Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
1.
BMC Cancer ; 24(1): 928, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090568

RESUMO

BACKGROUND: Osteosarcoma (OS) is one of the most common primary malignant tumors of bone in children, which develops from osteoblasts and typically occurs during the rapid growth phase of the bone. Recently, Super-Enhancers(SEs)have been reported to play a crucial role in osteosarcoma growth and metastasis. Therefore, there is an urgent need to identify specific targeted inhibitors of SEs to assist clinical therapy. This study aimed to elucidate the role of BRD4 inhibitor GNE-987 targeting SEs in OS and preliminarily explore its mechanism. METHODS: We evaluated changes in osteosarcoma cells following treatment with a BRD4 inhibitor GNE-987. We assessed the anti-tumor effect of GNE-987 in vitro and in vivo by Western blot, CCK8, flow cytometry detection, clone formation, xenograft tumor size measurements, and Ki67 immunohistochemical staining, and combined ChIP-seq with RNA-seq techniques to find its anti-tumor mechanism. RESULTS: In this study, we found that extremely low concentrations of GNE-987(2-10 nM) significantly reduced the proliferation and survival of OS cells by degrading BRD4. In addition, we found that GNE-987 markedly induced cell cycle arrest and apoptosis in OS cells. Further study indicated that VHL was critical for GNE-987 to exert its antitumor effect in OS cells. Consistent with in vitro results, GNE-987 administration significantly reduced tumor size in xenograft models with minimal toxicity, and partially degraded the BRD4 protein. KRT80 was identified through analysis of the RNA-seq and ChIP-seq data. U2OS HiC analysis suggested a higher frequency of chromatin interactions near the KRT80 binding site. The enrichment of H3K27ac modification at KRT80 was significantly reduced after GNE-987 treatment. KRT80 was identified as playing an important role in OS occurrence and development. CONCLUSIONS: This research revealed that GNE-987 selectively degraded BRD4 and disrupted the transcriptional regulation of oncogenes in OS. GNE-987 has the potential to affect KRT80 against OS.


Assuntos
Apoptose , Neoplasias Ósseas , Proteínas de Ciclo Celular , Proliferação de Células , Osteossarcoma , Fatores de Transcrição , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos Nus , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Osteossarcoma/genética , Osteossarcoma/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Ensaios Antitumorais Modelo de Xenoenxerto
2.
FASEB J ; 38(15): e23880, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39132919

RESUMO

Long noncoding RNAs (lncRNAs) are strongly associated with glucose homeostasis, but their roles remain largely unknown. In this study, the potential role of lncRNA-Snhg3 in glucose metabolism was evaluated both in vitro and in vivo. Here, we found a positive relationship between Snhg3 and hepatic glycogenesis. Glucose tolerance improved in hepatocyte-specific Snhg3 knock-in (Snhg3-HKI) mice, while it worsened in hepatocyte-specific Snhg3 knockout (Snhg3-HKO) mice. Furthermore, hepatic glycogenesis had shown remarkable increase in Snhg3-HKI mice and reduction in Snhg3-HKO mice, respectively. Mechanistically, Snhg3 increased mRNA and protein expression levels of PPP1R3B through inducing chromatin remodeling and promoting the phosphorylation of protein kinase B. Collectively, these results suggested that lncRNA-Snhg3 plays a critical role in hepatic glycogenesis.


Assuntos
Fígado , RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Camundongos , Fígado/metabolismo , Camundongos Knockout , Glucose/metabolismo , Masculino , Hepatócitos/metabolismo , Camundongos Endogâmicos C57BL , Glicogênio Hepático/metabolismo
3.
Adv Healthc Mater ; : e2401466, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087398

RESUMO

Aortic dissection (AD) is a severe cardiovascular disease necessitating active therapeutic strategies for early intervention and prevention. Nucleic acid drugs, known for their potent molecule-targeting therapeutic properties, offer potential for genetic suppression of AD. Piwi-interacting RNAs, a class of small RNAs, hold promise for managing cardiovascular diseases. Limited research on these RNAs and AD exists. This study demonstrates that an antagomir targeting heart-apoptosis-associated piRNA (HAAPIR) effectively regulates vascular remodeling, mitigating AD occurrence and progression through the myocyte enhancer factor 2D (Mef2D) and matrix metallopeptidase 9 (MMP9) pathways. Green tea-derived plant exosome-like nanovesicles (PELNs) are used for oral administration of antagomir. The antagomir-HAAPIR-nanovesicle complex, after purification and optimization, exhibits a high packing rate, while the antagomir is resistant to enzyme digestion. Administered to mice, the complex targets the aortic lesion, reducing AD incidence and improving survival. Moreover, MMP9 and Mef2D expression decrease significantly, inhibiting the phenotypic conversion of human aortic smooth muscle cells. PELNs encapsulate the antagomir-HAAPIR complex, maintaining stability, mediating transport into the bloodstream, and delivering Piwi-interacting RNAs to AD sites. Thus, HAAPIR is a potential target for persistent clinical AD prevention and treatment, and nanovesicle-encapsulated nucleic acids offer a promising cardiovascular disease treatment, providing insights for other therapeutic targets.

4.
Sci Rep ; 14(1): 16751, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033215

RESUMO

Tin dioxide is regarded as an alternative anode material rather than graphite due to its high theoretical specific capacity. Modification with carbon is a typical strategy to mitigate the volume expansion effect of SnO2 during the charge process. Strengthening the interface bonding is crucial for improving the electrochemical performance of SnO2/C composites. Here, SnO2-embedded reduced graphene oxide (rGO) composite with a low graphene content of approximately 5 wt.% was in situ synthesized via a cetyltrimethylammonium bromide (CTAB)-assisted hydrothermal method. The structural integrity of the SnO2/rGO composite is significantly improved by optimizing the Sn-O-C electronic structure with CTAB, resulting a reversible capacity of 598 mAh g-1 after 200 cycles at a current density of 1 A g-1. CTAB-assisted synthesis enhances the rate performance and cyclic stability of tin dioxide/graphene composites, and boosts their application as the anode materials for the next-generation lithium-ion batteries.

5.
J Exp Clin Cancer Res ; 43(1): 205, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39044280

RESUMO

BACKGROUND: Despite the use of targeted therapeutic approaches, T-cell acute lymphoblastic leukemia (T-ALL) is still associated with a high incidence of complications and a poor prognosis. Indisulam (also known as E7070), a newly identified molecular glue compound, has demonstrated increased therapeutic efficacy in several types of cancer through the rapid degradation of RBM39. This study aimed to evaluate the therapeutic potential of indisulam in T-ALL, elucidate its underlying mechanisms and explore the role of the RBM39 gene. METHODS: We verified the anticancer effects of indisulam in both in vivo and in vitro models. Additionally, the construction of RBM39-knockdown cell lines using shRNA confirmed that the malignant phenotype of T-ALL cells was dependent on RBM39. Through RNA sequencing, we identified indisulam-induced splicing anomalies, and proteomic analysis helped pinpoint protein changes caused by the drug. Comprehensive cross-analysis of these findings facilitated the identification of downstream effectors and subsequent validation of their functional roles. RESULTS: Indisulam has significant antineoplastic effects on T-ALL. It attenuates cell proliferation, promotes apoptosis and interferes with cell cycle progression in vitro while facilitating tumor remission in T-ALL in vivo models. This investigation provides evidence that the downregulation of RBM39 results in the restricted proliferation of T-ALL cells both in vitro and in vivo, suggesting that RBM39 is a potential target for T-ALL treatment. Indisulam's efficacy is attributed to its ability to induce RBM39 degradation, causing widespread aberrant splicing and abnormal translation of the critical downstream effector protein, THOC1, ultimately leading to protein depletion. Moreover, the presence of DCAF15 is regarded as critical for the effectiveness of indisulam, and its absence negates the ability of indisulam to induce the desired functional alterations. CONCLUSION: Our study revealed that indisulam, which targets RBM39 to induce tumor cell apoptosis, is an effective drug for treating T-ALL. Targeting RBM39 through indisulam leads to mis-splicing of pre-mRNAs, resulting in the loss of key effectors such as THOC1.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Proteínas de Ligação a RNA , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Camundongos , Animais , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Splicing de RNA , Sulfonamidas/farmacologia , Feminino
6.
J Appl Psychol ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023992

RESUMO

Previous research on the consequences of ethical voice has largely focused on the performance or social relational consequences of ethical voice on multiple organizational stakeholders. The present research provides an important extension to the ethical voice literature by investigating the distinct intrapersonal and interpersonal moral self-regulatory processes that shape ethical voicers' own psychological experiences and their subsequent purposeful efforts to maintain a positive sense of moral self. On one hand, we argue that ethical voice heightens voicers' sense of responsibility over ethical matters at work (i.e., moral ownership), which motivates them to refrain from violating moral norms (i.e., disengaging from unethical behaviors). On the contrary, we argue that ethical voice generates psychological pressure for voicers as they become anxious about preserving their moral social image (i.e., moral reputation maintenance concerns), which motivates them to signal their moral character to others through symbolic acts (i.e., engaging in moral symbolization behaviors). Further, we expect gender differences in the moral consequences of ethical voice. Across two studies that varied in temporal focus (a multisource, time-lagged field study and a within-person weekly experience sampling study), we found support for most of our predictions. The results suggest that while potentially psychologically uplifting (for both men and women), ethical voice also generates psychological pressure for the voicer to preserve their favorable moral social image and thus motivates them (more so in the case of women voicers at the between-person level) to explicitly symbolize their moral character in the workplace. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

7.
J Biophotonics ; : e202400200, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955356

RESUMO

Ovarian cancer is among the most common gynecological cancers and the eighth leading cause of cancer-related deaths among women worldwide. Surgery is among the most important options for cancer treatment. During surgery, a biopsy is generally required to screen for lesions; however, traditional case examinations are time consuming and laborious and require extensive experience and knowledge from pathologists. Therefore, this study proposes a simple, fast, and label-free ovarian cancer diagnosis method that combines second harmonic generation (SHG) imaging and deep learning. Unstained fresh human ovarian tissues were subjected to SHG imaging and accurately characterized using the Pyramid Vision Transformer V2 (PVTv2) model. The results showed that the SHG imaged collagen fibers could quantify ovarian cancer. In addition, the PVTv2 model could accurately differentiate the 3240 SHG images obtained from our imaging collection into benign, normal, and malignant images, with a final accuracy of 98.4%. These results demonstrate the great potential of SHG imaging techniques combined with deep learning models for diagnosing the diseased ovarian tissues.

8.
Sci Rep ; 14(1): 17642, 2024 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085325

RESUMO

With the increasing urban environmental problems, spontaneous vegetation has been gradually emphasized for high ecological value, whose distribution has been reported as strongly influenced by fine-scale environmental factors. As one of the major zones for urban spontaneous vegetation distribution, urban riparian corridors are well suited for research on the response of spontaneous plants to microhabitats. Taking the Wenyu River-North Canal in Beijing as the study site, we measured six microhabitat factors, including the level of maintenance and visitor activity, canopy density, litter thickness, and distance to water and road, to investigate their effects on spontaneous plant assemblages. The results showed that spontaneous plants respond significantly to fine-scale habitat variation, and were more responsive to human disturbance than other factors. Compared with diversity indicators, the functional trait compositions were more significantly correlated with microhabitat factors. Under lower maintenance of plants, the spontaneous communities had a higher invasion risk for plants. Thick litter can impede the occurrence of invasive species while favoring the growth of native ones. Our findings are important for furthering understanding of the spontaneous plant community establishment, and can serve as a good reference for the maintenance and management of spontaneous plants in urban riparian corridors.


Assuntos
Ecossistema , Plantas , Rios , Pequim , Biodiversidade , China
9.
Infect Immun ; 92(8): e0023224, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39037247

RESUMO

Helminths serve as principal regulators in modulating host immune responses, and their excretory-secretory proteins are recognized as potential therapeutic agents for inflammatory bowel disease. Nevertheless, our comprehension of the mechanisms underlying immunoregulation remains restricted. This investigation delves into the immunomodulatory role of a secretory protein serpin (Emu-serpin), within the larval stage of Echinococcus multilocularis. Our observations indicate that Emu-serpin effectively alleviates dextran sulfate sodium-induced colitis, yielding a substantial reduction in immunopathology and an augmentation of anti-inflammatory cytokines. Furthermore, this suppressive regulatory effect is concomitant with the reduction of gut microbiota dysbiosis linked to colitis, as evidenced by a marked impediment to the expansion of the pathobiont taxa Enterobacteriaceae. In vivo experiments demonstrate that Emu-serpin facilitates the expansion of M2 phenotype macrophages while concurrently diminishing M1 phenotype macrophages, alongside an elevation in anti-inflammatory cytokine levels. Subsequent in vitro investigations involving RAW264.7 and bone marrow macrophages reveal that Emu-serpin induces a conversion of M2 macrophage populations from a pro-inflammatory to an anti-inflammatory phenotype through direct inhibition. Adoptive transfer experiments reveal the peritoneal macrophages induced by Emu-serpin alleviate colitis and gut microbiota dysbiosis. In summary, these findings propose that Emu-serpin holds the potential to regulate macrophage polarization and maintain gut microbiota homeostasis in colitis, establishing it as a promising candidate for developing helminth therapy for preventing inflammatory diseases.


Assuntos
Colite , Disbiose , Echinococcus multilocularis , Microbioma Gastrointestinal , Macrófagos , Serpinas , Animais , Camundongos , Serpinas/metabolismo , Colite/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Echinococcus multilocularis/imunologia , Proteínas de Helminto/metabolismo , Células RAW 264.7 , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Citocinas/metabolismo , Camundongos Endogâmicos C57BL , Feminino
10.
Immunology ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866391

RESUMO

The cross-regulation of immunity and metabolism is currently a research hotspot in life sciences and immunology. Metabolic immunology plays an important role in cutting-edge fields such as metabolic regulatory mechanisms in immune cell development and function, and metabolic targets and immune-related disease pathways. Protein post-translational modification (PTM) is a key epigenetic mechanism that regulates various biological processes and highlights metabolite functions. Currently, more than 400 PTM types have been identified to affect the functions of several proteins. Among these, metabolic PTMs, particularly various newly identified histone or non-histone acylation modifications, can effectively regulate various functions, processes and diseases of the immune system, as well as immune-related diseases. Thus, drugs aimed at targeted acylation modification can have substantial therapeutic potential in regulating immunity, indicating a new direction for further clinical translational research. This review summarises the characteristics and functions of seven novel lysine acylation modifications, including succinylation, S-palmitoylation, lactylation, crotonylation, 2-hydroxyisobutyrylation, ß-hydroxybutyrylation and malonylation, and their association with immunity, thereby providing valuable references for the diagnosis and treatment of immune disorders associated with new acylation modifications.

11.
J Pharmacol Exp Ther ; 390(2): 240-249, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38902033

RESUMO

Sympathetic hyperinnervation is the leading cause of fatal ventricular arrhythmia (VA) after myocardial infarction (MI). Cardiac mast cells cause arrhythmias directly through degranulation. However, the role and mechanism of mast cell degranulation in sympathetic remodeling remain unknown. We investigated the role of oxytocin (OT) in stabilizing cardiac mast cells and improving sympathetic innervation in rats. MI was induced by coronary artery ligation. Western blotting, immunofluorescence, and toluidine staining of mast cells were performed to determine the expression and location of target protein. Mast cells accumulated significantly in peri-infarcted tissues and were present in a degranulated state. They expressed OT receptor (OTR), and OT infusion reduced the number of degranulated cardiac mast cells post-MI. Sympathetic hyperinnervation was attenuated as assessed by immunofluorescence for tyrosine hydroxylase (TH). Seven days post-MI, the arrhythmia score of programmed electrical stimulation was higher in vehicle-treated rats with MI than in rats treated with OT. An in vitro study showed that OT stabilized mast cells via the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway. Further in vivo studies on OTR-deficient mice showed worsening mast cell degranulation and worsening sympathetic innervation. OT pretreatment inhibited cardiac mast cell degranulation post-MI and prevented sympathetic hyperinnervation, along with mast cell stabilization via the PI3K/Akt pathway. SIGNIFICANCE STATEMENT: This is the first study to elucidate the role and mechanism of oxytocin (OT) in inflammatory-sympathetic communication mediated sympathetic hyperinnervation after myocardial infarction (MI), providing new approaches to prevent fatal arrhythmias.


Assuntos
Degranulação Celular , Mastócitos , Infarto do Miocárdio , Ocitocina , Ratos Sprague-Dawley , Receptores de Ocitocina , Sistema Nervoso Simpático , Animais , Ocitocina/farmacologia , Ocitocina/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Ratos , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo , Masculino , Degranulação Celular/efeitos dos fármacos , Receptores de Ocitocina/metabolismo , Receptores de Ocitocina/antagonistas & inibidores , Camundongos , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/etiologia
12.
Food Chem Toxicol ; 191: 114826, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897284

RESUMO

OBJECTIVE: Aortic dissection (AD) is a prevalent and acute clinical catastrophe characterized by abrupt manifestation, swift progression, and elevated fatality rates. Despite smoking being a significant risk factor for AD, the precise pathological process remains elusive. This investigation endeavors to explore the mechanisms by which smoking accelerates AD through ferroptosis induction. METHODOLOGY: In this novel study, we detected considerable endothelial cell death by ferroptosis within the aortic inner lining of both human AD patients with a smoking history and murine AD models induced by ß-aminopropionitrile, angiotensin II, and nicotine. Utilizing bioinformatic approaches, we identified microRNAs regulating the expression of the ferroptosis inhibitor Glutathione peroxidase 4 (GPX4). Nicotine's impact on ferroptosis was further assessed in human umbilical vein endothelial cells (HUVECs) through modulation of miR-1909-5p. Additionally, the therapeutic potential of miR-1909-5p antagomir was evaluated in vivo in nicotine-exposed AD mice. FINDINGS: Our results indicate a predominance of ferroptosis over apoptosis, pyroptosis, and necroptosis in the aortas of AD patients who smoke. Nicotine exposure instigated ferroptosis in HUVECs, where the miR-1909-5p/GPX4 axis was implicated. Modulation of miR-1909-5p in these cells revealed its regulatory role over GPX4 levels and subsequent endothelial ferroptosis. In vivo, miR-1909-5p suppression reduced ferroptosis and mitigated AD progression in the murine model. CONCLUSIONS: Our data underscore the involvement of the miR-1909-5p/GPX4 axis in the pathogenesis of nicotine-induced endothelial ferroptosis in AD.

13.
Neurobiol Dis ; 199: 106578, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38925316

RESUMO

OBJECTIVE: Our objective was to explore the patterns of resting-state network (RSN) connectivity alterations and investigate how the influences of individual-level network connections on cognition varied across clinical stages without assuming a constant relationship. METHODS: 108 PD patients with continuum of cognitive decline (PD-NC = 46, PD-MCI = 43, PDD = 19) and 34 healthy controls (HCs) underwent resting-state functional MRI and neuropsychological tests. Independent component analysis (ICA) and graph theory analyses (GTA) were employed to explore RSN connection changes. Additionally, stage-dependent differential impact of network communication on cognitive performance were examined using sparse varying coefficient modeling. RESULTS: Compared to HCs, the dorsal attention network (DAN) and dorsal sensorimotor network (dSMN) were central networks with decreased connections in PD-NC and PD-MCI stage, while the lateral visual network (LVN) emerged as a central network in patients with dementia. Additionally, connectivity of the cerebellum network (CBN) increased in the PD-NC and PD-MCI stages. GTA demonstrated decreased nodal metrics for DAN and dSMN, coupled with an increase for CBN. Moreover, the degree centrality (DC) values of DAN and dSMN exhibited a stage-dependent differential impact on cognitive performance across the continuum of cognitive decline. CONCLUSION: Our findings suggest that across the progression of cognitive impairment, the LVN gradually transitions into a core node with reduced connectivity, while the enhancement of connections in CBN diminishes. Furthermore, the non-linear relationship between the DC values of RSNs and cognitive decline indicates the potential for tailored interventions targeting specific stages.


Assuntos
Disfunção Cognitiva , Imageamento por Ressonância Magnética , Doença de Parkinson , Humanos , Doença de Parkinson/fisiopatologia , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/psicologia , Doença de Parkinson/complicações , Feminino , Masculino , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/diagnóstico por imagem , Idoso , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Cognição/fisiologia , Testes Neuropsicológicos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem , Progressão da Doença
14.
J Neurol ; 271(8): 5598-5609, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38913186

RESUMO

BACKGROUND: Although brain glymphatic dysfunction is a contributing factor to the cognitive deficits in Parkinson's disease (PD), its role in the longitudinal progression of cognitive dysfunction remains unknown. OBJECTIVE: To investigate the glymphatic function in PD with mild cognitive impairment (MCI) that progresses to dementia (PDD) and to determine its predictive value in identifying individuals at high risk for developing dementia. METHODS: We included 64 patients with PD meeting criteria for MCI and categorized them as either progressed to PDD (converters) (n = 29) or did not progress to PDD (nonconverters) (n = 35), depending on whether they developed dementia during follow-up. Meanwhile, 35 age- and gender-matched healthy controls (HC) were included. Bilateral diffusion-tensor imaging analysis along the perivascular space (DTI-ALPS) indices and enlarged perivascular spaces (EPVS) volume fraction in bilateral centrum semiovale, basal ganglia (BG), and midbrain were compared among the three groups. Correlations among the DTI-ALPS index and EPVS, as well as cognitive performance were analyzed. Additionally, we investigated the mediation effect of EPVS on DTI-ALPS and cognitive function. RESULTS: PDD converters had lower cognitive composites scores in the executive domains than did nonconverters (P < 0.001). Besides, PDD converters had a significantly lower DTI-ALPS index in the left hemisphere (P < 0.001) and a larger volume fraction of BG-PVS (P = 0.03) compared to HC and PDD nonconverters. Lower DTI-ALPS index and increased BG-PVS volume fraction were associated with worse performance in the global cognitive performance and executive function. However, there was no significant mediating effect. Receiver operating characteristic analysis revealed that the DTI-ALPS could effectively identify PDD converters with an area under the curve (AUC) of 0.850. CONCLUSION: The reduction of glymphatic activity, measured by the DTI-ALPS, could potentially be used as a non-invasive indicator in forecasting high risk of dementia conversion before the onset of dementia in PD patients.


Assuntos
Disfunção Cognitiva , Demência , Imagem de Tensor de Difusão , Progressão da Doença , Sistema Glinfático , Doença de Parkinson , Humanos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/fisiopatologia , Masculino , Feminino , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/complicações , Doença de Parkinson/fisiopatologia , Idoso , Demência/diagnóstico por imagem , Demência/etiologia , Demência/fisiopatologia , Pessoa de Meia-Idade , Sistema Glinfático/diagnóstico por imagem , Sistema Glinfático/fisiopatologia
15.
Aging (Albany NY) ; 16(10): 8965-8979, 2024 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-38787373

RESUMO

BACKGROUND: Bone formation and homeostasis are greatly dependent on the osteogenic differentiation of human bone marrow stem cells (BMSCs). Therefore, revealing the mechanisms underlying osteogenic differentiation of BMSCs will provide new candidate therapeutic targets for osteoporosis. METHODS: The osteogenic differentiation of BMSCs was measured by analyzing ALP activity and expression levels of osteogenic markers. Cellular Fe and ROS levels and cell viability were applied to evaluate the ferroptosis of BMSCs. qRT-PCR, Western blotting, and co-immunoprecipitation assays were harnessed to study the molecular mechanism. RESULTS: The mRNA level of CRYAB was decreased in the plasma of osteoporosis patients. Overexpression of CRYAB increased the expression of osteogenic markers including OCN, OPN, RUNX2, and COLI, and also augmented the ALP activity in BMSCs, on the contrary, knockdown of CRYAB had opposite effects. IP-MS technology identified CRYAB-interacted proteins and further found that CRYAB interacted with ferritin heavy chain 1 (FTH1) and maintained the stability of FTH1 via the proteasome mechanism. Mechanically, we unraveled that CRYAB regulated FTH1 protein stability in a lactylation-dependent manner. Knockdown of FTH1 suppressed the osteogenic differentiation of BMSCs, and increased the cellular Fe and ROS levels, and eventually promoted ferroptosis. Rescue experiments revealed that CRYAB suppressed ferroptosis and promoted osteogenic differentiation of BMSCs via regulating FTH1. The mRNA level of FTH1 was decreased in the plasma of osteoporosis patients. CONCLUSIONS: Downregulation of CRYAB boosted FTH1 degradation and increased cellular Fe and ROS levels, and finally improved the ferroptosis and lessened the osteogenic differentiation of BMSCs.


Assuntos
Diferenciação Celular , Ferroptose , Osteogênese , Osteoporose , Humanos , Osteogênese/efeitos dos fármacos , Osteoporose/metabolismo , Osteoporose/patologia , Células-Tronco Mesenquimais/metabolismo , Cadeia B de alfa-Cristalina/metabolismo , Cadeia B de alfa-Cristalina/genética , Ferritinas/metabolismo , Estabilidade Proteica , Espécies Reativas de Oxigênio/metabolismo , Células Cultivadas , Células da Medula Óssea/metabolismo , Feminino , Oxirredutases
16.
J Hazard Mater ; 472: 134510, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704909

RESUMO

Nitrogen removal is essential for restoring eutrophic lakes. Microorganisms and aquatic plants in lakes are both crucial for removing excess nitrogen. However, microplastic (MP) pollution and the invasion of exotic aquatic plants have become increasingly serious in lake ecosystems due to human activity and plant-dominant traits. This field mesocosm study explored how the diversity of invasive submerged macrophytes affects denitrification (DNF), anammox (ANA), and dissimilatory nitrate reduction to ammonium (DNRA) in lake sediments with varying MPs. Results showed that invasive macrophytes suppressed DNF rates, but DNRA and ANA were less sensitive than DNF to the diversity of invasive species. Sediment MPs increased the biomass of invasive species more than native species, but did not affect microbial processes. The effects of MPs on nitrate dissimilatory reduction were process-specific. MPs increased DNF rates and the competitive advantage of DNF over DNRA by changing the sediment environment. The decoupling of DNF and ANA was also observed, with increased DNF rates and decreased ANA rates. The study findings suggested new insights into how the invasion of exotic submerged macrophytes affects the sediment nitrogen cycle complex environments.


Assuntos
Sedimentos Geológicos , Espécies Introduzidas , Lagos , Microplásticos , Nitratos , Plantas , Sedimentos Geológicos/microbiologia , Nitratos/metabolismo , Plantas/metabolismo , Microplásticos/metabolismo , Lagos/microbiologia , Poluentes Químicos da Água/metabolismo , Oxirredução , Biodiversidade , Desnitrificação
17.
J Adv Res ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621622

RESUMO

INTRODUCTION: Necroptosis triggered by H2O2 is hypothesized to be a critical factor in the rupture of atherosclerotic plaques, which may precipitate acute cardiovascular events. Nevertheless, the specific regulatory molecules of this development remain unclear. We aims to elucidate a mechanism from the perspective of circular RNA. OBJECTIVES: There are few studies on circRNA in VSMCs necroptosis. The objective of our research is to shed light on the intricate roles that circHIPK3 plays in the process of necroptosis in VSMCs and the development of atherosclerotic plaques that are prone to rupture. Our study elucidates the specific molecular mechanisms by which circHIPK3 regulates necroptosis and atherosclerotic vulnerable plaque formation through targeted proteins. Identifying this mechanism at the cellular level offers a molecular framework for understanding plaque progression and stability regulation, as well as a potential biomarker for the prognosis of susceptible atherosclerotic plaques. METHODS: We collected clinical vascular tissue for HE staining and Masson staining to determine the presence and stability of plaques. Then, NCBI database was used to screen out circRNA with elevated expression level in plaque tissue, and the up-regulated circRNA, circHIPK3, was verified by qRT-PCR and FISH. Further, we synthesized circHIPK3's small interference sequence and overexpressed plasmid in vitro, and verified its regulation effect on necroptosis of VSMCs under physiological and pathological conditions by WB, qRT-PCR and PI staining. Through RNA pull down, mass spectrometry and RNA immunoprecipitation, DRP1 was identified as circHIPK3 binding protein and was positively regulated by circHIPK3. Meanwhile, on the basis of silencing of DRP1, the regulation of circHIPK3 on necroptosis is verified to be mediated by DRP1. Finally, we validated the regulation of circHIPK3 on vulnerable plaque formation in ApoE-/- mice. RESULTS: We investigated that circHIPK3 was highly expressed in vulnerable plaques, and the increase in expression level promoted H2O2 induced necroptosis of VSMCs. CircHIPK3 targeted the protein DRP1, leading to an elevation in mitochondrial division rate, resulting in increased reactive oxygen species and impaired mitochondrial function, ultimately leading to necroptosis of VSMCs and vulnerable plaque formation. CONCLUSION: CircHIPK3 interact with DRP1 involve in H2O2 induced Mitochondrial damage and necroptosis of VSMCs, and Silencing circHIPK3 in vivo can reduce atherosclerotic vulnerable plaque formation. Our research findings may have applications in providing diagnostic biomarkers for vulnerable plaques.

18.
Sci Data ; 11(1): 396, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637640

RESUMO

Stag beetles (Coleoptera: Lucanidae) represent a significant saproxylic assemblage in forest ecosystems and are noted for their enlarged mandibles and male polymorphism. Despite their relevance as ideal models for the study of exaggerated mandibles that aid in attracting mates, the regulatory mechanisms associated with these traits remain understudied, and restricted by the lack of high-quality reference genomes for stag beetles. To address this limitation, we successfully assembled the first chromosome-level genome of a representative species Dorcus hopei. The genome was 496.58 Mb in length, with a scaffold N50 size of 54.61 Mb, BUSCO values of 99.8%, and 96.8% of scaffolds anchored to nine pairs of chromosomes. We identified 285.27 Mb (57.45%) of repeat sequences and annotated 11,231 protein-coding genes. This genome will be a valuable resource for further understanding the evolution and ecology of stag beetles, and provides a basis for studying the mechanisms of exaggerated mandibles through comparative analysis.


Assuntos
Besouros , Genoma de Inseto , Animais , Masculino , Besouros/genética , Florestas , Filogenia , Polimorfismo Genético , Cromossomos de Insetos
19.
J Food Sci ; 89(5): 3078-3093, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38605580

RESUMO

Human milk contains a variety of microorganisms that exert benefit for human health. In the current study, we isolated a novel Lactobacillus gasseri strain named Lactobacillus gasseri (L. gasseri) SHMB 0001 from human milk and aimed to evaluate the probiotic characteristics and protective effects on murine colitis of the strain. The results showed that L. gasseri SHMB 0001 possessed promising potential probiotic characteristics, including good tolerance against artificial gastric and intestinal fluids, adhesion to Caco-2 cells, susceptibility to antibiotic, no hemolytic activity, and without signs of toxicity or infection in mice. Administration of L. gasseri SHMB 0001 (1 × 108 CFU per gram of mouse weight per day) reduced weight loss, the disease activity index, and colon shortening in mice during murine colitis conditions. Histopathological analysis revealed that L. gasseri SHMB 0001 treatment attenuated epithelial damage and inflammatory infiltration in the colon. L. gasseri SHMB 0001 treatment increased the expression of colonic occludin and claudin-1 while decreasing the expression of pro-inflammatory cytokine genes. L. gasseri SHMB 0001 modified the composition and structure of the gut microbiota community and partially recovered the Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways altered by dextran sulfate sodium (DSS). Overall, our results indicated that the human breast milk-derived L. gasseri SHMB 0001 exhibited promising probiotic properties and ameliorative effect on DSS-induced colitis in mice. L. gasseri SHMB 0001 may be applied as a promising probiotic against intestinal inflammation in the future. PRACTICAL APPLICATION: L. gasseri SHMB 0001 isolated from human breast milk showed good tolerance to gastrointestinal environment, safety, and protective effect against DSS-induced mice colitis via enforcing gut barrier, downregulating pro-inflammatory cytokines, and modulating gut microbiota. L. gasseri SHMB 0001 may be a promising probiotic candidate for the treatment of intestinal inflammation.


Assuntos
Colite , Sulfato de Dextrana , Microbioma Gastrointestinal , Lactobacillus gasseri , Leite Humano , Probióticos , Probióticos/farmacologia , Animais , Humanos , Camundongos , Colite/induzido quimicamente , Colite/terapia , Colite/microbiologia , Sulfato de Dextrana/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Células CACO-2 , Feminino , Colo/microbiologia , Colo/patologia , Colo/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças
20.
Cell Death Discov ; 10(1): 186, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649363

RESUMO

Neuroblastoma (NB) is a common childhood tumor with a high incidence worldwide. The regulatory role of RNA N6-methyladenosine (m6A) in gene expression has attracted significant attention, and the impact of methyltransferase-like 14 (METTL14) on tumor progression has been extensively studied in various types of cancer. However, the specific influence of METTL14 on NB remains unexplored. Using data from the Target database, our study revealed significant upregulation of METTL14 expression in high-risk NB patients, with strong correlation with poor prognosis. Furthermore, we identified ETS1 and YY1 as upstream regulators that control the expression of METTL14. In vitro experiments involving the knockdown of METTL14 in NB cells demonstrated significant inhibition of cell proliferation, migration, and invasion. In addition, suppressing METTL14 inhibited NB tumorigenesis in nude mouse models. Through MeRIP-seq and RNA-seq analyses, we further discovered that YWHAH is a downstream target gene of METTL14. Mechanistically, we observed that methylated YWHAH transcripts, particularly those in the 5' UTR, were specifically recognized by the m6A "reader" protein YTHDF1, leading to the degradation of YWHAH mRNA. Moreover, the downregulation of YWHAH expression activated the PI3K/AKT signaling pathway, promoting NB cell activity. Overall, our study provides valuable insights into the oncogenic effects of METTL14 in NB cells, highlighting its role in inhibiting YWHAH expression through an m6A-YTHDF1-dependent mechanism. These findings also suggest the potential utility of a biomarker panel for prognostic prediction in NB patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA