Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
1.
Nat Commun ; 15(1): 6655, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107376

RESUMO

Polymeric-based dielectric materials hold great potential as energy storage media in electrostatic capacitors. However, the inferior thermal resistance of polymers leads to severely degraded dielectric energy storage capabilities at elevated temperatures, limiting their applications in harsh environments. Here we present a flexible laminated polymer nanocomposite where the polymer component is confined at the nanoscale, achieving improved thermal-mechanical-electrical stability within the resulting nanocomposite. The nanolaminate, consisting of nanoconfined polyetherimide (PEI) polymer sandwiched between solid Al2O3 layers, exhibits a high energy density of 18.9 J/cm3 with a high energy efficiency of ~ 91% at elevated temperature of 200°C. Our work demonstrates that nanoconfinement of PEI polymer results in reduced diffusion coefficient and constrained thermal dynamics, leading to a remarkable increase of 37°C in glass-transition temperature compared to bulk PEI polymer. The combined effects of nanoconfinement and interfacial trapping within the nanolaminates synergistically contribute to improved electrical breakdown strength and enhanced energy storage performance across temperature range up to 250°C. By utilizing the flexible ultrathin nanolaminate on curved surfaces such as thin metal wires, we introduce an innovative concept that enables the creation of a highly efficient and compact metal-wired capacitor, achieving substantial capacitance despite the minimal device volume.

2.
Front Plant Sci ; 15: 1367121, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086912

RESUMO

Introduction: The research on plant leaf morphology is of great significance for understanding the development and evolution of plant organ morphology. As a relict plant, the G. biloba leaf morphology typically exhibits bifoliate and peltate forms. However, throughout its long evolutionary history, Ginkgo leaves have undergone diverse changes. Methods: This study focuses on the distinct "trumpet" leaves and normal fan-shaped leaves of G. biloba for analysis of their phenotypes, photosynthetic activity, anatomical observations, as well as transcriptomic and metabolomic analyses. Results: The results showed that trumpet-shaped G. biloba leaves have fewer cells, significant morphological differences between dorsal and abaxial epidermal cells, leading to a significantly lower net photosynthetic rate. Additionally, this study found that endogenous plant hormones such as GA, auxin, and JA as well as metabolites such as flavonoids and phenolic acids play roles in the formation of trumpet-shaped G. biloba leaves. Moreover, the experiments revealed the regulatory mechanisms of various key biological processes and gene expressions in the trumpet-shaped leaves of G. biloba. Discussion: Differences in the dorsal and abdominal cells of G. biloba leaves can cause the leaf to curl, thus reducing the overall photosynthetic efficiency of the leaves. However, the morphology of plant leaves is determined during the primordia leaf stage. In the early stages of leaf development, the shoot apical meristem (SAM) determines the developmental morphology of dicotyledonous plant leaves. This process involves the activity of multiple gene families and small RNAs. The establishment of leaf morphology is complexly regulated by various endogenous hormones, including the effect of auxin on cell walls. Additionally, changes in intracellular ion concentrations, such as fluctuations in Ca2+ concentration, also affect cell wall rigidity, thereby influencing leaf growth morphology.

3.
Nat Hum Behav ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103610

RESUMO

When fields lack consensus standard methods and accessible ground truths, reproducibility can be more of an ideal than a reality. Such has been the case for functional neuroimaging, where there exists a sprawling space of tools and processing pipelines. We provide a critical evaluation of the impact of differences across five independently developed minimal preprocessing pipelines for functional magnetic resonance imaging. We show that, even when handling identical data, interpipeline agreement was only moderate, critically shedding light on a factor that limits cross-study reproducibility. We show that low interpipeline agreement can go unrecognized until the reliability of the underlying data is high, which is increasingly the case as the field progresses. Crucially we show that, when interpipeline agreement is compromised, so too is the consistency of insights from brain-wide association studies. We highlight the importance of comparing analytic configurations, because both widely discussed and commonly overlooked decisions can lead to marked variation.

4.
Cell Death Dis ; 15(8): 598, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39153998

RESUMO

The mechanisms underlying tissue repair in response to damage have been one of main subjects of investigation. Here we leverage the wound-induced hair neogenesis (WIHN) models in adult mice to explore the correlation between degree of damage and the healing process and outcome. The multimodal analysis, in combination with single-cell RNA sequencing help to explore the difference in wounds of gentle and heavy damage degrees, identifying the potential role of toll-like receptor 9 (TLR9) in sensing the injury and regulating the immune reaction by promoting the migration of γδT cells. The TLR9 deficient mice or wounds injected with TLR9 antagonist have greatly impaired healing and lower WIHN levels. Inhibiting the migration of γδT cells or knockout of γδT cells also suppress the wound healing and regeneration, which can't be rescued by TLR9agonist. Finally, the amphiregulin (AREG) is shown as one of most important effectors secreted by γδT cells and keratinocytes both in silicon or in the laboratory, whose expression influences WIHN levels and the expression of stem cell markers. In total, our findings reveal a previously unrecognized role for TLR9 in sensing skin injury and influencing the tissue repair and regeneration by modulation of the migration of γδT cells, and identify the TLR9-γδT cells-areg axis as new potential targets for enhancing tissue regeneration.


Assuntos
Folículo Piloso , Regeneração , Receptor Toll-Like 9 , Cicatrização , Animais , Folículo Piloso/metabolismo , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 9/genética , Camundongos , Camundongos Endogâmicos C57BL , Anfirregulina/metabolismo , Anfirregulina/genética , Movimento Celular , Camundongos Knockout , Queratinócitos/metabolismo , Linfócitos Intraepiteliais/metabolismo
5.
Front Genet ; 15: 1401011, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873116

RESUMO

Drought-induced 19 (Di19) protein plays critical biological functions in response to adversity as well as in plant growth and development. Exploring the role and mechanism of Di19 in abiotic stress responses is of great significance for improving plant tolerance. In this study, six Di19 genes were identified in the common bean (Phaseolus vulgaris L.), which were mainly derived from segmental duplications. These genes share conserved exon/intron structures and were classified into three subfamilies based on their phylogenetic relationships. The composition and arrangement of conserved motifs were consistent with their phylogenetic relationships. Many hormone- and stress-responsive elements were distributed in the promoters region of PvDi19 genes. Variations in histidine residues in the Cys2/His2 (C2H2) zinc-finger domains resulted in an atypical tertiary structure of PvDi19-5. Gene expression analysis showed rapid induction of PvDi19-1 in roots by 10% PEG treatment, and PvDi19-2 in leaves by 20% PEG treatment, respectively. Most PvDi19s exhibited insensitivity to saline-alkali stress, except for PvDi19-6, which was notably induced during later stages of treatment. The most common bean Di19 genes were inhibited or not regulated by cadmium stress, but the expression of PvDi19-6 in roots was significantly upregulated when subjected to lower concentrations of cadmium (5 mmol). Moreover, Di19s exhibited greater sensitivity to severe cold stress (6°C). These findings enhance our understanding of the role of PvDi19s in common bean abiotic stress responses and provide a basis for future genetic enhancements in common bean stress tolerance.

6.
ACS Infect Dis ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833551

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) has become a serious threat to human public health and global economic development, and there is an urgent need to develop new antimicrobial agents. Flavonoids are the largest group of plant secondary metabolites, and the anti-S. aureus and anti-MRSA activities of flavonoids have now been widely reported. The aim of this Review is to describe plant-derived flavonoid active ingredients and their effects and mechanisms of inhibitory activity against MRSA in order to provide insights for screening novel antimicrobial agents. Here, 85 plant-derived flavonoids (14 flavones, 21 flavonols, 26 flavanones, 9 isoflavones, 12 chalcones, and 3 other classes) with anti-MRSA activity are reviewed. Among these flavonoids, flavones and isoflavones generally showed the most significant anti-MRSA activity (MICs: 1-8 µg/mL). The results of the present Review display that most of the flavonoids with excellent anti-MRSA activity were derived from Morus alba L. and Paulownia tomentosa (Thunb.) Steud. The antibacterial mechanism of flavonoids against MRSA is mainly achieved by disruption of membrane structures, inhibition of efflux pumps, and inhibition of ß-lactamases and bacterial virulence factors. We hope this Review can provide insights into the development of novel antimicrobials based on natural products for treating MRSA infections.

7.
J Glob Antimicrob Resist ; 37: 225-232, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750896

RESUMO

OBJECTIVES: Polymyxins are currently the last-resort treatment against multi-drug resistant Gram-negative bacterial infections, but plasmid-mediated mobile polymyxin resistance genes (mcr) threaten its efficacy, especially in carbapenem-resistant Enterobacter cloacae complex (CRECC). The objective of this study was to provide insights into the mechanism of polymyxin-induced bacterial resistance and the effect of overexpression of mcr-9. METHODS: The clinical strain CRECC414 carrying the mcr-9 gene was treated with a gradient concentration of polymyxin. Subsequently, the broth microdilution was used to determine the minimum inhibitory concentration (MIC) and RT-qPCR was utilized to assess mcr-9 expression. Transcriptome sequencing and whole genome sequencing (WGS) was utilized to identify alterations in strains resulting from increased polymyxin resistance, and significant transcriptomic differences were analysed alongside a comprehensive examination of metabolic networks at the genomic level. RESULTS: Polymyxin treatment induced the upregulation of mcr-9 expression and significantly elevated the MIC of the strain. Furthermore, the WGS and transcriptomic results revealed a remarkable up-regulation of arnBCADTEF gene cassette, indicating that the Arn/PhoPQ system-mediated L-Ara4N modification is the preferred mechanism for achieving high levels of resistance. Additionally, significant alterations in bacterial gene expression were observed with regards to multidrug efflux pumps, oxidative stress and repair mechanisms, cell membrane biosynthesis, as well as carbohydrate metabolic pathways. CONCLUSION: Polymyxin greatly disrupts the transcription of vital cellular pathways. A complete PhoPQ two-component system is a prerequisite for polymyxin resistance of Enterobacter cloacae, even though mcr-9 is highly expressed. These findings provide novel and important information for further investigation of polymyxin resistance of CRECC.


Assuntos
Antibacterianos , Enterobacteriáceas Resistentes a Carbapenêmicos , Enterobacter cloacae , Perfilação da Expressão Gênica , Testes de Sensibilidade Microbiana , Polimixinas , Polimixinas/farmacologia , Antibacterianos/farmacologia , Enterobacter cloacae/efeitos dos fármacos , Enterobacter cloacae/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Humanos , Proteínas de Bactérias/genética , Sequenciamento Completo do Genoma , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Infecções por Enterobacteriaceae/microbiologia , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Transcriptoma
8.
Zool Res ; 45(4): 711-723, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38766761

RESUMO

The genus Silurus, an important group of catfish, exhibits heterogeneous distribution in Eurasian freshwater systems. This group includes economically important and endangered species, thereby attracting considerable scientific interest. Despite this interest, the lack of a comprehensive phylogenetic framework impedes our understanding of the mechanisms underlying the extensive diversity found within this genus. Herein, we analyzed 89 newly sequenced and 20 previously published mitochondrial genomes (mitogenomes) from 13 morphological species to reconstruct the phylogenetic relationships, biogeographic history, and species diversity of Silurus. Our phylogenetic reconstructions identified eight clades, supported by both maximum-likelihood and Bayesian inference. Sequence-based species delimitation analyses yielded multiple molecular operational taxonomic units (MOTUs) in several taxa, including the Silurus asotus complex (four MOTUs) and Silurus microdorsalis (two MOTUs), suggesting that species diversity is underestimated in the genus. A reconstructed time-calibrated tree of Silurus species provided an age estimate of the most recent common ancestor of approximately 37.61 million years ago (Ma), with divergences among clades within the genus occurring between 11.56 Ma and 29.44 Ma, and divergences among MOTUs within species occurring between 3.71 Ma and 11.56 Ma. Biogeographic reconstructions suggested that the ancestral area for the genus likely encompassed China and the Korean Peninsula, with multiple inferred dispersal events to Europe and Central and Western Asia between 21.78 Ma and 26.67 Ma and to Japan between 2.51 Ma and 18.42 Ma. Key factors such as the Eocene-Oligocene extinction event, onset and intensification of the monsoon system, and glacial cycles associated with sea-level fluctuations have likely played significant roles in shaping the evolutionary history of the genus Silurus.


Assuntos
Peixes-Gato , Filogenia , Filogeografia , Animais , Peixes-Gato/genética , Peixes-Gato/classificação , Genoma Mitocondrial , Variação Genética , Distribuição Animal
9.
Eur J Clin Microbiol Infect Dis ; 43(7): 1309-1318, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38700663

RESUMO

PURPOSE: Enterobacteriaceae carrying mcr-9, in particularly those also co-containing metallo-ß-lactamase (MBL) and TEM type ß-lactamase, present potential transmission risks and lack adequate clinical response methods, thereby posing a major threat to global public health. The aim of this study was to assess the antimicrobial efficacy of a combined ceftazidime/avibactam (CZA) and aztreonam (ATM) regimen against carbapenem-resistant Enterobacter cloacae complex (CRECC) co-producing mcr-9, MBL and TEM. METHODS: The in vitro antibacterial activity of CZA plus ATM was evaluated using a time-kill curve assay. Furthermore, the in vivo interaction between CZA plus ATM was confirmed using a Galleria mellonella (G. mellonella) infection model. RESULTS: All eight clinical strains of CRECC, co-carrying mcr-9, MBL and TEM, exhibited high resistance to CZA and ATM. In vitro time-kill curve analysis demonstrated that the combination therapy of CZA + ATM exerted significant bactericidal activity against mcr-9, MBL and TEM-co-producing Enterobacter cloacae complex (ECC) isolates with a 100% synergy rate observed in our study. Furthermore, in vivo survival assay using Galleria mellonella larvae infected with CRECC strains co-harboring mcr-9, MBL and TEM revealed that the CZA + ATM combination significantly improved the survival rate compared to the drug-treatment alone and untreated control groups. CONCLUSION: To our knowledge, this study represents the first report on the in vitro and in vivo antibacterial activity of CZA plus ATM against CRECC isolates co-harboring mcr-9, MBL and TEM. Our findings suggest that the combination regimen of CZA + ATM provides a valuable reference for clinicians to address the increasingly complex antibiotic resistance situation observed in clinical microorganisms.


Assuntos
Antibacterianos , Compostos Azabicíclicos , Aztreonam , Ceftazidima , Combinação de Medicamentos , Enterobacter cloacae , Infecções por Enterobacteriaceae , Testes de Sensibilidade Microbiana , beta-Lactamases , Aztreonam/farmacologia , Aztreonam/uso terapêutico , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/microbiologia , Animais , Enterobacter cloacae/efeitos dos fármacos , Enterobacter cloacae/genética , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Humanos , beta-Lactamases/metabolismo , beta-Lactamases/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Quimioterapia Combinada , Mariposas/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Modelos Animais de Doenças
10.
Sci Total Environ ; 938: 173417, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38797401

RESUMO

Florfenicol, a widely used veterinary antibiotic, has now been frequently detected in various water environments and human urines, with high concentrations. Accordingly, the ecological risks and health hazards of florfenicol are attracting increasing attention. In recent years, antibiotic exposure has been implicated in the disruption of animal glucose metabolism. However, the specific effects of florfenicol on the glucose metabolism system and the underlying mechanisms are largely unknown. Herein, zebrafish as an animal model were exposed to environmentally relevant concentrations of florfenicol for 28 days. Using biochemical and molecular analyses, we found that exposure to florfenicol disturbed glucose homeostasis, as evidenced by the abnormal levels of blood glucose and hepatic/muscular glycogen, and the altered expression of genes involved in glycogenolysis, gluconeogenesis, glycogenesis, and glycolysis. Considering the efficient antibacterial activity of florfenicol and the crucial role of intestinal flora in host glucose metabolism, we then analyzed changes in the gut microbiome and its key metabolite short-chain fatty acids (SCFAs). Results indicated that exposure to florfenicol caused gut microbiota dysbiosis, inhibited the production of intestinal SCFAs, and ultimately affected the downstream signaling pathways of SCFA involved in glucose metabolism. Moreover, non-targeted metabolomics revealed that arachidonic acid and linoleic acid metabolic pathways may be associated with insulin sensitivity changes in florfenicol-exposed livers. Overall, this study highlighted a crucial aspect of the environmental risks of florfenicol to both non-target organisms and humans, and presented novel insights into the mechanistic elucidation of metabolic toxicity of antibiotics.


Assuntos
Antibacterianos , Microbioma Gastrointestinal , Fígado , Metaboloma , Tianfenicol , Poluentes Químicos da Água , Peixe-Zebra , Animais , Tianfenicol/análogos & derivados , Tianfenicol/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Antibacterianos/toxicidade , Metaboloma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Glucose/metabolismo
11.
Ecol Evol ; 14(5): e11410, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38770119

RESUMO

Campylotropis xinfeniae, a new species from the dry-hot valley of the Jinsha River in the Yunnan province, China, is described and illustrated. It is morphologically similar to C. wilsonii and C. brevifolia in having glabrescent old branches, absent stipels, 3-foliolate leaves, and adaxially puberulent leaflets, while it differs from the latter two in having often paniculate inflorescences, obviously white standard, not incurved sickle keel, larger narrowly oblique legumes, and longer legume beak. The complete chloroplast genome of this new species is 149,073 bp in length and exhibits a typical quadripartite structure. Phylogenetic analyses based on the complete chloroplast genome also supported C. xinfeniae as a new species located at the basal distinct clade of the genus Campylotropis, clearly separated from the remaining members of the genus and its allied genera. A conservation assessment of data deficient (DD) is recommended for the new species without extensive exploring of similar habitats according to the IUCN Categories and Criteria.

12.
Eur J Med Chem ; 271: 116449, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38691893

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is a widespread pathogen causing clinical infections and is multi-resistant to many antibiotics, making it urgent need to develop novel antibacterials to combat MRSA. Herein, we designed and prepared a series of novel osthole amphiphiles 6a-6ad by mimicking the structures and function of antimicrobial peptides (AMPs). Antibacterial assays showed that osthole amphiphile 6aa strongly inhibited S. aureus and 10 clinical MRSA isolates with MIC values of 1-2 µg/mL, comparable to that of the commercial antibiotic vancomycin. Additionally, 6aa had the advantages of rapid bacteria killing without readily developing drug resistance, low toxicity, good membrane selectivity, and good plasma stability. Mechanistic studies indicated that 6aa possesses good membrane-targeting ability to bind to phosphatidylglycerol (PG) on the bacterial cell membranes, thereby disrupting the cell membranes and causing an increase in intracellular ROS as well as leakage of proteins and DNA, and accelerating bacterial death. Notably, in vivo activity results revealed that 6aa exhibits strong anti-MRSA efficacy than vancomycin as well as a substantial reduction in MRSA-induced proinflammatory cytokines, including TNF-α and IL-6. Given the impressive in vitro and in vivo anti-MRSA efficacy of 6aa, which makes it a potential candidate against MRSA infections.


Assuntos
Antibacterianos , Cumarínicos , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Cumarínicos/química , Cumarínicos/farmacologia , Cumarínicos/síntese química , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , Humanos , Relação Dose-Resposta a Droga , Camundongos , Tensoativos/farmacologia , Tensoativos/química , Tensoativos/síntese química
13.
J Stomatol Oral Maxillofac Surg ; 125(3S): 101860, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38565421

RESUMO

OBJECTIVE: The reconstruction of composite defects in the oral and maxillofacial region using vascularized fascial flaps, such as the fibular, iliac, and temporal fascial flaps, has gained increasing attention among surgeons. However, there remains uncertainty regarding the suitability of fascial flaps as transplants, as well as their healing processes and outcomes, due to their non-mucosal nature. This study aims to comprehensively assess the biological aspects of vascularized fascial flaps at clinical, histological, and genetic levels, with the goal of providing essential biological references for their clinical application. STUDY DESIGN: This study enrolled three patients who underwent reconstruction of combined oral mucosa-mandibular defects using fibular vascularized fascial flaps between 2020 and 2023. Data regarding changes in the appearance of the fascial flaps, bulk-RNA sequencing, and histological slices of initial fascia, initial gingiva, and transformed fascia were collected and analyzed. RESULTS: Within three months, the fascial flaps exhibited rapid epithelial coverage and displayed distinct characteristics resembling mucosa. High-throughput RNA sequencing analyses and histological slices revealed that the transformed fascia exhibited tissue structures similar to mucosa and demonstrated unique advantages in promoting blood vessel formation and reducing scarring through the high-level expression of relevant genes. CONCLUSION: These findings emphasize the potential and feasibility of utilizing vascularized fascial flaps for oral mucosa reconstruction, establishing their unique advantage as transplant materials, and providing significant biological information and references for their selection and clinical application.


Assuntos
Fáscia , Mucosa Bucal , Procedimentos de Cirurgia Plástica , Retalhos Cirúrgicos , Humanos , Mucosa Bucal/transplante , Mucosa Bucal/patologia , Mucosa Bucal/cirurgia , Fáscia/transplante , Masculino , Procedimentos de Cirurgia Plástica/métodos , Feminino , Retalhos Cirúrgicos/transplante , Mandíbula/cirurgia , Mandíbula/patologia , Pessoa de Meia-Idade , Adulto
14.
Environ Res ; 252(Pt 1): 118859, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574986

RESUMO

Electrocatalytic hydrodechlorination (EHDC) is a promising approach to safely remove halogenated emerging contaminants (HECs) pollutants. However, sluggish production dynamics of adsorbed atomic H (H*ads) limit the applicability of this green process. In this study, bimetallic Pd-Cu@MXene catalysts were synthesized to achieve highly efficient removal of HECs. The alloy electrode (Pd-Cu@MX/CC) exhibited better EHDC performance in comparison to Pd@MX/CC electrode, resulting in diclofenac degradation efficiency of 93.3 ± 0.1%. The characterization analysis revealed that the Pd0/PdII ratio decreased by forming bimetallic Pd-Cu alloy. Density functional theory calculations further demonstrated the electronic configuration modulation of the Pd-Cu@MXene catalysts, optimizing binging energies for H* and thereby facilitating H*ads production and tuning the reduction capability of H*ads. Noteably, the amounts and reduction potential of H*ads for Pd-Cu@MXene catalysts were 1.5 times higher and 0.37 eV lower than those observed for the mono Pd electrode. Hence, the introduction of Cu into the Pd catalyst optimized the dynamics of H*ads production, thereby conferring significant advantages to EHDC reactions. This augmentation was underscored by the successful application of the alloy catalysts supported by MXene in EHDC experiments involving other HECs, which represented a new paradigm for EHDC for efficient recalcitrant pollutant removal by H*ads.


Assuntos
Cobre , Paládio , Catálise , Cobre/química , Paládio/química , Poluentes Químicos da Água/química , Adsorção , Halogenação , Técnicas Eletroquímicas/métodos , Eletrodos , Diclofenaco/química
15.
Ecol Evol ; 14(4): e11226, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628924

RESUMO

Fish dietary niche is a core focus, and it reflects the diversity of resources, habitats, or environments occupied by a species. However, whether geographic segregation among different populations triggers dietary diversification and concomitant fish niche shift remains unknown. In the present study, we selected the Black Amur bream (Megalobrama terminalis) is a migratory fish species that plays an important role in the material transfer and energy cycling of river ecosystems, inhabiting southern China drainage with multiple geographic populations. Here, we utilized the combined analyses of 18S rDNA high-throughput sequencing in fish gut contents and fatty acid (FA) in muscle tissues to evaluate potential spatial patterns of habitat and resource use for M. terminalis in three rivers of southern China. Our results showed that prey items of the Xijiang (XR) population (Pearl River) exhibited the highest species diversity and richness among the three geographic populations. Moreover, diet composition of M. terminalis was affected by spatial differences associated with geographic segregation. Analyses of FA biomarkers indicated that the highest levels of C16:0, C18:3n-3, and C18:2n-6c were found in Wanquan (WS) population (Wanquan River). The XR population exhibited a distinct FA profile characterized by higher amounts of arachidonic acid (ARA) and docosahexaenoic acid (DHA). The Moyang (MY) population (Moyang River) acted as the linkage between WS and XR populations and consisted of middle levels of saturated FAs (SFAs) and polyunsaturated FAs (PUFAs). The XR population displayed a greater FA niche width compared with WS population. Furthermore, we observed a close positive relationship between the niche width and α-diversity indices of dietary resources for FA proflies. Our study provides valued information to develop different conservation strategies among different populations and improve fisheries management for M. terminalis and other endemic species in local rivers.

16.
Curr Microbiol ; 81(5): 131, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592505

RESUMO

Fresh vegetables can harbor antibiotic-resistant bacteria, including extended-spectrum ß-lactamase (ESBL)-producing Enterobacterales. Enterobacter hormaechei is a bacterium belonging to the Enterobacterales order and the most commonly identified nosocomial pathogen of Enterobacter cloacae complex. The purpose of this study was to characterize a multi-drug resistant ESBL-producing E. hormaechei strain isolated from a sample of mixed sprouts. Vegetable samples were pre-enriched in buffered peptone water, followed by enrichment in Enterobacteria Enrichment Broth, and isolation on Chromagar™ ESBL plates. One isolate from a sprout sample was confirmed to produce both ESBL and AmpC ß-lactamases through the combination disk diffusion assay using antibiotic disks containing cefotaxime and ceftazidime with or without clavulanate, and with or without cloxacillin, respectively. The isolate was also resistant to multiple antibiotics, including cefotaxime, ceftazidime, chloramphenicol, trimethoprim-sulfamethoxazole, tetracycline, gentamicin, ampicillin, and amoxicillin-clavulanate, as determined by antimicrobial susceptibility testing. Through whole genome sequencing, the isolate was identified as E. hormaechei 057-E1, which carried multiple antibiotic resistance (AR) genes and a sul2-aph(3″)-Ib-aph(6)-Id-blaTEM-1-ISEcp1 -blaCTX-M-15 gene cluster. Our results further demonstrate the important role of fresh vegetables in AR and highlight the need to develop strategies for AR mitigation in fresh vegetables.


Assuntos
Antibacterianos , Ceftazidima , Enterobacter , Antibacterianos/farmacologia , Cefotaxima , beta-Lactamases/genética , Combinação Amoxicilina e Clavulanato de Potássio
17.
Exp Biol Med (Maywood) ; 249: 10117, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590360

RESUMO

The risk factors and causes of intracerebral hemorrhage (ICH) and the degree of functional recovery after ICH are distinct between young and elderly patients. The increasing incidence of ICH in young adults has become a concern; however, research on the molecules and pathways involved ICH in subjects of different ages is lacking. In this study, tandem mass tag (TMT)-based proteomics was utilized to examine the protein expression profiles of perihematomal tissue from young and aged mice 24 h after collagenase-induced ICH. Among the 5,129 quantified proteins, ICH induced 108 and 143 differentially expressed proteins (DEPs) in young and aged mice, respectively; specifically, there were 54 common DEPs, 54 unique DEPs in young mice and 89 unique DEPs in aged mice. In contrast, aging altered the expression of 58 proteins in the brain, resulting in 39 upregulated DEPs and 19 downregulated DEPs. Bioinformatics analysis indicated that ICH activated different proteins in complement pathways, coagulation cascades, the acute phase response, and the iron homeostasis signaling pathway in mice of both age groups. Protein-protein interaction (PPI) analysis and ingenuity pathway analysis (IPA) demonstrated that the unique DEPs in the young and aged mice were related to lipid metabolism and carbohydrate metabolism, respectively. Deeper paired-comparison analysis demonstrated that apolipoprotein M exhibited the most significant change in expression as a result of both aging and ICH. These results help illustrate age-related protein expression changes in the acute phase of ICH.


Assuntos
Hemorragia Cerebral , Proteômica , Idoso , Humanos , Camundongos , Animais , Proteômica/métodos , Hemorragia Cerebral/metabolismo , Encéfalo/metabolismo , Envelhecimento , Proteínas/metabolismo
18.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612657

RESUMO

Huntington's disease (HD) arises from the abnormal expansion of CAG repeats in the huntingtin gene (HTT), resulting in the production of the mutant huntingtin protein (mHTT) with a polyglutamine stretch in its N-terminus. The pathogenic mechanisms underlying HD are complex and not yet fully elucidated. However, mHTT forms aggregates and accumulates abnormally in neuronal nuclei and processes, leading to disruptions in multiple cellular functions. Although there is currently no effective curative treatment for HD, significant progress has been made in developing various therapeutic strategies to treat HD. In addition to drugs targeting the neuronal toxicity of mHTT, gene therapy approaches that aim to reduce the expression of the mutant HTT gene hold great promise for effective HD therapy. This review provides an overview of current HD treatments, discusses different therapeutic strategies, and aims to facilitate future therapeutic advancements in the field.


Assuntos
Doença de Huntington , Humanos , Doença de Huntington/genética , Doença de Huntington/terapia , Terapia Genética , Proteínas Mutantes
19.
Int Immunopharmacol ; 132: 111993, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38565044

RESUMO

OBJECTIVE: Psoriasis is an immune-mediated skin disease where the IL-17 signaling pathway plays a crucial role in its development. Chronic circadian rhythm disorder in psoriasis pathogenesis is gaining more attention. The relationship between IL and 17 signaling pathway and skin clock genes remains poorly understood. METHODS: GSE121212 with psoriatic lesion and healthy controls was used as the exploration cohort for searching analysis. Datasets GSE54456, GSE13355, GSE14905, GSE117239, GSE51440, and GSE137218 were applied to validation analysis. Single-cell RNA sequencing (scRNA-seq) dataset GSE173706 was used to explore the F3 expression and related pathway activities in single-cell levels. Through intersecting with high-expression DEGs, F3 was selected as the signature skin circadian gene in psoriasis for further investigation. Functional analyses, including correlation analyses, prediction of transcription factors, protein-protein interaction, and single gene GSEA to explore the potential roles of F3. ssGSEA algorithm was performed to uncover the immune-related characteristics of psoriasis. We further explored F3 expression in the specific cell population in scRNA-seq dataset, besides this, AUCell analysis was performed to explore the pathway activities and the results were further compared between the specific cell cluster. Immunohistochemistry experiment, RT-qPCR was used to validate the location and expression of F3, small interfering RNA (siRNA) transfection experiment in HaCaT, and transcriptome sequencing analysis were applied to explore the potential function of F3. RESULTS: F3 was significantly down-regulated in psoriasis and interacted with IL-17 signaling pathway. Low expression of F3 could upregulate the receptor of JAK-STAT signaling, thereby promoting keratinocyte inflammation. CONCLUSION: Our research revealed a bidirectional link between the skin circadian gene F3 and the IL-17 signaling pathway in psoriasis, suggesting that F3 may interact with the IL-17 pathway by activating JAK-STAT within keratinocytes and inducing abnormal intracellular inflammation.


Assuntos
Interleucina-17 , Queratinócitos , Psoríase , Transdução de Sinais , Pele , Psoríase/genética , Psoríase/imunologia , Humanos , Interleucina-17/metabolismo , Interleucina-17/genética , Queratinócitos/metabolismo , Queratinócitos/imunologia , Pele/patologia , Pele/imunologia , Pele/metabolismo , Relógios Circadianos/genética , Biomarcadores/metabolismo , Índice de Gravidade de Doença , Células HaCaT
20.
Genes Immun ; 25(2): 132-148, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38472339

RESUMO

Multiple transcript isoforms of genes can be formed by processing and modifying the 5' and 3' ends of RNA. Herein, the aim of this study is to uncover the characteristics of RNA processing modification (RPM) in hepatocellular carcinoma (HCC), and to identify novel biomarkers and potential targets for treatment. Firstly, integrated bioinformatics analysis was carried out to identify risk prognostic RPM regulators (RPMRs). Then, we used these RPMRs to identify subtypes of HCC and explore differences in immune microenvironment and cellular function improvement pathways between the sub-types. Finally, we used the principal component analysis algorithms to estimate RPMscore, which were applied to 5 cohorts. Lower RPMscore among patients correlated with a declined survival rate, increased immune infiltration, and raised expression of immune checkpoints, aligning with the "immunity tidal model theory". The RPMscore exhibited robust, which was validated in multiple datasets. Mechanistically, low RPMscore can create an immunosuppressive microenvironment in HCC by manipulating tumor-associated macrophages. Preclinically, patients with high RPMscore might benefit from immunotherapy. The RPMscore is helpful in clustering HCC patients with distinct prognosis and immunotherapy. Our RPMscore model can help clinicians to select personalized therapy for HCC patients, and RPMscore may act a part in the development of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Microambiente Tumoral , Processamento Pós-Transcricional do RNA , Imunoterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA