors to predict PFS of patients with previously treated EOC. Conclusion: Anlotinib combined with PD-1 blockades demonstrated promising efficacy and tolerable safety profile for patients with previously treated advanced EOC preliminarily. The conclusion should be confirmed in more patients with advanced EOC subsequently.

5.
Front Nutr ; 9: 945356, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36687704

RESUMO

Introduction: Parkinson's disease is a neurodegenerative disorder involving loss of dopaminergic neurons. Multiple studies implicate the microbiota-gut-brain axis in Parkinson's disease pathophysiology. Ping-wei-san plus Herbal Decoction, a traditional Chinese medicine composition with beneficial effects in Parkinson's disease, may have a complex array of actions. Here we sought to determine whether gut microbiota and metabolic pathways are involved in Ping-wei-san plus herbal therapy for Parkinson's disease and to identify functional pathways to guide research. Methods and results: The model of Parkinson's disease were induced with the rotenone. The Ping-wei-san plus group received the PWP herbal decoction for 90 days, after which all groups were analyzed experimentally. PWP herbal treatment improved motor behavior and emotional performance, balanced gut microbiota, and benefited dietary metabolism. Tandem Mass Tags mass spectrometry identified many differentially expressed proteins (DEPs) in the substantia nigra and duodenum in the PWP group, and these DEPs were enriched in pathways such as those involving cAMP signaling, glutamatergic synapses, dopaminergic synapses, and ribosome-rich functions in the gut. The PWP group showed increases in recombinant tissue inhibitors of metalloproteinase 3, and nucleotide-binding oligomerization domain, leucine rich repeat, and pyrin domain containing proteins 6 in the substantia nigra and decreased parkin, gasdermin D, recombinant tissue inhibitors of metalloproteinase 3, and nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing proteins 6 in the duodenum. Discussion: In conclusion, this study combined gut microbiota, metabolomics, and proteomics to evaluate the mechanism of action of Ping-wei-san plus on Parkinson's disease and revealed that PWP herbal treatment modulated gut microbiota, altered metabolite biological pathways, and affected functional pathway protein expression in Parkinson's disease mice, resulting in therapeutic effects.

6.
Artigo em Inglês | MEDLINE | ID: mdl-34239596

RESUMO

OBJECTIVE: To explore the potential mechanism of Huanglian Jiedu Decoction (HJD) treatment and prevention of metastatic Cutaneous Melanoma (CM) occurrence and metastasis based on network pharmacological methods and immune infiltration analysis. METHODS: The GEO database was used to obtain metastatic CM disease targets, the TCMSP database and the HERB database were used to obtain HJD action targets, core genes were screened by protein interaction network, and the potential mechanism of HJD in the treatment of metastatic CM was explored by enrichment analysis, prognostic analysis and immune infiltration analysis. RESULTS: HJD treatment of metastatic CM involved 60 targets, enrichment analysis showed that HJD treatment of metastatic CM involved Chemokine signaling pathway, NF-kappa B signaling pathway, and Fluid shear stress and atherosclerosis, etc. Prognostic analysis revealed that HJD had a certain ability to improve the prognosis of metastatic CM patients. Immune infiltration analysis showed that HJD could inhibit the immune cell infiltration of metastatic CM patients by acting on related targets. CONCLUSIONS: Our study identified the potential mechanism of HJD in the treatment of metastatic CM through network pharmacology, and revealed the mechanism of HJD in the prevention of Skin Cutaneous Melanoma metastasis through immune infiltration analysis and prognostic analysis.

7.
R Soc Open Sci ; 8(1): 201805, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33614099

RESUMO

American foulbrood (AFB) disease and chalkbrood disease (CBD) are important bacterial and fungal diseases, respectively, that affect honeybee broods. Exposure to agrochemicals is an abiotic stressor that potentially weakens honeybee colonies. Gut microflora alterations in adult honeybees associated with these biotic and abiotic factors have been investigated. However, microbial compositions in AFB- and CBD-infected larvae and the profile of whole-body microbiota in foraging bees exposed to agrochemicals have not been fully studied. In this study, bacterial and fungal communities in healthy and diseased (AFB/CBD) honeybee larvae were characterized by amplicon sequencing of bacterial 16S rRNA gene and fungal internal transcribed spacer1 region, respectively. The bacterial and fungal communities in disordered foraging bees poisoned by agrochemicals were analysed. Our results revealed that healthy larvae were significantly enriched in bacterial genera Lactobacillus and Stenotrophomonas and the fungal genera Alternaria and Aspergillus. The enrichment of these microorganisms, which had antagonistic activities against the etiologic agents for AFB and CBD, respectively, may protect larvae from potential infection. In disordered foraging bees, the relative abundance of bacterial genus Gilliamella and fungal species Cystofilobasidium macerans were significantly reduced, which may compromise hosts' capacities in nutrient absorption and immune defence against pathogens. Significantly higher frequency of environmentally derived fungi was observed in disordered foraging bees, which reflected the perturbed microbiota communities of hosts. Results from PICRUSt and FUNGuild analyses revealed significant differences in gene clusters of bacterial communities and fungal function profiles. Overall, results of this study provide references for the composition and function of microbial communities in AFB- and CBD-infected honeybee larvae and foraging bees exposed to agrochemicals.

8.
Zhongguo Zhong Yao Za Zhi ; 46(24): 6530-6541, 2021 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-34994146

RESUMO

To reveal the rationality of compatibility of Salviae Miltiorrhizae Radix et Rhizoma(SMRR) and Puerariae Lobatae Radix(PLR) from the perspective of pharmacokinetics, this study established a UPLC-MS/MS method for quantitative determination of PLR flavonoids(3'-hydroxy puerarin, puerarin, puerarin 6″-O-xyloside, 3'-methoxy puerarin, puerarin apioside) and salvianolic acids and tanshinones(salvianolic acid B, cryptotanshinone, and tanshinone Ⅱ_A) in plasma of rats. Rats were given SMRR extract, PLR extract, and SMRR-PLR extract by gavage and then plasma was collected at different time. UPLC separation was performed under the following conditions: Eclipse C_(18) column(2.1 mm×50 mm, 1.8 µm), 0.1% formic acid in water(A)-0.1% formic acid in acetonitrile(B) as mobile phase for gradient elution. Conditions for MS are as below: multiple reaction monitoring(MRM), ESI~(+/-). Comprehensive validation of the UPLC-MS/MS method(specifically, from the aspects of calibration curve, precision, accuracy, repeatability, stability, matrix effect, extract recovery) was performed and the result demonstrated that it complied with quantitative analysis requirements for biological samples. Compared with SMRR extract alone or PLR extract alone, SMRR-PLR extract significantly increased the AUC and C_(max) of PLR flavonoids and tanshinones in rat plasma, suggesting that the combination of SMRR and PLR promoted the absorption of the above components. The underlying mechanism needs to be further studied.


Assuntos
Medicamentos de Ervas Chinesas , Pueraria , Salvia miltiorrhiza , Animais , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/farmacocinética , Raízes de Plantas/química , Pueraria/química , Ratos , Rizoma/química , Salvia miltiorrhiza/química , Espectrometria de Massas em Tandem
9.
Mol Psychiatry ; 26(7): 3277-3291, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33070149

RESUMO

Major depressive disorder (MDD) is associated with alterations of GABAergic interneurons, notably somatostatin (Sst) as well as parvalbumin (Pvalb), in cortical brain areas. In addition, the antidepressant effects of rapid-acting drugs are thought to occur via inhibition of GABA interneurons. However, the impact of these interneuron subtypes in affective behaviors as well as in the effects of rapid-acting antidepressants remains to be determined. Here, we used a Cre-dependent DREADD-chemogenetic approach to determine if inhibition of GABA interneurons in the mPFC of male mice is sufficient to produce antidepressant actions, and conversely if activation of these interneurons blocks the rapid and sustained antidepressant effects of scopolamine, a nonselective acetylcholine muscarinic receptor antagonist. Chemogenetic inhibition of all GABA interneurons (Gad1+), as well as Sst+ and Pvalb+ subtypes in the mPFC produced dose and time-dependent antidepressant effects in the forced swim and novelty suppressed feeding tests, and increased synaptic plasticity. In contrast, stimulation of Gad1, Sst, or Pvalb interneurons in mPFC abolished the effects of scopolamine and prevented scopolamine induction of synaptic plasticity. The results demonstrate that transient inhibition of GABA interneurons promotes synaptic plasticity that underlies rapid antidepressant responses.


Assuntos
Antidepressivos/uso terapêutico , Transtorno Depressivo Maior , Interneurônios/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Ácido gama-Aminobutírico , Animais , Transtorno Depressivo Maior/tratamento farmacológico , Masculino , Camundongos , Parvalbuminas
10.
Neuropsychopharmacology ; 45(10): 1725-1734, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32396921

RESUMO

We previously reported that the serotonergic system is important for the antidepressant-like effects of ketamine, a non-competitive N-methyl-D-aspartate receptor antagonist, which produces rapid and long-lasting antidepressant effects in patients with major depressive disorder (MDD). In particular, selective stimulation of the 5-HT1A receptor in the medial prefrontal cortex (mPFC), as opposed to the somatic 5-HT1A autoreceptor, has been shown to play a critical role in the antidepressant-like actions of ketamine. However, the detailed mechanisms underlying mPFC 5-HT1A receptor-mediated antidepressant-like effects are not fully understood. Here we examined the involvement of the glutamate AMPA receptor and brain-derived neurotrophic factor (BDNF) in the antidepressant-like effects of 5-HT1A receptor activation in the mPFC. The results show that intra-mPFC infusion of the 5-HT1A receptor agonist 8-OH-DPAT induces rapid and long-lasting antidepressant-like effects in the forced swim, novelty-suppressed feeding, female urine sniffing, and chronic unpredictable stress tests. In addition, the results demonstrate that the antidepressant-like effects of intra-mPFC infusion of 8-OH-DPAT are blocked by co-infusion of an AMPA receptor antagonist or an anti-BDNF neutralizing antibody. In addition, mPFC infusion of 8-OH-DPAT increased the phosphorylation of signaling proteins downstream of BDNF, including mTOR, ERK, 4EBP1, and p70S6K. Finally, selective stimulation of the 5-HT1A receptor increased levels of synaptic proteins and synaptic function in the mPFC. Collectively, these results indicate that selective stimulation of 5-HT1A receptor in the mPFC exerts rapid and sustained antidepressant-like effects via activation of AMPA receptor/BDNF/mTOR signaling in mice, which subsequently increase synaptic function in the mPFC, and provide evidence for the 5-HT1A receptor as a target for the treatment of MDD.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Transtorno Depressivo Maior , Animais , Antidepressivos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/tratamento farmacológico , Transtorno Depressivo Maior/tratamento farmacológico , Feminino , Humanos , Camundongos , Córtex Pré-Frontal/metabolismo , Receptor 5-HT1A de Serotonina , Receptores de AMPA
11.
Cancer Med ; 9(14): 5086-5094, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32459060

RESUMO

The objective of this study was to predict the value of lymphocyte subsets in cancer progression. Peripheral blood was obtained from 327 untreated patients with cancer and 158 healthy volunteers. Levels of lymphocyte subsets were determined by flow cytometry. There were decreased levels of natural killer (NK) cells, CD8+ T cells, and naïve CD4+ /CD4+ T cells in untreated patients with cancer compared to those in healthy controls. Inversely, there were elevated levels of the following T-cell percentages in cancer patients compared to those in healthy controls: memory CD4+ /CD4+ , CD8+ T cells, HLA-DR/CD8+ , CD8+ CD38+ /CD8+ , and CD4+ /CD8+ . In addition, there are a decreasing trend in terms of CD4+ T-cell counts and an increase CD8+ HLA-DR/CD8+ T-cell and CD8+ CD38+ /CD8+ T-cell percentages in the advanced stage. An increasing trend with advanced tumor stage and the percentages of CD8+ HLA-DR/CD8+ T cells and CD8+ CD38+ /CD8+ T cells was shown in this study. There are a negative correlation for CD4+ T-cell counts and positive correlation for percentages of CD8+ HLA-DR/CD8+ T cell and CD8+ CD38+ /CD8+ T cells with the lymph node metastasis. In the presence of distant metastatic spread, we observed higher NK-cell counts, CD8+ HLA-DR/CD8+ T-cell percentages, CD8+ CD38+ /CD8+ T-cell percentages, as well as lower CD4+ T-cell counts than those in the absence of distant metastases spread. Abnormal levels of NK cell, CD8+ T cells, memory CD4+ /CD4+ , naïve CD4+ / CD4+ , CD8+ HLA-DR/CD8+ , CD8+ CD38+ /CD8+ , and CD4+ /CD8+ can be a potential blood biomarkers of cancer development. CD4+ T-cell counts and percentages of CD8+ HLA-DR/ CD8+ and CD8+ CD38+ / CD8+ can predict the cancer progression.


Assuntos
Biomarcadores Tumorais/metabolismo , Contagem de Linfócitos/métodos , Linfócitos/metabolismo , Neoplasias/sangue , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Microambiente Tumoral , Adulto Jovem
12.
Eur Neuropsychopharmacol ; 31: 145-151, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31902568

RESUMO

Vascular endothelial growth factor (VEGF, also known as VEGF-A) is a pleiotropic factor which is expressed by neurons, astrocytes and perivascular macrophages, as well as endothelial cells, in the brain. Recently, VEGF signaling has been implicated in learning and memory, and several clinical and preclinical studies demonstrate that VEGF inhibitors induce cognitive impairment. However, the role of endogenous neuronal VEGF signaling in recognition memory remains unclear. Recently, we have developed mice with forebrain excitatory neuron-specific deletion of VEGF or its receptor, fetal liver kinase 1 (Flk-1) by crossing Camk2a-Cre mice with Vegfaflox/flox and Flk-1flox/flox mice, respectively. Using these conditional knockout mice, the present study addressed the influence of forebrain excitatory neuron-specific deletion of VEGF or Flk-1 on recognition memory in the novel object recognition test. The results show that both short-term (2 h) and long-term (24 h) recognition memory are impaired by neuron-specific deletion of either Flk-1 or VEGF. These findings indicate the physiological importance of endogenous neuronal VEGF-Flk-1 signaling in recognition memory. In addition, the current results also suggest that the impairment of neuronal VEGF-Flk-1 signaling can be a cause of anti-VEGF chemotherapy-induced cognitive impairment.


Assuntos
Transtornos da Memória/metabolismo , Memória/fisiologia , Neurônios/metabolismo , Reconhecimento Psicológico/fisiologia , Fator A de Crescimento do Endotélio Vascular/deficiência , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/deficiência , Animais , Masculino , Transtornos da Memória/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
13.
J Clin Invest ; 130(3): 1336-1349, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31743111

RESUMO

A single subanesthetic dose of ketamine, an NMDA receptor (NMDAR) antagonist, produces rapid and sustained antidepressant actions in depressed patients, addressing a major unmet need for the treatment of mood disorders. Ketamine produces a rapid increase in extracellular glutamate and synaptic formation in the prefrontal cortex, but the initial cellular trigger that initiates this increase and ketamine's behavioral actions has not been identified. To address this question, we used a combination of viral shRNA and conditional mutation to produce cell-specific knockdown or deletion of a key NMDAR subunit, GluN2B, implicated in the actions of ketamine. The results demonstrated that the antidepressant actions of ketamine were blocked by GluN2B-NMDAR knockdown on GABA (Gad1) interneurons, as well as subtypes expressing somatostatin (Sst) or parvalbumin (Pvalb), but not glutamate principle neurons in the medial prefrontal cortex (mPFC). Further analysis of GABA subtypes showed that cell-specific knockdown or deletion of GluN2B in Sst interneurons blocked or occluded the antidepressant actions of ketamine and revealed sex-specific differences that are associated with excitatory postsynaptic currents on mPFC principle neurons. These findings demonstrate that GluN2B-NMDARs on GABA interneurons are the initial cellular trigger for the rapid antidepressant actions of ketamine and show sex-specific adaptive mechanisms to GluN2B modulation.


Assuntos
Antidepressivos/farmacologia , Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Ketamina/farmacologia , Caracteres Sexuais , Animais , Feminino , Neurônios GABAérgicos/patologia , Técnicas de Inativação de Genes , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Interneurônios/patologia , Masculino , Camundongos , Camundongos Transgênicos , Parvalbuminas/genética , Parvalbuminas/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Somatostatina/genética , Somatostatina/metabolismo
14.
Math Biosci Eng ; 16(6): 7659-7670, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31698632

RESUMO

Objectives: The purpose of this meta-analysis was to evaluate the efficacy and toxicity profile of apatinib for the treatment of advanced non-small cell lung cancer (NSCLC). Methods: We systematically searched databases for randomized clinical trials published as of November 25, 2017, in which apatinib treatment was compared to placebo or chemotherapy in patients with advanced NSCLC. Two investigators independently assessed the articles and extracted their data. The hazard ratios (HRs) for progression-free survival (PFS), relative risks (RRs) for overall response rates (ORRs), disease control rates (DCRs), and odds ratios (ORs) for main toxicity were analyzed using the RevMan 5.3 software (Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014). Results: Our analysis included 413 patients from 5 clinical studies. The pooled HR for PFS was 0.32 (95% confidence interval (CI) 0.21-0.48; P < 0.00001). The pooled RRs for ORR and DCR were 2.03 (95% CI 1.36-3.01; P = 0.0005) and 1.66 (95% CI 1.07-2.57; P = 0.02), respectively. The pooled OR for main toxicity was 1.34 (95% CI, 0.57-3.17; P = 0.5). Conclusions: Apatinib was a viable treatment alternative for advanced NSCLC, as it offered a clinically meaningful and statistically significant improvement in PFS, ORR, and DCR. Moreover, therapy with apatinib did not significantly increase toxicity.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Piridinas/uso terapêutico , Antineoplásicos/toxicidade , Humanos , Razão de Chances , Intervalo Livre de Progressão , Modelos de Riscos Proporcionais , Piridinas/toxicidade , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento
15.
Biol Psychiatry ; 86(2): 143-152, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30712809

RESUMO

BACKGROUND: Activity-dependent release of brain-derived neurotrophic factor (BDNF) in the medial prefrontal cortex (mPFC) is essential for the rapid and sustained antidepressant actions of ketamine, and a recent study shows a similar requirement for vascular endothelial growth factor (VEGF). Since BDNF is reported to stimulate VEGF expression and/or release in neuroblastoma cells, the present study tested the hypothesis that the actions of BDNF are mediated by VEGF. METHODS: The role of VEGF in the antidepressant behavioral actions of BDNF was tested by intra-mPFC coinfusion of a VEGF neutralizing antibody and by neuron-specific deletion of VEGF. The influence of BDNF on the release of VEGF and the role of VEGF in the neurotrophic actions of BDNF were determined in rat primary cortical neurons. The role of BDNF in the behavioral and neurotrophic actions of VEGF was also determined. RESULTS: The results show that the rapid and sustained antidepressant-like actions of intra-mPFC BDNF are blocked by coinfusion of a VEGF neutralizing antibody, and that neuron-specific mPFC deletion of VEGF blocks the antidepressant-like actions of BDNF. Studies in primary cortical neurons demonstrate that BDNF stimulates the release of VEGF and that BDNF induction of dendrite complexity is blocked by a selective VEGF-fetal liver kinase 1 receptor antagonist. Surprisingly, the results also show reciprocal interactions, indicating that the behavioral and neurotrophic actions of VEGF are dependent on BDNF. CONCLUSIONS: These findings indicate that the antidepressant-like and neurotrophic actions of BDNF require VEGF signaling, but they also demonstrate reciprocal interdependence for BDNF in the actions of VEGF.


Assuntos
Antidepressivos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Nootrópicos/farmacologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Animais , Anticorpos Bloqueadores/farmacologia , Comportamento Animal/efeitos dos fármacos , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Deleção de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microinjeções , Neurônios/efeitos dos fármacos , Córtex Pré-Frontal , Cultura Primária de Células , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
16.
Am J Psychiatry ; 176(5): 388-400, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30606046

RESUMO

OBJECTIVE: The N-methyl-d-aspartate receptor antagonist ketamine produces rapid and sustained antidepressant actions even in patients with treatment-resistant depression. Vascular endothelial growth factor (VEGF) has been implicated in the effects of conventional monoamine-based antidepressants, but the role of VEGF in the rapid antidepressant actions of ketamine remains unclear. The authors examined whether neuronal VEGF signaling in the medial prefrontal cortex (mPFC) mediates the rapid antidepressant actions of ketamine. METHODS: The authors used a combination of approaches, including conditional, neuron-specific knockout of VEGF or its receptor, Flk-1; antibody neutralization; viral-mediated knockdown of Flk-1; and pharmacological inhibitors. Further in vitro and in vivo experiments were performed to examine whether neuronal VEGF signaling was required for the neurotrophic and synaptogenic actions of ketamine that underlie its behavioral actions. RESULTS: The behavioral actions of systemic ketamine are blocked by forebrain excitatory neuron-specific deletion of either VEGF or Flk-1 or by intra-mPFC infusion of a VEGF neutralizing antibody. Moreover, intra-mPFC infusions of VEGF are sufficient to produce rapid ketamine-like behavioral actions, and these effects are blocked by neuron-specific Flk-1 deletion. The results also show that local knockdown of Flk-1 in mPFC excitatory neurons in adulthood blocks the behavioral effects of systemic ketamine. Moreover, inhibition of neuronal VEGF signaling blocks the neurotrophic and synaptogenic effects of ketamine. CONCLUSIONS: Together, these findings indicate that neuronal VEGF-Flk-1 signaling in the mPFC plays an essential role in the antidepressant actions of ketamine.


Assuntos
Antagonistas de Aminoácidos Excitatórios/farmacologia , Ketamina/farmacologia , Neurônios/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/efeitos dos fármacos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/efeitos dos fármacos , Animais , Anticorpos Neutralizantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Técnicas In Vitro , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Córtex Pré-Frontal/metabolismo , Quinazolinas/farmacologia , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
17.
Proc Natl Acad Sci U S A ; 116(1): 297-302, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30559184

RESUMO

Ketamine, a noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist, produces rapid and long-lasting antidepressant effects in major depressive disorder (MDD) patients. (2R,6R)-Hydroxynorketamine [(2R,6R)-HNK], a metabolite of ketamine, is reported to produce rapid antidepressant effects in rodent models without the side effects of ketamine. Importantly, (2R,6R)-HNK does not block NMDA receptors like ketamine, and the molecular signaling mechanisms for (2R,6R)-HNK remain unknown. Here, we examined the involvement of BDNF/TrkB/mechanistic target of rapamycin complex 1 (mTORC1) signaling in the antidepressant actions of (2R,6R)-HNK. Intramedial prefrontal cortex (intra-mPFC) infusion or systemic (2R,6R)-HNK administration induces rapid and long-lasting antidepressant effects in behavioral tests, identifying the mPFC as a key region for the actions of (2R,6R)-HNK. The antidepressant actions of (2R,6R)-HNK are blocked in mice with a knockin of the BDNF Val66Met allele (which blocks the processing and activity-dependent release of BDNF) or by intra-mPFC microinjection of an anti-BDNF neutralizing antibody. Blockade of L-type voltage-dependent Ca2+ channels (VDCCs), required for activity-dependent BDNF release, also blocks the actions of (2R,6R)-HNK. Intra-mPFC infusion of pharmacological inhibitors of TrkB or mTORC1 signaling, which are downstream of BDNF, also block the actions of (2R,6R)-HNK. Moreover, (2R,6R)-HNK increases synaptic function in the mPFC. These findings indicate that activity-dependent BDNF release and downstream TrkB and mTORC1 signaling, which increase synaptic function in the mPFC, are required for the rapid and long-lasting antidepressant effects of (2R,6R)-HNK, supporting the potential use of this metabolite for the treatment of MDD.


Assuntos
Antidepressivos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ketamina/análogos & derivados , Animais , Células Cultivadas , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ketamina/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
18.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 40(5): 660-666, 2018 Oct 30.
Artigo em Chinês | MEDLINE | ID: mdl-30404699

RESUMO

Objective To explore the efficacy and prognostic factors of cetuximab therapy for KRAS or all RAS wild-type(WT)metastatic colorectal cancer(mCRC).Methods We screened mCRC patients receiving at least two cycles of cetuximb and chemotherapy from those with KRAS WT(before November 2013)or all-RAS-WT(after November 2013)in the Department of Medical Oncology,Peking Union Medical College Hospital from November 2007 to December 2016. The relationship between the clinicopathological characteristics and the efficacy was retrospectively analyzed.Results A total of 60 patients were included. For the 34 patients receiving cetuximab as first-line treatment,the objective response rate(ORR)was 55.9%,and the progression-free survival and overall survival(OS)was 10 and 24 months,respectively. All-RAS-WT mCRC had significantly lower risk of progression than those with KRAS-only-WT(P=0.012),and left-sided colorectal cancer had higher ORR than right-sided colon cancer(62.1% vs. 0,P=0.033)during the first-line treatment. The median OS of the eight patients continuing cetuximab beyond first-line progression was 35.0(95%CI:23.6-46.4)months.Conclusions The efficacy of cetuximab for left-sided colorectal cancer was better than for right-sided colon cancer,and patients with all-RAS-WT have lower risk of progression than those with KRAS-only-WT. Patients benefiting from first-line cetuximab and continuing cetuximab beyond progression survive longer.


Assuntos
Cetuximab/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Colorretais/patologia , Intervalo Livre de Doença , Humanos , Mutação , Metástase Neoplásica , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida
19.
Neurosci Lett ; 629: 38-42, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27353512

RESUMO

Genetic variants of AKT1 have been shown to influence brain function of Parkinson's disease (PD) patients, and in this paper our aim is to investigate the association between the three single-nucleotide polymorphisms (rs2498799; rs2494732; rs1130214) and PD in Han Chinese. 413 Han Chinese PD patients and 450 healthy age and gender-matched controls were genotyped using the Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) method. Both the patient and control groups show similar genotype frequencies at the three loci: rs2498799, rs2494732 and rs1130214. We are able to identify a significant difference in the frequencies of genotype (p=0.019) and G allele (OR=0.764, 95% CI=0.587-0.995, p=0.045) both at rs2498799 between the patient and control groups. Furthermore, the association of subjects with GG genotypes versus those with GA+AA genotype remain significant after adjusting for age in the Han Chinese female cohort (OR=0.538, 95%CI=0.345-0.841, p=0.006), which is especially evident in the late-onset cohort (OR=0.521, 95%CI=0.309-0.877, p=0.012). In contrast, allele frequencies at rs2494732 and rs1130214 were similar between patients and controls in all subgroup analyses. These results suggest that polymorphism of AKT1 locus is associated with risk of PD and that the G allele at rs2498799 may decrease the risk of PD in the North-eastern part of Han Chinese female population.


Assuntos
Doença de Parkinson/genética , Proteínas Proto-Oncogênicas c-akt/genética , Povo Asiático , China , Feminino , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
20.
Biol Psychiatry ; 80(1): 12-22, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-26831917

RESUMO

BACKGROUND: The mechanisms underlying stress-induced inflammation that contribute to major depressive disorder are unknown. We examine the role of the adenosine triphosphate (ATP)/purinergic type 2X7 receptor (P2X7R) pathway and the NLRP3 (nucleotide-binding, leucine-rich repeat, pyrin domain containing 3) inflammasome in interleukin (IL)-1ß and depressive behavioral responses to stress. METHODS: The influence of acute restraint stress on extracellular ATP, glutamate, IL-1ß, and tumor necrosis factor alpha in hippocampus was determined by microdialysis, and the influence of acute restraint stress on the NLRP3 inflammasome was determined by western blot analysis. The influence of P2X7R antagonist administration on IL-1ß and tumor necrosis factor alpha and on anxiety and depressive behaviors was determined in the chronic unpredictable stress rodent model. The role of the NLRP3 inflammasome was determined by analysis of Nlrp3 null mice. RESULTS: Acute restraint stress rapidly increased extracellular ATP, an endogenous agonist of P2X7R; the inflammatory cytokine IL-1ß; and the active form of the NLRP3 inflammasome in the hippocampus. Administration of a P2X7R antagonist completely blocked the release of IL-1ß and tumor necrosis factor alpha, another stress-induced cytokine, and activated NLRP3. Moreover, P2X7R antagonist administration reversed the anhedonic and anxiety behaviors caused by chronic unpredictable stress exposure, and deletion of the Nlrp3 gene rendered mice resistant to development of depressive behaviors caused by chronic unpredictable stress. CONCLUSIONS: These findings demonstrate that psychological "stress" is sensed by the innate immune system in the brain via the ATP/P2X7R-NLRP3 inflammasome cascade, and they identify novel therapeutic targets for the treatment of stress-related mood disorders and comorbid illnesses.


Assuntos
Trifosfato de Adenosina/metabolismo , Ansiedade/metabolismo , Comportamento Animal/fisiologia , Depressão/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Estresse Psicológico/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Anedonia/fisiologia , Animais , Ansiedade/etiologia , Ansiedade/imunologia , Depressão/etiologia , Depressão/imunologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Knockout , Agonistas do Receptor Purinérgico P2Y/metabolismo , Antagonistas do Receptor Purinérgico P2Y/metabolismo , Ratos , Ratos Sprague-Dawley , Estresse Psicológico/complicações , Estresse Psicológico/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...