Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Genome Res ; 34(2): 310-325, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38479837

RESUMO

In diploid mammals, allele-specific three-dimensional (3D) genome architecture may lead to imbalanced gene expression. Through ultradeep in situ Hi-C sequencing of three representative somatic tissues (liver, skeletal muscle, and brain) from hybrid pigs generated by reciprocal crosses of phenotypically and physiologically divergent Berkshire and Tibetan pigs, we uncover extensive chromatin reorganization between homologous chromosomes across multiple scales. Haplotype-based interrogation of multi-omic data revealed the tissue dependence of 3D chromatin conformation, suggesting that parent-of-origin-specific conformation may drive gene imprinting. We quantify the effects of genetic variations and histone modifications on allelic differences of long-range promoter-enhancer contacts, which likely contribute to the phenotypic differences between the parental pig breeds. We also observe the fine structure of somatically paired homologous chromosomes in the pig genome, which has a functional implication genome-wide. This work illustrates how allele-specific chromatin architecture facilitates concomitant shifts in allele-biased gene expression, as well as the possible consequential phenotypic changes in mammals.


Assuntos
Cromatina , Cromossomos , Animais , Suínos/genética , Cromatina/genética , Haplótipos , Cromossomos/genética , Genoma , Mamíferos/genética
2.
Nat Commun ; 15(1): 2514, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514621

RESUMO

Drought stress significantly impacts global rice production, highlighting the critical need to understand the genetic basis of drought resistance in rice. Here, through a genome-wide association study, we reveal that natural variations in DROUGHT RESISTANCE GENE 9 (DRG9), encoding a double-stranded RNA (dsRNA) binding protein, contribute to drought resistance. Under drought stress, DRG9 condenses into stress granules (SGs) through liquid-liquid phase separation via a crucial α-helix. DRG9 recruits the mRNAs of OsNCED4, a key gene for the biosynthesis of abscisic acid, into SGs and protects them from degradation. In drought-resistant DRG9 allele, natural variations in the coding region, causing an amino acid substitution (G267F) within the zinc finger domain, increase DRG9's binding ability to OsNCED4 mRNA and enhance drought resistance. Introgression of the drought-resistant DRG9 allele into the elite rice Huanghuazhan significantly improves its drought resistance. Thus, our study underscores the role of a dsRNA-binding protein in drought resistance and its promising value in breeding drought-resistant rice.


Assuntos
Resistência à Seca , Oryza , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Estudo de Associação Genômica Ampla , Separação de Fases , Estresse Fisiológico/genética , Melhoramento Vegetal , Secas , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Sci Rep ; 14(1): 2308, 2024 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-38280907

RESUMO

The lymph node involvement in the posterior to level V (PLV) region is mainly observed in nasopharyngeal carcinoma (NPC). Recently, we have reported the distribution of metastatic lymph nodes in the PLV region and there are correlations between the neck node levels (NNL) of NPC, but what is the boundary of the PLV region and how to delineate it remains unclear, and we further to elaborate whether the bilateral level Va should be covered as intermediate-risk nodal regions (CTVn2, about 60 Gy equivalent) for all T and N categories based on these correlations. A total of 1021 consecutive NPC patients with N1-3 stage from January 2012 to December 2020 were reviewed. The lymph node metastasis level of each patient was evaluated according to the updated guidelines proposed in 2013. According to the distribution pattern of lymph node metastasis and the anatomical structure in the PLV region, the boundaries of PLV region was delineated, and whether it is appropriate to cover the bilateral level Va as CTVn2 for all the NPC patients was further discussed. The correlations of level Va with other NNL were studied using logistic regression model. The cranial boundary of PLV region is the caudal border of cricoid cartilage, the caudal boundary is the plane serratus anterior muscle begins to appear, the anterior boundary is the anterior border of trapezius, and the posterior boundary is the convergence of levator scapulae and trapezius. Laterally, the PLV region is limited by the medial edge of trapezius and medially by the lateral surface of levator scapulae. The nodal spread in level Va is based on the lymph node metastasis of level IIb in NPC. The PLV region is a missing NNL of head and neck tumors, especially in NPC. The proposed boundaries of the PLV region can provide a preliminary proposal for the further revision of NNL in head and neck tumors. It is theoretically feasible to reduce the prophylactic irradiation dose of the bilateral level Va in patients with N0 stage or with isolated metastases in level VIIa.


Assuntos
Neoplasias Nasofaríngeas , Parede Torácica , Humanos , Carcinoma Nasofaríngeo/radioterapia , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/patologia , Metástase Linfática/patologia , Estudos de Viabilidade , Redução da Medicação , Pescoço/patologia , Linfonodos/patologia , Estadiamento de Neoplasias , Estudos Retrospectivos
4.
Angew Chem Int Ed Engl ; 63(8): e202319289, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38185722

RESUMO

Inherent chirality is used to describe chiral cyclic molecules devoid of central, axial, planar, or helical chirality and has tremendous applications in chiral recognition and enantioselective synthesis. Catalytic and divergent syntheses of inherently chiral molecules have attracted increasing interest from chemists. Herein, we report the enantioselective synthesis of inherently chiral tribenzocycloheptene derivatives via chiral phosphoric acid (CPA)-catalyzed condensation of cyclic ketones and hydroxylamines. This chemistry paves the way to accessing the less stable derivatives of 7-membered rings with inherent chirality. A series of chiral tribenzocycloheptene oxime ethers was synthesized in good yields (up to 97 %) with excellent enantioselectivities (up to 99 % ee).

5.
Cell Prolif ; 57(3): e13552, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37905345

RESUMO

Cebpa is a master transcription factor gene for adipogenesis. However, the mechanisms of enhancer-promoter chromatin interactions controlling Cebpa transcriptional regulation during adipogenic differentiation remain largely unknown. To reveal how the three-dimensional structure of Cebpa changes during adipogenesis, we generated high-resolution chromatin interactions of Cebpa in 3T3-L1 preadipocytes and 3T3-L1 adipocytes using circularized chromosome conformation capture sequencing (4C-seq). We revealed dramatic changes in chromatin interactions and chromatin status at interaction sites during adipogenic differentiation. Based on this, we identified five active enhancers of Cebpa in 3T3-L1 adipocytes through epigenomic data and luciferase reporter assays. Next, epigenetic repression of Cebpa-L1-AD-En2 or -En3 by the dCas9-KRAB system significantly down-regulated Cebpa expression and inhibited adipocyte differentiation. Furthermore, experimental depletion of cohesin decreased the interaction intensity between Cebpa-L1-AD-En2 and the Cebpa promoter and down-regulated Cebpa expression, indicating that long-range chromatin loop formation was mediated by cohesin. Two transcription factors, RXRA and PPARG, synergistically regulate the activity of Cebpa-L1-AD-En2. To test whether Cebpa-L1-AD-En2 plays a role in adipose tissue development, we injected dCas9-KRAB-En2 lentivirus into the inguinal white adipose tissue (iWAT) of mice to suppress the activity of Cebpa-L1-AD-En2. Repression of Cebpa-L1-AD-En2 significantly decreased Cebpa expression and adipocyte size, altered iWAT transcriptome, and affected iWAT development. We identified functional enhancers regulating Cebpa expression and clarified the crucial roles of Cebpa-L1-AD-En2 and Cebpa promoter interaction in adipocyte differentiation and adipose tissue development.


Assuntos
Adipogenia , Cromatina , Animais , Camundongos , Adipócitos , Adipogenia/genética , Tecido Adiposo , Diferenciação Celular
6.
Neurosci Lett ; 821: 137609, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38157927

RESUMO

BACKGROUND: Patients with young-onset Alzheimer's disease (AD) (before the age of 50 years old) often lack obvious imaging changes and amyloid protein deposition, which can lead to misdiagnosis with other cognitive impairments. Considering the association between immunological dysfunction and progression of neurodegenerative disease, recent research has focused on identifying blood transcriptomic signatures for precise prediction of AD. METHODS: In this study, we extracted blood biomarkers from large-scale transcriptomics to construct multiclass eXtreme Gradient Boosting models (XGBoost), and evaluated their performance in distinguishing AD from cognitive normal (CN) and mild cognitive impairment (MCI). RESULTS: Independent testing with external dataset revealed that the combination of blood transcriptomic signatures achieved an area under the receiver operating characteristic curve (AUC of ROC) of 0.81 for multiclass classification (sensitivity = 0.81; specificity = 0.63), 0.83 for classification of AD vs. CN (sensitivity = 0.72; specificity = 0.73), and 0.85 for classification of AD vs. MCI (sensitivity = 0.77; specificity = 0.73). These candidate signatures were significantly enriched in 62 chromosome regions, such as Chr.19p12-19p13.3, Chr.1p22.1-1p31.1, and Chr.1q21.2-1p23.1 (adjusted p < 0.05), and significantly overrepresented by 26 transcription factors, including E2F2, FOXO3, and GATA1 (adjusted p < 0.05). Biological analysis of these signatures pointed to systemic dysregulation of immune responses, hematopoiesis, exocytosis, and neuronal support in neurodegenerative disease (adjusted p < 0.05). CONCLUSIONS: Blood transcriptomic biomarkers hold great promise in clinical use for the accurate assessment and prediction of AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doenças Neurodegenerativas , Humanos , Pessoa de Meia-Idade , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Transcriptoma , Sensibilidade e Especificidade , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/genética , Biomarcadores , Perfilação da Expressão Gênica , Imageamento por Ressonância Magnética/métodos , Progressão da Doença
7.
Mol Plant ; 16(12): 1911-1926, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37853691

RESUMO

Rice ratooning, the fast outgrowth of dormant buds on stubble, is an important cropping practice in rice production. However, the low ratooning ability (RA) of most rice varieties restricts the application of this cost-efficient system, and the genetic basis of RA remains unknown. In this study, we dissected the genetic architecture of RA by a genome-wide association study in a natural rice population. Rice ratooning ability 3 (RRA3), encoding a hitherto not characterized nucleoredoxin involved in reduction of disulfide bonds, was identified as the causal gene of a major locus controlling RA. Overexpression of RRA3 in rice significantly accelerated leaf senescence and reduced RA, whereas knockout of RRA3 significantly delayed leaf senescence and increased RA and ratoon yield. We demonstrated that RRA3 interacts with Oryza sativa histidine kinase 4 (OHK4), a cytokinin receptor, and inhibits the dimerization of OHK4 through disulfide bond reduction. This inhibition ultimately led to decreased cytokinin signaling and reduced RA. In addition, variations in the RRA3 promoter were identified to be associated with RA. Introgression of a superior haplotype with weak expression of RRA3 into the elite rice variety Guichao 2 significantly increased RA and ratoon yield by 23.8%. Collectively, this study not only uncovers an undocumented regulatory mechanism of cytokinin signaling through de-dimerization of a histidine kinase receptor-but also provides an eximious gene with promising value for ratoon rice breeding.


Assuntos
Oryza , Histidina Quinase/genética , Histidina Quinase/metabolismo , Oryza/metabolismo , Dimerização , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Citocininas/metabolismo , Dissulfetos/metabolismo
8.
Nat Commun ; 14(1): 5420, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37669964

RESUMO

Real-time imaging of transient structure of the electronic excited state is fundamentally critical to understand and control ultrafast molecular dynamics. The ejection of electrons from the inner-shell and valence level can lead to the population of different excited states, which trigger manifold ultrafast relaxation processes, however, the accurate imaging of such electronic state-dependent structural evolutions is still lacking. Here, by developing the laser-induced electron recollision-assisted Coulomb explosion imaging approach and molecular dynamics simulations, snapshots of the vibrational wave-packets of the excited (A) and ground states (X) of D2O+ are captured simultaneously with sub-10 picometre and few-femtosecond precision. We visualise that θDOD and ROD are significantly increased by around 50∘ and 10 pm, respectively, within approximately 8 fs after initial ionisation for the A state, and the ROD further extends 9 pm within 2 fs along the ground state of the dication in the present condition. Moreover, the ROD can stretch more than 50 pm within 5 fs along autoionisation state of dication. The accuracies of the results are limited by the simulations. These results provide comprehensive structural information for studying the fascinating molecular dynamics of water, and pave the way towards to make a movie of excited state-resolved ultrafast molecular dynamics and light-induced chemical reaction.

9.
Nat Commun ; 14(1): 4951, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587115

RESUMO

Neutral H2 formation via intramolecular hydrogen migration in hydrocarbon molecules plays a vital role in many chemical and biological processes. Here, employing cold target recoil ion momentum spectroscopy (COLTRIMS) and pump-probe technique, we find that the non-adiabatic coupling between the ground and excited ionic states of ethane through conical intersection leads to a significantly high yield of neutral H2 fragment. Based on the analysis of fingerprints that are sensitive to orbital symmetry and electronic state energies in the photoelectron momentum distributions, we tag the initial electronic population of both the ground and excited ionic states and determine the branching ratios of H2 formation channel from those two states. Incorporating theoretical simulation, we established the timescale of the H2 formation to be ~1300 fs. We provide a comprehensive characterization of H2 formation in ionic states of ethane mediated by conical intersection and reveals the significance of non-adiabatic coupling dynamics in the intramolecular hydrogen migration.

10.
Front Mol Biosci ; 10: 1203208, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426419

RESUMO

Introduction: YiYiFuZi powder (YYFZ) is a classical formula in Chinese medicine, which is commonly used clinically for the treatment of Chronic Heart Disease (CHD), but it's pharmacological effects and mechanism of action are currently unclear. Methods: An adriamycin-induced CHD model rat was established to evaluate the pharmacological effects of YYFZ on CHD by the results of inflammatory factor level, histopathology and echocardiography. Metabolomic studies were performed on rat plasma using UPLC-Q-TOF/MS to screen biomarkers and enrich metabolic pathways; network pharmacology analysis was also performed to obtain the potential targets and pathways of YYFZ for the treatment of CHD. Results: The results showed that YYFZ significantly reduced the levels of TNF-α and BNP in the serum of rats, alleviated the disorder of cardiomyocyte arrangement and inflammatory cell infiltration, and improved the cardiac function of rats with CHD. The metabolomic analysis identified a total of 19 metabolites, related to amino acid metabolism, fatty acid metabolism, and other metabolic pathways. Network pharmacology showed that YYFZ acts through PI3K/Akt signaling pathway, MAPK signaling pathway and Ras signaling pathway. Discussion: YYFZ treatment of CHD modulates blood metabolic pattern and several protein phosphorylation cascades but importance specific changes for therapeutic effect require further studies.

11.
Nat Commun ; 14(1): 3457, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308492

RESUMO

Using an adult female miniature pig model with diet-induced weight gain/weight loss, we investigated the regulatory mechanisms of three-dimensional (3D) genome architecture in adipose tissues (ATs) associated with obesity. We generated 249 high-resolution in situ Hi-C chromatin contact maps of subcutaneous AT and three visceral ATs, analyzing transcriptomic and chromatin architectural changes under different nutritional treatments. We find that chromatin architecture remodeling underpins transcriptomic divergence in ATs, potentially linked to metabolic risks in obesity development. Analysis of chromatin architecture among subcutaneous ATs of different mammals suggests the presence of transcriptional regulatory divergence that could explain phenotypic, physiological, and functional differences in ATs. Regulatory element conservation analysis in pigs and humans reveals similarities in the regulatory circuitry of genes responsible for the obesity phenotype and identified non-conserved elements in species-specific gene sets that underpin AT specialization. This work provides a data-rich tool for discovering obesity-related regulatory elements in humans and pigs.


Assuntos
Cromatina , Aumento de Peso , Adulto , Humanos , Feminino , Suínos , Animais , Obesidade , Tecido Adiposo , Montagem e Desmontagem da Cromatina , Redução de Peso , Mamíferos
12.
Nat Plants ; 9(7): 1130-1142, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37349549

RESUMO

NARROW LEAF 1 (NAL1) is a breeding-valuable pleiotropic gene that affects multiple agronomic traits in rice, although the molecular mechanism is largely unclear. Here, we report that NAL1 is a serine protease and displays a novel hexameric structure consisting of two ATP-mediated doughnut-shaped trimeric complexes. Moreover, we identified TOPLESS-related corepressor OsTPR2 involved in multiple growth and development processes as the substrate of NAL1. We found that NAL1 degraded OsTPR2, thus modulating the expression of downstream genes related to hormone signalling pathways, eventually achieving its pleiotropic physiological function. An elite allele, NAL1A, which may have originated from wild rice, could increase grain yield. Furthermore, the NAL1 homologues in different crops have a similar pleiotropic function to NAL1. Our study uncovers a NAL1-OsTPR2 regulatory module and provides gene resources for the design of high-yield crops.


Assuntos
Oryza , Oryza/metabolismo , Melhoramento Vegetal , Fenótipo , Serina Endopeptidases/metabolismo
13.
FASEB J ; 37(6): e22993, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37235502

RESUMO

Lacking PTRF (polymerase I and transcript release factor), an essential caveolae component, causes a secondary deficiency of caveolins resulting in muscular dystrophy. The transcriptome responses of different types of muscle fibers and mononuclear cells in skeletal muscle to muscular dystrophy caused by Ptrf deletion have not been explored. Here, we created muscular dystrophy mice by Ptrf knockout and applied single-nucleus RNA sequencing (snRNA-seq) to unveil the transcriptional changes of the skeletal muscle at single-nucleus resolution. 11 613 muscle nuclei (WT, 5838; Ptrf KO, 5775) were classified into 12 clusters corresponding to 11 nuclear types. Trajectory analysis revealed the potential transition between type IIb_1 and IIb_2 myonuclei upon muscular dystrophy. Functional enrichment analysis indicated that apoptotic signaling and enzyme-linked receptor protein signaling pathway were significantly enriched in type IIb_1 and IIb_2 myonuclei of Ptrf KO, respectively. The muscle structure development and the PI3K-AKT signaling pathway were significantly enriched in type IIa and IIx myonuclei of Ptrf KO. Meanwhile, metabolic pathway analysis showed a decrease in overall metabolic pathway activity of myonuclei subtypes upon muscular dystrophy, with the most decrease in type IIb_1 myonuclei. Gene regulatory network analysis found that the activity of Mef2c, Mef2d, Myf5, and Pax3 regulons was enhanced in type II myonuclei of Ptrf KO, especially in type IIb_2 myonuclei. In addition, we investigated the transcriptome changes in adipocytes and found that muscular dystrophy enhanced the lipid metabolic capacity of adipocytes. Our findings provide a valuable resource for exploring the molecular mechanism of muscular dystrophy due to Ptrf deficiency.


Assuntos
Distrofias Musculares , Transcriptoma , Camundongos , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Distrofias Musculares/genética , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo
14.
ACS Omega ; 8(12): 11138-11150, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37008152

RESUMO

The Simiao pill (SMP) is a classic prescription that has shown anti-inflammatory, analgesic, and immunomodulatory effects and is clinically used to treat inflammatory diseases, such as rheumatoid arthritis (RA) and gouty arthritis, for which the effects and mechanism of action remain largely unknown. In this study, serum samples from RA rats were analyzed using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry based metabolomics technology and liquid chromatography with tandem mass spectrometry proteomics technology together with network pharmacology to explore the pharmacodynamic substances of SMP. To further verify the above results, we constructed a fibroblast-like synoviocyte (FLS) cell model and administered phellodendrine for the test. All these clues suggested that SMP can significantly reduce the level of interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in complete Freund's adjuvant rat serum and improve the degree of foot swelling; combined with metabolomics, proteomics, and network pharmacological technology, it is determined that SMP plays a therapeutic role through the inflammatory pathway, and phellodendrine is found to be one of the pharmacodynamic substances. By constructing an FLS model, it is further determined that phellodendrine could effectively inhibit the activity of synovial cells and reduce the expression level of inflammatory factors by downregulating the expression level of related proteins in the TLR4-MyD88-IRAK4-MAPK signal pathway to alleviate joint inflammation and cartilage injury. Overall, these findings suggested that phellodendrine is an effective component of SMP in the treatment of RA.

15.
PNAS Nexus ; 2(3): pgad060, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36970179

RESUMO

Quantitative understanding of the process of knowledge creation is crucial for accelerating the advance of science. Recent years have witnessed a great effort to address this issue by studying the publication data of scientific journals, leading to a variety of surprising discoveries at both individual level and disciplinary level. However, before scientific journals appeared on a large scale and became the mainstream for publishing research results, there are also intellectual achievements that have changed the world, which have usually become classic and are now referred to as the great ideas of great people. So far, little is known about the general law of their birth. In this paper, we reference Wikipedia and academic history books to collect 2001 magnum opuses as representations of great ideas, covering nine disciplines. Using the year and place of publication of these magnum opuses, we show that the birth of great ideas is very concentrated in geography, and more concentrated than other human activities such as contemporary knowledge production. We construct a spatial-temporal bipartite network to study the similarity of output structures between different historical periods and discover the existence of a Great Transformation around the 1870s, which may be associated with the rise of the US in academia. Finally, we re-rank cities and historical periods by employing an iterative approach to study cities' leadership and historical periods' prosperity.

16.
World J Surg Oncol ; 20(1): 382, 2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36464675

RESUMO

BACKGROUND: CD97 is the most widely expressed G protein-coupled receptor in the epidermal growth factor seven-span transmembrane family. It plays a vital role in cell adhesion, migration, and cell connection regulation. We explored the role of CD97 in hepatocellular carcinoma (HCC). METHODS: We evaluated CD97 mRNA expression in HCC using TNMplot and the Gene Expression Omnibus database. The clinical prognostic significance of CD97 in HCC patients was evaluated by gene expression profiling interactive analysis, the Kaplan-Meier plotter, and the UALCAN database. The Tumor Immune Estimation Resource (TIMER) and CIBERSORT databases were used to analyze the relationships among CD97, genes positively related with CD97, and tumor-infiltrating immune cells. RESULTS: CD97 was highly expressed in HCC tissues and was associated with an adverse prognosis. CD97 and genes positively related with CD97 were positively correlated with the abundance of tumor-infiltrating immune cells and strongly correlated with tumor-infiltrating macrophages (all r ≥ 0.513, P < 0.001). CD97 was positively correlated with M2 macrophage and tumor-associated macrophage markers (both r ≥ 0.464, P < 0.001). CD97 was found to be an immune-related gene in HCC and positively correlated with the TOX, PD-L1, PD-L2, CTLA4, and PD-1 immune checkpoint genes. CD97 copy number alterations affect the level of immune cell infiltration and mRNA expression. CONCLUSIONS: CD97 can be used as a potential molecular marker of prognosis in HCC, which is associated with immune cell infiltration.


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptores Acoplados a Proteínas G , Humanos , Biomarcadores , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Macrófagos Associados a Tumor/imunologia , Bases de Dados Factuais
17.
J Clin Med ; 11(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36233730

RESUMO

BACKGROUND: The presence of the blood-brain barrier (BBB) uniquely distinguishes the brain from other organs, and various brain pathologies, including cancer, can disrupt or breach the BBB. The specific implications of BBB alterations in glioma have not been sufficiently clarified. METHODS: In this study, statistical analysis of the TCGA pan-glioma dataset and four other validation cohorts was used to investigate the infiltration of BBB constituent cells (endothelial cells, pericytes and astrocytes) in the glioma tumor microenvironment (TME). RESULTS: We found that the infiltration proportions of the three BBB constituent cell types were highly collinear, which implied alteration of the BBB. Hence, we developed an index, the BBB score, which is calculated based on the infiltration proportion of BBB constituent cells. Furthermore, we observed that patients with higher BBB scores were more likely to be diagnosed with more malignant entities in the TCGA database according to significant molecular features, such as IDH mutation status and 1p/19q deletion. The BBB score was also strikingly positively correlated with WHO grade in other cohorts. More importantly, a higher BBB score correlated with shorter survival time and unfavorable prognosis in glioma patients. Finally, we showed that TME-related pathways may regulate BBB alterations and that coinhibitory immune checkpoints were enriched in samples with higher BBB scores. CONCLUSIONS: We showed that TME-related pathways may regulate BBB alterations and that coinhibitory immune checkpoints were enriched in samples with higher BBB scores. Assessing BBB alterations may help elucidate the complex role of the glioma TME and suggest new combination treatment strategies.

18.
Front Chem ; 10: 926950, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36017167

RESUMO

In recent years, the incidence of coronary heart disease and rheumatoid arthritis has been increasing, which has become a common public health problem worldwide. YiYiFuZi (YYFZ ) powder is a classical traditional Chinese prescription, which is commonly used to treat metabolic diseases such as rheumatoid arthritis, with an ideal curative effect, but the therapeutic mechanism is still unclear. In this study, from the perspective of clinical metabolomics, combined with network pharmacology, we sought the comorbidity mechanism and key targets of coronary heart disease and rheumatoid arthritis and the mechanism by which YYFZ powder exerts therapeutic effects, combined with molecular docking and atomic force microscopy to determine the effective components, and found that the higenamine and steroid components in YYFZ powder can bind acid sphingomyelinase enzymes to affect the sphingolipid pathway to produce therapeutic effects, which can bind to sugars existing as a glycoside.

19.
J Biol Chem ; 298(8): 102149, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35787372

RESUMO

Skeletal muscle differentiation (myogenesis) is a complex and highly coordinated biological process regulated by a series of myogenic marker genes. Chromatin interactions between gene's promoters and their enhancers have an important role in transcriptional control. However, the high-resolution chromatin interactions of myogenic genes and their functional enhancers during myogenesis remain largely unclear. Here, we used circularized chromosome conformation capture coupled with next generation sequencing (4C-seq) to investigate eight myogenic marker genes in C2C12 myoblasts (C2C12-MBs) and C2C12 myotubes (C2C12-MTs). We revealed dynamic chromatin interactions of these marker genes during differentiation and identified 163 and 314 significant interaction sites (SISs) in C2C12-MBs and C2C12-MTs, respectively. The interacting genes of SISs in C2C12-MTs were mainly involved in muscle development, and histone modifications of the SISs changed during differentiation. Through functional genomic screening, we also identified 25 and 41 putative active enhancers in C2C12-MBs and C2C12-MTs, respectively. Using luciferase reporter assays for putative enhancers of Myog and Myh3, we identified eight activating enhancers. Furthermore, dCas9-KRAB epigenome editing and RNA-Seq revealed a role for Myog enhancers in the regulation of Myog expression and myogenic differentiation in the native genomic context. Taken together, this study lays the groundwork for understanding 3D chromatin interaction changes of myogenic genes during myogenesis and provides insights that contribute to our understanding of the role of enhancers in regulating myogenesis.


Assuntos
Diferenciação Celular , Cromatina , Elementos Facilitadores Genéticos , Desenvolvimento Muscular , Mioblastos , Animais , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Código das Histonas , Camundongos , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas , Mioblastos/citologia
20.
Front Pharmacol ; 13: 914630, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795571

RESUMO

Cerebral ischemia with high mortality and morbidity still requires the effectiveness of medical treatments. A growing number of investigations have shown strong links between inflammation and cerebral ischemia. Natural medicine's treatment methods of cerebral ischemic illness have amassed a wealth of treatment experience and theoretical knowledge. This review summarized recent progress on the disease inflammatory pathways as well as 26 representative natural products that have been routinely utilized to treat cerebral ischemic injury. These natural products have exerted anti-inflammatory effects in cerebral ischemia based on their inflammatory mechanisms, including their inflammatory gene expression patterns and their related different cell types, and the roles of inflammatory mediators in ischemic injury. Overall, the combination of the potential therapeutic interventions of natural products with the inflammatory mechanisms will make them be applicable for cerebral ischemic patients in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...