Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
World J Gastrointest Oncol ; 16(2): 414-435, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38425399

RESUMO

BACKGROUND: Aberrant methylation is common during the initiation and progression of colorectal cancer (CRC), and detecting these changes that occur during early adenoma (ADE) formation and CRC progression has clinical value. AIM: To identify potential DNA methylation markers specific to ADE and CRC. METHODS: Here, we performed SeqCap targeted bisulfite sequencing and RNA-seq analysis of colorectal ADE and CRC samples to profile the epigenomic-transcriptomic landscape. RESULTS: Comparing 22 CRC and 25 ADE samples, global methylation was higher in the former, but both showed similar methylation patterns regarding differentially methylated gene positions, chromatin signatures, and repeated elements. High-grade CRC tended to exhibit elevated methylation levels in gene promoter regions compared to those in low-grade CRC. Combined with RNA-seq gene expression data, we identified 14 methylation-regulated differentially expressed genes, of which only AGTR1 and NECAB1 methylation had prognostic significance. CONCLUSION: Our results suggest that genome-wide alterations in DNA methylation occur during the early stages of CRC and demonstrate the methylation signatures associated with colorectal ADEs and CRC, suggesting prognostic biomarkers for CRC.

2.
Environ Sci Pollut Res Int ; 31(9): 13965-13980, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38265591

RESUMO

Di (2-ethyl-hexyl) phthalate (DEHP) mainly enters the human body through the digestive tract, respiratory tract, and skin. At the same time, it has reproductive and developmental toxicity, neurotoxicity, and so on, which can cause the decrease of sperm motility. Asthenospermia is also known as low sperm motility, and the semen quality of men in some areas of China is declining year by year. Interestingly, previous studies have shown that sleep disorders can also lead to asthenospermia. However, the relationship between sleep, DEHP, and asthenospermia is still unclear. Analysis of the National Health and Nutrition Examination Survey (NHANES) population database showed that DEHP was associated with sleep disorders, and subsequent experiments in mice and Drosophila indicated that DEHP exposure had certain effects on sleep and asthenospermia. Furthermore, we analyzed the Comparative Toxicogenomics Database (CTD) to find out the common signaling pathway among the three: hypoxia-inducible factor 1(HIF-1). Then Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) was used to screen out the proteins that DEHP affected the HIF-1 pathway: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), serine/threonine-protein kinase (AKT1), epidermal growth factor receptor (EGFR), and finally Western blot analysis was used to detect the expression levels of the three proteins. Compared with the control group, DEHP decreased the protein expression levels of GAPDH and AKT1 in the HIF-1 pathway, and caused sleep disorders and decreased sperm motility. This study provides preliminary evidence for exploring the mechanism among DEHP, sleep disorders, and asthenospermia.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Transtornos do Sono-Vigília , Humanos , Masculino , Animais , Camundongos , Dietilexilftalato/toxicidade , Análise do Sêmen , Inquéritos Nutricionais , Motilidade dos Espermatozoides , Sono
3.
J Nat Prod ; 87(2): 381-387, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38289330

RESUMO

Tryptoquivalines are highly toxic metabolites initially isolated from the fungus Aspergillus clavatus. The relative and absolute configuration of tryptoquivaline derivates was primarily established by comparison of the chemical shifts, NOE data, and ECD calculations. A de novo determination of the complete relative configuration using NMR spectroscopy was challenging due to multiple spatially separated stereocenters, including one nonprotonated carbon. In this study, we isolated a new tryptoquivaline derivative, 12S-deoxynortryptoquivaline (1), from the marine ascidian-derived fungus Aspergillus clavatus AS-107. The correct assignment of the relative configuration of 1 was accomplished using anisotropic NMR spectroscopy, while the absolute configuration was determined by comparing calculated and experimental ECD spectra. This case study highlights the effectiveness of anisotropic NMR parameters over isotropic NMR parameters in determining the relative configuration of complex natural products without the need for crystallization.


Assuntos
Urocordados , Animais , Espectroscopia de Ressonância Magnética/métodos , Aspergillus/química , Fungos , Estrutura Molecular
4.
Nucleic Acids Res ; 51(17): e90, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37562941

RESUMO

The detection of nucleic acid sequences in parallel with the discrimination of single nucleotide variations (SNVs) is critical for research and clinical applications. A few limitations make the detection technically challenging, such as too small variation in probe-hybridization energy caused by SNVs, the non-specific amplification of false nucleic acid fragments and the few options of dyes limited by spectral overlaps. To circumvent these limitations, we developed a single-molecule nucleic acid detection assay without amplification or fluorescence termed THREF (hybridization-induced tandem DNA hairpin refolding failure) based on multiplexed magnetic tweezers. THREF can detect DNA and RNA sequences at femtomolar concentrations within 30 min, monitor multiple probes in parallel, quantify the expression level of miR-122 in patient tissues, discriminate SNVs including the hard-to-detect G-U or T-G wobble mutations and reuse the probes to save the cost. In our demonstrative detections using mock clinic samples, we profiled the let-7 family microRNAs in serum and genotyped SARS-CoV-2 strains in saliva. Overall, the THREF assay can discriminate SNVs with the advantages of high sensitivity, ultra-specificity, multiplexing, reusability, sample hands-free and robustness.


Assuntos
Técnicas Genéticas , Polimorfismo Genético , RNA , Humanos , COVID-19/diagnóstico , DNA/genética , Mutação , SARS-CoV-2/genética , RNA/análise
5.
Biochem Biophys Res Commun ; 674: 170-182, 2023 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-37423037

RESUMO

Glioblastoma multiforme (GBM) is the most common and aggressive brain tumor with a poor prognosis. The growth of GBM cells depends on the core transcriptional apparatus, thus rendering RNA polymerase (RNA pol) complex as a candidate therapeutic target. The RNA pol II subunit B (POLR2B) gene encodes the second largest subunit of the RNA pol II (RPB2); however, its genomic status and function in GBM remain unclear. Certain GBM data sets in cBioPortal were used for investigating the genomic status and expression of POLR2B in GBM. The function of RPB2 was analyzed following knockdown of POLR2B expression by shRNA in GBM cells. The cell counting kit-8 assay and PI staining were used for cell proliferation and cell cycle analysis. A xenograft mouse model was established to analyze the function of RPB2 in vivo. RNA sequencing was performed to analyze the RPB2-regulated genes. GO and GSEA analyses were applied to investigate the RPB2-regulated gene function and associated pathways. In the present study, the genomic alteration and overexpression of the POLR2B gene was described in glioblastoma. The data indicated that knockdown of POLR2B expression suppressed tumor cell growth of glioblastoma in vitro and in vivo. The analysis further demonstrated the identification of the RPB2-regulated gene sets and highlighted the DNA damage-inducible transcript 4 gene as the downstream target of the POLR2B gene. The present study provides evidence indicating that RPB2 functions as a growth regulator in glioblastoma and could be used as a potential therapeutic target for the treatment of this disease.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Animais , Camundongos , Glioblastoma/patologia , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proliferação de Células/genética , Neoplasias Encefálicas/patologia , RNA Interferente Pequeno/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
6.
Front Neurosci ; 17: 1129688, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968479

RESUMO

Introduction: Chronic hypertension may have a contributory role toward cognitive impairment. Acupuncture exerts protective effects on cognitive functions while controlling the blood pressure. However, the neural mechanism underlying the dual attenuating effect of acupuncture remains unclear. In this study, we investigated the effects of electroacupuncture (EA) and manual acupuncture (MA) on the functional activity of the brain regions of spontaneously hypertensive rats (SHRs) by through resting-state functional magnetic resonance imaging (rs-fMRI). We also evaluated the differences in these functional activities between the EA and MA groups. Methods: We randomly assigned 30 SHRs into the EA, MA, and model (SHR) groups. Wistar Kyoto rats (n = 10) were used as normal control (WKY). The interventions were administered once every alternate day for 12 weeks. The systolic blood pressure of all rats was recorded every 2 weeks until the end of the intervention. After the intervention, rs-fMRI scanning was performed to access the whole brain data of rats randomly selected from each group evenly. The amplitude of low frequency fluctuation (ALFF) analysis, regional homogeneity (ReHo) analysis, and functional connectivity (FC) analysis were also conducted. The Morris water maze (MWM) test was conducted to evaluate the learning and memory of the rats. Hematoxylin-eosin staining and Nissl staining were performed to observe histopathological changes in the key brain regions. Results: We demonstrated that, when compared with the SHR group, the EA and MA groups had significantly lower blood pressure and better performance for behavioral test indices, and that the effect of EA was better than that of MA. ALFF and ReHo analyses revealed enhancement of the neuronal activity of some functionally impaired brain areas in the EA and MA groups. The main callback brain regions included the hypothalamus, entorhinal cortex, brain stem, prelimbic cortex, cingulate cortex, corpus callosum, and cerebellum. The FC analysis demonstrated that EA and MA enhanced the functional connectivity between the seeds and brain regions such as the brain stem, entorhinal cortex, hippocampus, prelimbic cortex, and cerebellum. The pathological test of the entorhinal cortex also verified the protective effect of acupuncture on the neuronal functional activity. Discussion: Our findings suggested that EA and MA exhibited attenuating effects on hypertension and cognitive dysfunction by enhancing the functional activities in the corresponding brain regions. Moreover, EA activated more callback brain regions and functional connectivity than MA, which may explain why the effect of EA was better than that of MA.

7.
Sci Total Environ ; 872: 162188, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36781136

RESUMO

Di (2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer in polyvinyl chloride products such as feed piping, packing bag, and medical consumable. Our previous studies have demonstrated that DEHP exposure reduced the concentration of nicotinamide adenine dinucleotide (NAD+) in pregnant mice serum, which cuts off the source of NAD+ to placenta and results fetal growth restriction. However, the mechanism of serum NAD+ depletion by DEHP remains elusive. This study investigated the intestinal mechanism of NAD+ shortage-induced by DEHP in pregnant mice. The transcriptome results implicated that the mRNA level of oxidative response genes Cyp1a1, Gsto2, Trpv1 and Trpv3 were upregulated in colon. These changes induced intestinal inflammation. Transmission Electron Microscopy results displayed that DEHP destroyed the tight junctions and cell polarity of colonic epithelial cells. These dysfunctions diminished the expression of NAD+ precursor transporters SLC12A8, SLC5A8, SLC7A5, and the NAD+ biosynthetic key enzymes NAMPT, NMNAT1-3, and TDO2 in colonic epithelial cells. Analysis of the gut microbiota showed that DEHP led to the dysbiosis of gut microbiota, reducing the relative abundance of Prevotella copri which possesses the VB3 biosynthetic pathway. Therefore, maternal DEHP exposure during pregnancy decreased the transportation of NAD+ precursors from enteric cavity to colonic epithelial cells, and inhibited the synthesis of NAD+ in colonic epithelial cells. Meanwhile, DEHP reduced the NAD+ precursors provided by gut microbiota. Eventually, serum NAD+ content was lowered. Taken together, our findings provide a new insight for understanding the intestinal mechanisms by which DEHP affects serum NAD+ levels.


Assuntos
Dietilexilftalato , Nicotinamida-Nucleotídeo Adenililtransferase , Gravidez , Feminino , Camundongos , Animais , Dietilexilftalato/toxicidade , Dietilexilftalato/metabolismo , NAD/metabolismo , Placenta/metabolismo , Plastificantes/metabolismo , Colo/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo
8.
BMC Genomics ; 24(1): 67, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755220

RESUMO

BACKGROUND: Ischemic stroke (IS) is a serious neurological disease that largely results in long-term disability and death. Extensive evidence has indicated that the activation of inflammation and ferroptosis significantly contribute to the development of IS pathology. However, the underlying molecular mechanism remains unclear. In this study, we aimed to identify potential biomarkers associated with IS through the construction of a competing endogenous RNA (ceRNA) network and to investigate the possible inflammatory and ferroptosis-related molecular mechanisms. RESULTS: We identified 178 differentially expressed target messenger RNAs (DETmRNAs) associated with IS. As revealed through enrichment analysis, the DEmRNAs were mainly enriched in the inflammatory signaling pathways and also related to ferroptosis mechanism. The CIBERSORT algorithm showed immune infiltration landscapes in which the naïve B cells, naïve T cells, and monocytes had statistically different numbers in the cerebral infarction group compared with the control group. A ceRNA network was constructed in this study involving 44 long non-coding RNAs (lncRNAs), 15 microRNAs (miRNAs), and 160 messenger RNAs (mRNAs). We used the receiver operating characteristic (ROC) analysis to identify three miRNAs (miR-103a-3p, miR-140-3p, and miR-17-5p), one mRNA (TLR4), and one lncRNA (NEAT1) as the potential key biomarkers of the ceRNA network. The key mRNA and lncRNA were shown to be highly related to the ferroptosis mechanism of IS. The expression of these key biomarkers was also further validated by a method of quantitative real-time polymerase chain reaction in SH-SY5Y cells, and the validated results were consistent with the findings predicted by bioinformatics. CONCLUSION: Our results suggest that the ceRNA network may exert an important role in the inflammatory and ferroptosis molecular mechanisms of IS, providing new insight into therapeutic IS targets.


Assuntos
AVC Isquêmico , MicroRNAs , Neuroblastoma , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , AVC Isquêmico/genética , Redes Reguladoras de Genes , Biomarcadores Tumorais/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
J Neuroeng Rehabil ; 20(1): 3, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635693

RESUMO

BACKGROUND: In recent years, non-invasive brain stimulation (NIBS) has been used for motor function recovery. However, the effects of NIBS in populations with spinal cord injury (SCI) remain unclear. This study aims to conduct a meta-analysis of the existing evidence on the effects and safety of NIBS against sham groups for motor dysfunction after SCI to provide a reference for clinical decision-making. METHODS: Two investigators systematically screened English articles from PubMed, MEDLINE, Embase, and Cochrane Library for prospective randomized controlled trials regarding the effects of NIBS in motor function recovery after SCI. Studies with at least three sessions of NIBS were included. We assessed the methodological quality of the selected studies using the evidence-based Cochrane Collaboration's tool. A meta-analysis was performed by pooling the standardized mean difference (SMD) with 95% confidence intervals (CI). RESULTS: A total of 14 randomized control trials involving 225 participants were included. Nine studies used repetitive transcranial magnetic stimulation (rTMS) and five studies used transcranial direct current stimulation (tDCS). The meta-analysis showed that NIBS could improve the lower extremity strength (SMD = 0.58, 95% CI = 0.02-1.14, P = 0.004), balance (SMD = 0.64, 95% CI = 0.05-1.24, P = 0.03), and decrease the spasticity (SMD = - 0.64, 95% CI = - 1.20 to - 0.03, P = 0.04). However, the motor ability of the upper extremity in the NIBS groups was not statistically significant compared with those in the control groups (upper-extremity strength: P = 0.97; function: P = 0.56; and spasticity: P = 0.12). The functional mobility in the NIBS groups did not reach statistical significance when compared with the sham NIBS groups (sham groups). Only one patient reported seizures that occurred during stimulation, and no other types of serious adverse events were reported. CONCLUSION: NIBS appears to positively affect the motor function of the lower extremities in SCI patients, despite the marginal P-value and the high heterogeneity. Further high-quality clinical trials are needed to support or refute the use and optimize the stimulation parameters of NIBS in clinical practice.


Assuntos
Traumatismos da Medula Espinal , Estimulação Transcraniana por Corrente Contínua , Humanos , Estudos Prospectivos , Estimulação Magnética Transcraniana , Traumatismos da Medula Espinal/terapia , Espasticidade Muscular/etiologia , Espasticidade Muscular/terapia , Encéfalo/fisiologia , Ensaios Clínicos Controlados Aleatórios como Assunto
10.
Nucleic Acids Res ; 50(21): 12344-12354, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36477372

RESUMO

5-Methyl-cytosine (5mC) is one of the most important DNA modifications and plays versatile biological roles. It is well known that 5mC stabilizes DNA duplexes. However, it remains unclear how 5mC affects the kinetics of DNA melting and hybridization. Here, we studied the kinetics of unzipping and rezipping using a 502-bp DNA hairpin by single-molecule magnetic tweezers. Under constant loading rates, 5mC increases the unzipping force but counterintuitively decreases the rezipping force at various salt and temperature conditions. Under constant forces, the non-methylated DNA hops between metastable states during unzipping and rezipping, which implies low energy barriers. Surprisingly, the 5mC DNA can't rezip after fully unzipping unless much lower forces are applied, where it rezips stochastically in a one-step manner, which implies 5mC kinetically hinders DNA hybridization and high energy barriers in DNA hybridization. All-atom molecular dynamics simulations reveal that the 5mC kinetically hinders DNA hybridization due to steric effects rather than electrostatic effects caused by the additional methyl groups of cytosines. Considering the possible high speed of DNA unzipping and zipping during replication and transcription, our findings provide new insights into the biological roles of 5mC.


Assuntos
5-Metilcitosina , DNA , Citosina , DNA/química , Fenômenos Magnéticos , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico
11.
J Immunol Res ; 2022: 7945884, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438198

RESUMO

Neuroblastoma (NB) is the most common solid tumor of the neural crest cell origin in children and has a poor prognosis in high-risk patients. The oncogene MYCN was found to be amplified at extremely high levels in approximately 20% of neuroblastoma cases. In recent years, research on the targeted hydrolysis of BRD4 to indirectly inhibit the transcription of the MYCN created by proteolysis targeting chimaera (PROTAC) technology has become very popular. dBET57 (S0137, Selleck, TX, USA) is a novel and potent heterobifunctional small molecule degrader based on PROTAC technology. The purpose of this study was to investigate the therapeutic effect of dBET57 in NB and its potential mechanism. In this study, we found that dBET57 can target BRD4 ubiquitination and disrupt the proliferation ability of NB cells. At the same time, dBET57 can also induce apoptosis, cell cycle arrest, and decrease migration. Furthermore, dBET57 also has a strong antiproliferation function in xenograft tumor models in vivo. In terms of mechanism, dBET57 targets the BET protein family and the MYCN protein family by associating with CRBN and destroys the SE landscape of NB cells. Combined with RNA-seq and ChIP-seq public database analysis, we identified the superenhancer-related genes TBX3 and ZMYND8 in NB as potential downstream targets of dBET57 and experimentally verified that they play an important role in the occurrence and development of NB. In conclusion, these results suggest that dBET57 may be an effective new therapeutic drug for the treatment of NB.


Assuntos
Neuroblastoma , Proteínas Nucleares , Criança , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Proteína Proto-Oncogênica N-Myc/uso terapêutico , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Linhagem Celular Tumoral , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
12.
J Dig Dis ; 23(8-9): 482-492, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36208299

RESUMO

OBJECTIVE: To evaluate the efficacy and safety of fecal microbiota transplantation (FMT) in functional gastrointestinal disorders (FGIDs) in children with abdominal bloating and changes in their gut microbiome and metabolome. METHODS: Twelve pediatric FGID patients with predominant abdominal bloating who underwent FMT were enrolled in the study. Fourteen healthy controls and four stool donors were included for analysis. Clinical responses were assessed at 8 weeks after FMT. Fecal bacterial composition was determined by 16S rRNA gene sequencing. The fecal metabolome was measured by targeted metabolomics analysis. RESULTS: Median age of the 12 children with FGIDs was 6 years, and nine were boys. Abdominal bloating was relieved in all patients by FMT at 8 weeks. Meanwhile, FMT significantly improved abdominal pain and diarrhea. The a diversity was significantly lower in the FGID patients, while the fecal microbial community (ß diversity) separated from that of healthy control (HCs). The relative abundances of multiple bacterial genera were significantly changed in the feces of the pediatric FGID patients. The levels of several short-chain fatty acids were lower, and lactic acid level was higher in FGID patients than in HCs. Altered bacterial composition was correlated with changes in the fecal metabolite profile and clinical symptoms in FGID patients. FMT modulated fecal microbiome and metabolome in FGID children toward a healthy state. CONCLUSIONS: FMT relieves abdominal bloating and modulates fecal microbiome and metabolome toward a healthy state in children with FGIDs. FMT may provide an alternative therapy for children with FGIDs and abdominal bloating.


Assuntos
Gastroenteropatias , Microbioma Gastrointestinal , Masculino , Humanos , Criança , Feminino , Transplante de Microbiota Fecal , RNA Ribossômico 16S/genética , Fezes/microbiologia , Gastroenteropatias/terapia , Metaboloma , Bactérias , Resultado do Tratamento
13.
Redox Biol ; 55: 102414, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35926314

RESUMO

Di (2-ethyl-hexyl) phthalate (DEHP) is a wildly used plasticizer. Maternal exposure to DEHP during pregnancy blocks the placental cell cycle at the G2/M phase by reducing the efficiency of the DNA repair pathways and affects the health of offsprings. However, the mechanism by which DEHP inhibits the repair of DNA damage remains unclear. In this study, we demonstrated that DEHP inhibits DNA damage repair by reducing the activity of the DNA repair factor recruitment molecule PARP1. NAD+ and ATP are two substrates necessary for PARP1 activity. DEHP abated NAD+ in the nucleus by reducing the level of NAD+ synthase NMNAT1 and elevated NAD+ in the mitochondrial by promoting synthesis. Furthermore, DEHP destroyed the mitochondrial respiratory chain, affected the structure and quantity of mitochondria, and decreased ATP production. Therefore, DEHP inhibits PARP1 activity by reducing the amount of NAD+ and ATP, which hinders the DNA damage repair pathways. The supplement of NAD+ precursor NAM can partially rescue the DNA and mitochondria damage. It provides a new idea for the prevention of health problems of offsprings caused by DEHP injury to the placenta.

14.
Heliyon ; 8(8): e09888, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35965981

RESUMO

UV induced photoaging is the main external factor of skin aging. In this study, we tested the protective effects of tetrahydrocurcumin on UV-induced skin photoaging of KM mice and researched the multi-target mechanism through RNA sequencing technology. Mouse experiments show that tetrahydrocurcumin strongly changed in skin appearance, epidermal thickness, and wrinkle-related parameters in UV-irradiated mice. RNA-seq result show that we found 29 differentially expressed mRNA transcripts in UV mice relative to Ctrl rats (18 up-regulated and 11 down-regulated) and 7 significantly dysregulated mRNAs were obtained in the THC group compared to the UV group (1 up-regulated and 6 down-regulated), respectively. Spink7, Edn3, Stab2 may be the key target genes of tetrahydrocurcumin in preventing aging. Bioinformatics analysis shows that the response to muscle contraction and melanin biosynthetic GO term and Inflammation related pathway such as PPAR, MAPK would involve in effects of tetrahydrocurcumin. The results of this study indicated that tetrahydrocurcumin can improve the appearance through anti-inflammatory, improving extracellular matrix and inhibiting melanin production. It could be suggested as a protective measure in the prevention of UV-induced photoaging.

15.
J Nat Prod ; 85(7): 1730-1737, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35792821

RESUMO

Natural product dimers have intriguing structural features and often have remarkable pharmacological activities. We report here two uncommon marine gorgonian-derived symmetric dimers, weizhouochrones A (1) and B (2), with indenone-derived monomers, that were isolated from the coral Anthogorgia ochracea collected from the South China Sea. These dimers are difficult targets for structure elucidation that solely relies upon conventional NMR data such as NOEs and J-couplings. Here, to explore the application of emerging methods on the structure elucidation of challenging molecules, we explored a number of different anisotropic and computational NMR approaches. The measurements of anisotropic NMR parameters of weizhouochrone A, including residual dipolar couplings (RDCs) and residual chemical shift anisotropy (RCSA), allowed us to successfully determine the planar structure and its relative configuration. This result was corroborated by a computational NMR analysis based on DP4+ probability and computer-assisted 3D structure elucidation (CASE-3D).


Assuntos
Antozoários , Produtos Biológicos , Animais , Anisotropia , Antozoários/química , Produtos Biológicos/química , Espectroscopia de Ressonância Magnética/métodos , Probabilidade
16.
J Exp Clin Cancer Res ; 41(1): 225, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842703

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is a myeloid neoplasm makes up 7.6% of hematopoietic malignancies. Super-enhancers (SEs) represent a special group of enhancers, which have been reported in multiple cell types. In this study, we explored super-enhancer profiling through ChIP-Seq analysis of AML samples and AML cell lines, followed by functional analysis. METHODS: ChIP-seq analysis for H3K27ac was performed in 11 AML samples, 7 T-ALL samples, 8 B-ALL samples, and in NB4 cell line. Genes and pathways affected by GNE-987 treatment were identified by gene expression analysis using RNA-seq. One of the genes associated with super-enhancer and affected by GNE-987 treatment was LYL1 basic helix-loop-helix family member (LYL1). shRNA mediated gene interference was used to down-regulate the expression of LYL1 in AML cell lines, and knockdown efficiency was detected by RT-qPCR and western blotting. The effect of knockdown on the growth of AML cell lines was evaluated by CCK-8. Western blotting was used to detect PARP cleavage, and flow cytometry were used to determine the effect of knockdown on apoptosis of AML cells. RESULTS: We identified a total of 200 genes which were commonly associated with super-enhancers in ≧10 AML samples, and were found enriched in regulation of transcription. Using the BRD4 inhibitor GNE-987, we assessed the dependence of AML cells on transcriptional activation for growth and found GNE-987 treatment predominantly inhibits cell growth in AML cells. Moreover, 20 candidate genes were selected by super-enhancer profile and gene expression profile and among which LYL1 was observed to promote cell growth and survival in human AML cells. CONCLUSIONS: In summary, we identified 200 common super-enhancer-associated genes in AML samples, and a series of those genes are cancer genes. We also found GNE-987 treatment downregulates the expression of super-enhancer-associated genes in AML cells, including the expression of LYL1. Further functional analysis indicated that LYL1 is required for AML cell growth and survival. These findings promote understanding of AML pathophysiology and elucidated an important role of LYL1 in AML progression.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Leucemia Mieloide Aguda , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ciclo Celular , Criança , Humanos , Leucemia Mieloide Aguda/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética
17.
Biology (Basel) ; 11(5)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35625501

RESUMO

Blastocystis is a common human intestinal protozoan parasite. Little is known about its prevalence in echinococcosis. This study tested whether Echinococcus multilocularis infection would increase host susceptibility to Blastocystis. A total of 114 fecal samples (68 hydatid disease patients and 46 healthy people) were collected from Tibetans in the Qinghai province in China. The presence of Blastocystis was identified by sequencing of the small subunit (SSU) rRNA gene. Balb/c mice were co-infected with Blastocystis and E. multilocularis and tested for host susceptibility to Blastocystis. The overall Blastocystis prevalence was 12.3%; 16.2% in the patients and 4.4% in healthy people (p < 0.05). Sequence analysis identified three known Blastocystis genotypes, including ST1, ST2, and ST3, and one unknown genotype. Experimental dual infection significantly reduced mouse survival rate (20%), induced more severe signs, and increased intestinal damages with a higher intestinal colonization level of Blastocystis. The mouse model showed that E. multilocularis infection increases host susceptibility to Blastocystis. Our study shows a significantly higher prevalence of Blastocystis in patients with liver echinococcosis and reveals that non-intestinal E. multilocularis infection increases host susceptibility to the Blastocystis. Our results highlight that E. multilocularis infection is associated with Blastocystis. These findings remind us that more attention should be paid to the gut health of the patients with a helminth infection during clinical patient care.

18.
Cell Biosci ; 12(1): 33, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35303940

RESUMO

BACKGROUND: Neuroblastoma (NB) is a common extracranial malignancy with high mortality in children. Recently, super-enhancers (SEs) have been reported to play a critical role in the tumorigenesis and development of NB via regulating a wide range of oncogenes Thus, the synthesis and identification of chemical inhibitors specifically targeting SEs are of great urgency for the clinical therapy of NB. This study aimed to characterize the activity of the SEs inhibitor GNE987, which targets BRD4, in NB. RESULTS: In this study, we found that nanomolar concentrations of GNE987 markedly diminished NB cell proliferation and survival via degrading BRD4. Meanwhile, GNE987 significantly induced NB cell apoptosis and cell cycle arrest. Consistent with in vitro results, GNE987 administration (0.25 mg/kg) markedly decreased the tumor size in the xenograft model, with less toxicity, and induced similar BRD4 protein degradation to that observed in vitro. Mechanically, GNE987 led to significant downregulation of hallmark genes associated with MYC and the global disruption of the SEs landscape in NB cells. Moreover, a novel candidate oncogenic transcript, FAM163A, was identified through analysis of the RNA-seq and ChIP-seq data. FAM163A is abnormally transcribed by SEs, playing an important role in NB occurrence and development. CONCLUSION: GNE987 destroyed the abnormal transcriptional regulation of oncogenes in NB by downregulating BRD4, which could be a potential therapeutic candidate for NB.

19.
Cell Death Dis ; 13(2): 174, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197448

RESUMO

Recent studies uncovered the emerging roles of SAPCD2 (suppressor anaphase-promoting complex domain containing 2) in several types of human cancer. However, the functions and underlying mechanisms of SAPCD2 in the progression of neuroblastoma (NB) remain elusive. Herein, through integrative analysis of public datasets and regulatory network of GSK-J4, a small-molecule drug with anti-NB activity, we identified SAPCD2 as an appealing target with a high connection to poor prognosis in NB. SAPCD2 promoted NB progression in vitro and in vivo. Mechanistically, SAPCD2 could directly bind to cytoplasmic E2F7 but not E2F1, alter the subcellular distribution of E2F7 and regulate E2F activity. Among the E2F family members, the roles of E2F7 in NB are poorly understood. We found that an increasing level of nuclear E2F7 was induced by SAPCD2 knockdown, thereby affecting the expression of genes involved in the cell cycle and chromosome instability. In addition, Selinexor (KTP-330), a clinically available inhibitor of exportin 1 (XPO1), could induce nuclear accumulation of E2F7 and suppress the growth of NB. Overall, our studies suggested a previously unrecognized role of SAPCD2 in the E2F signaling pathway and a potential therapeutic approach for NB, as well as clues for understanding the differences in subcellular distribution of E2F1 and E2F7 during their nucleocytoplasmic shuttling.


Assuntos
Fator de Transcrição E2F7 , Neuroblastoma , Proteínas Nucleares , Transporte Ativo do Núcleo Celular , Ciclo Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Fator de Transcrição E2F7/genética , Fator de Transcrição E2F7/metabolismo , Humanos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
20.
Cancer Cell Int ; 21(1): 598, 2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34743716

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is a myeloid neoplasm accounts for 7.6% of hematopoietic malignancies. AML is a complex disease, and understanding its pathophysiology is contributing to the improvement in the treatment and prognosis of AML. In this study, we assessed the expression profile and molecular functions of CCAAT enhancer binding protein gamma (CEBPG), a gene implicated in myeloid differentiation and AML progression. METHODS: shRNA mediated gene interference was used to down-regulate the expression of CEBPG in AML cell lines, and knockdown efficiency was detected by RT-qPCR and western blotting. The effect of knockdown on the growth of AML cell lines was evaluated by CCK-8. Western blotting was used to detect PARP cleavage, and flow cytometry were used to determine the effect of knockdown on apoptosis of AML cells. Genes and pathways affected by knockdown of CEBPG were identified by gene expression analysis using RNA-seq. One of the genes affected by knockdown of CEBPG was Eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1), a known repressor of translation. Knockdown of EIF4EBP1 was used to assess its potential role in AML progression downstream of CEBPG. RESULTS: We explored the ChIP-Seq data of AML cell lines and non-AML hematopoietic cells, and found CEBPG was activated through its distal enhancer in AML cell lines. Using the public transcriptomic dataset, the Cancer Cell Line Encyclopedia (CCLE) and western blotting, we also found CEBPG was overexpressed in AML. Moreover, we observed that CEBPG promotes AML cell proliferation by activating EIF4EBP1, thus contributing to the progression of AML. These findings indicate that CEBPG could act as a potential therapeutic target for AML patients. CONCLUSION: In summary, we systematically explored the molecular characteristics of CEBPG in AML and identified CEBPG as a potential therapeutic target for AML patients. Our findings provide novel insights into the pathophysiology of AML and indicate a key role for CEBPG in promoting AML progression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...