Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Colloid Interface Sci ; 660: 800-809, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38277837

RESUMO

Electrocatalytic hydrogenation (ECH) reduction provides an environment-friendly alternative to conventional method for the upgrade of furfural to furfuryl alcohol. At present, exploring superior catalysts with high activity and selectivity, figuring out the reduction mechanism in aqueous alkaline environment are urgent. In this work, zinc cobalt bimetallic oxide (ZnMn2O4) with surface-derived Zn2+ vacancies supported by carbon nanofibers (d-ZnMn2O4-C) was fabricated. The d-ZnMn2O4-C exhibited excellent performance in electrocatalytic reduction of furfural, high furfuryl alcohol yield (49461.1 ± 228 µmol g-1) and Faradaic efficiency (95.5 ± 0.5 %) was obtained. In-depth research suggested that carbon nanofiber may strongly promoted the production of adsorbed hydrogen (Hads), and Zn2+ vacancies may significantly lowered the energy barrier of furfural reduction to furfuryl alcohol, the synergistic effect between carbon nanofiber and d-ZnMn2O4 probably facilitated the reaction between Hads and furfuryl alcohol radical, thereby promoting the formation of furfuryl alcohol. Furthermore, the reaction mechanism was clarified by inhibitor coating and isotope experiments, the results of which revealed that the conversion of furfural to furfuryl alcohol on d-ZnMn2O4-C followed both ECH and direct electroreduction mechanism.

3.
ACS Appl Mater Interfaces ; 16(5): 5735-5744, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38271590

RESUMO

Efficiently upgrading 5-hydroxymethylfurfural (HMF) into high-value-added products, such as 2,5-diformylfuran (DFF) and 2,5-furan dicarboxylic acid (FDCA), through a photocatalytic process by using solar energy has been incessantly pursued worldwide. Herein, a series of transition-metal (TM = Ni, Fe, Co, Cu) single atoms were supported on Ti4+αTi3+1-αO2-δ nanofibers (NFs) with certain defects (Ov), denoted as TM SAC-Ti4+αTi3+1-αO2-δ NFs (TM = Ni, Fe, Co, Cu), aiming to enhance the photocatalytic conversion of HMF. A super HMF conversion rate of 57% and a total yield of 1718.66 µmol g-1 h-1 (DFF and FDCA) surpassing that of the Ti4+αTi3+1-αO2-δ NFs by 1.6 and 2.1 times, respectively, are realized when TM is Co (Co SAC-Ti4+αTi3+1-αO2-δ NFs). Experiments combined with density functional theory calculation (DFT) demonstrate that the TM single atoms occupy the Ti site of Ti4+αTi3+1-αO2-δ NFs, which plays a dominant role in the photo-oxidation of HMF. Raman, X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR) characterizations confirm the strong electron local exchange interaction in TM SAC-Ti4+αTi3+1-αO2-δ NFs and demonstrate the substitution of Ti by the TM SACs. The projected density of states and charge density difference reveal that the strong interaction between metal-3d and O-2p orbitals forms Ti-O-TM bonds. The bonds are identified as the adsorption site, where TM single atoms on the surface of Ti4+αTi3+1-αO2-δ NFs reduce HMF molecule adsorption energy (Eads). Furthermore, the TM single atom modulates the electronic structure of TM SAC-Ti4+αTi3+1-αO2-δ NFs through electron transfer, leading to narrow band gaps of the photocatalysts and enhancing their photocatalytic performance. This study has uncovered a newer strategy for enhancing the photocatalytic attributes of semiconducting materials.

4.
J Hazard Mater ; 457: 131743, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37270957

RESUMO

Microplastic pollution has emerged as a pressing environmental issue of global concern due to its detrimental effects on the environment and ecology. Restricted to their characters of complex composition, it is a great challenge to propose a more cost-effective approach to achieve highly selective conversion of microplastic into add-value products. Here we demonstrate an upcycling strategy for converting PET microplastics into added-value chemicals (formate, terephthalic acid and K2SO4). PET is initially hydrolyzed in KOH solution to produce terephthalic acid and ethylene glycol, which is subsequently used as an electrolyte to produce formate at the anode. Meanwhile, the cathode undergoes hydrogen evolution reaction to produce H2. Preliminary techno-economic analysis suggests that this strategy has certain economic feasibility and a novel Mn0.1Ni0.9Co2O4-δ rod-shaped fiber (RSFs) catalyst we synthesized can achieve high Faradaic efficiency (> 95%) at 1.42 V vs. RHE with optimistic formate productivity. The high catalytic performance can be attributed to the doping of Mn changing the electronic structure and reducing the metal-oxygen covalency of NiCo2O4, reducing the lattice oxygen oxidation in spinel oxide OER electrocatalysts. This work not only put forward an electrocatalytic strategy for PET microplastic upcycling but also guides the design of electrocatalysts with excellent performance.

5.
Front Plant Sci ; 14: 1146398, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251779

RESUMO

Pigeon pea is a perennial leguminous plant that is widely cultivated as a forage and pharmaceutical plant in subtropical and tropical areas, especially in artificial grasslands. Higher seed shattering is one of the most important factors in potentially increasing the seed yield of pigeon pea. Advance technology is necessary to increase the seed yield of pigeon pea. Through 2 consecutive years of field observations, we found that fertile tiller number was the key component of the seed yield of pigeon pea due to the direct effect of fertile tiller number per plant (0.364) on pigeon pea seed yield was the highest. Multiplex morphology, histology, and cytological and hydrolytic enzyme activity analysis showed that shatter-susceptible and shatter-resistant pigeon peas possessed an abscission layer at the same time (10 DAF); however, abscission layer cells dissolved earlier in shattering-susceptible pigeon pea (15 DAF), which led to the tearing of the abscission layer. The number of vascular bundle cells and vascular bundle area were the most significant negative factors (p< 0.01) affecting seed shattering. Cellulase and polygalacturonase were involved in the dehiscence process. In addition, we inferred that larger vascular bundle tissues and cells in the ventral suture of seed pods could effectively resist the dehiscence pressure of the abscission layer. This study provides foundation for further molecular studies to increase the seed yield of pigeon pea.

6.
ACS Appl Mater Interfaces ; 15(10): 12915-12923, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36863000

RESUMO

Dichloromethane (CH2Cl2) hydrodechlorination to methane (CH4) is a promising approach to remove the halogenated contaminants and generate clean energy. In this work, rod-like nanostructured CuCo2O4 spinels with rich oxygen vacancies are designed for highly efficient electrochemical reduction dechlorination of dichloromethane. Microscopy characterizations revealed that the special rod-like nanostructure and rich oxygen vacancies can efficiently enhance surface area, electronic/ionic transport, and expose more active sites. The experimental tests demonstrated that CuCo2O4-3 with rod-like nanostructures outperformed other morphology of CuCo2O4 spinel nanostructures in catalytic activity and product selectivity. The highest methane production of 148.84 µmol in 4 h with a Faradaic efficiency of 21.61% at -2.94 V (vs SCE) is shown. Furthermore, the density function theory proved oxygen vacancies significantly decreased the energy barrier to promote the catalyst in the reaction and Ov-Cu was the main active site in dichloromethane hydrodechlorination. This work explores a promising way to synthesize the highly efficient electrocatalysts, which may be an effective catalyst for dichloromethane hydrodechlorination to methane.

7.
ACS Appl Mater Interfaces ; 15(9): 11885-11894, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36827641

RESUMO

Cobalt-manganese spinel catalysts performed unsatisfactory activity at low-temperature and narrow reaction temperature window, which greatly limited the application in NO reduction by CO. Herein, we synthesize a series of Cu-doped CoMn2O4 catalysts and apply to NO reduction by CO. The Cu0.3Co0.7Mn2O4 exhibited superior catalytic performance, reaching 100% NO conversion and 80% N2 selectivity at 250 °C. Detailed structural analysis showed that the introduced Cu replaces some Co in tetrahedral coordination to induce a strong synergistic effect between different metals. This endows the catalyst with the promotion of both electron transfer and oxygen vacancy generation on the catalyst surface. Importantly, the reaction mechanism and pathway were further revealed by in situ diffusion Fourier transform infrared spectroscopy (DRIFTS) and density functional theory (DFT) calculations. The results indicated that the cycle of oxygen vacancy mainly determines the catalytic activity of NO reduction by CO. Notably, Cu doping significantly lowered the energy barrier of the rate-determining step (*CO + O → *Ov + CO2), facilitating the desorption of the CO2 and exposing the active sites for efficient NO reduction with CO. This work offers an effective way for designing the catalyst in NO reduction by CO and provides a reference for exploring the catalytic mechanism of the reaction.

8.
ACS Appl Mater Interfaces ; 15(5): 6631-6638, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36705573

RESUMO

CuFe2O4 spinel has been considered as a promising catalyst for the electrochemical reaction, while the nature of the crystal phase on its intrinsic activity and the kind of active site need to be further explored. Herein, the crystal phase-dependent catalytic behavior and the main active sites of CuFe2O4 spinel for electrochemical dechlorination of 1,2-dichloroethane are carefully studied based on the combination of experiments and theoretical calculations. Cubic and tetragonal CuFe2O4 are successfully prepared by a facile sol-gel method combined with high temperature calcination. Impressively, CuFe2O4 with the cubic phase shows a higher activity and ethylene selectivity compared to CuFe2O4 with the tetragonal phase, suggesting a significant facilitation of electrocatalytic performance by the cubic crystal structure. Moreover, the octahedral Fe atom on the surface of cubic CuFe2O4(311) is the active site responsible to produce ethylene with the energy barrier of 0.40 eV. This work demonstrates the significance of crystal phase engineering for the optimization of electrocatalytic performance and offers an efficient strategy for the development of advanced electrocatalysts.

9.
J Environ Sci (China) ; 123: 96-115, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36522017

RESUMO

Volatile organic compounds (VOCs) are a crucial kind of pollutants in the environment due to their obvious features of severe toxicity, high volatility, and poor degradability. It is particularly urgent to control the emission of VOCs due to the persistent increase of concentration and the stringent regulations. In China, clear directions and requirements for reduction of VOCs have been given in the "national plan on environmental improvement for the 13th Five-Year Plan period". Therefore, the development of efficient technologies for removal and recovery of VOCs is of great significance. Recovery technologies are favored by researchers due to their advantages in both recycling VOCs and reducing carbon emissions. Among them, adsorption and membrane separation processes have been extensively studied due to their remarkable industrial prospects. This overview was to provide an up-to-date progress of adsorption and membrane separation for removal and recovery of VOCs. Firstly, adsorption and membrane separation were found to be the research hotspots through bibliometric analysis. Then, a comprehensive understanding of their mechanisms, factors, and current application statuses was discussed. Finally, the challenges and perspectives in this emerging field were briefly highlighted.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Compostos Orgânicos Voláteis , Adsorção , Poluentes Atmosféricos/análise , Carbono/análise , China , Monitoramento Ambiental , Poluentes Ambientais/análise , Compostos Orgânicos Voláteis/análise
10.
Front Plant Sci ; 13: 1018404, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325564

RESUMO

Stylosanthes spp. (stylo) are annual or perennial legume forages that are widely grown as forage and cover crops in tropical and subtropical regions. However, the seed yield of stylo is very low due to serious seed shattering. In the present study, we found that, although seed shattering was common among the stylo accessions, the shattering rates were genetically different. Therefore, we first synthesized the morphological, histological characteristic, physiochemical, and transcriptome analyses to determine the seed shattering mechanism in stylo. In general, the stylo germplasm with shorter lobules and thicker stems had a lower seed shattering rate and a higher seed weight. The seed and seed stalk joint is the abscission zone in stylo. Multiplex histology and hydrolytic enzyme activity analysis showed that the tearing of the abscission zone occurs due to the intense enzymatic degradation of polygalacturonase and cellulase in the seed shattering-susceptible accession TF0275. cDNA libraries from the abscission zone tissues of TF0041 and TF0275 at 14, 21, and 28 days after flowering were constructed and sequenced. A total of 47,606 unigenes were annotated and 18,606 differentially expressed genes (DEGs) were detected, including 9,140 upregulated and 9,446 downregulated unigenes. Furthermore, the 26 candidate DEGs involved in lignin biosynthesis, cellulase synthesis, and plant hormone signal transduction were found at all three developmental stages. This study provides valuable insights for future mechanistic studies of seed shattering in stylo.

11.
ACS Omega ; 7(44): 40184-40194, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36385835

RESUMO

CO2 capture from flowing flue gases through adsorption technology is essential to reduce the emission of CO2 to the atmosphere. The rational design of highly efficient carbon-based absorbents with interfacial structures containing interconnected porous structures and abundant adsorption sites might be one of the promising strategies. Here, we report the synthesis of nitrogen-doped carbon aerogels (NCAs) via prepolymerized phenol-melamine-formaldehyde organic aerogels (PMF) by controlling the addition amount of ZnCl2 and the precursor M/P ratio. It has been revealed that NCAs with a higher specific surface area and interconnected porous structures contain a large amount of pyridinic nitrogen and pyrrolic nitrogen. These would act as the intrinsic adsorption sites for highly effective CO2 capture and further improve the CO2/N2 separation efficiencies. Among the prepared samples, NCA-1-2 with a high micropore surface area and high nitrogen content exhibits a high CO2 adsorption capacity (4.30 mmol g-1 at 0 °C and 1 bar) and CO2/N2 selectivity (36.5 at 25 °C, IAST). Under typical flue gas conditions (25 °C and 1.01 bar), equilibrium gas adsorption analysis and dynamic breakthrough measurement associated with a high adsorption capacity of 2.65 mmol g-1 at 25 °C and 1.01 bar and 0.81 mmol g-1 at 25 °C and 0.15 bar. This rationally designed N-doped carbon aerogel with specific interfacial structures and high CO2 adsorption capacity, high selectivity, and adsorption performance remained pretty stable after multiple uses.

12.
ACS Appl Mater Interfaces ; 14(31): 35477-35484, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35856806

RESUMO

Electrocatalytic nitrate reduction is an effective strategy to eliminate nitrate's environmental impact and produce high-value-added ammonia products. However, most of the current reports focus on preparation strategies of catalysts, with poor exploration of the mechanism. In this work, we fabricated a binding-free Cu-doped Co3O4 electrode (Cu-Co3O4) to reveal the structure-activity relationship. Cu-Co3O4 exhibited a maximum Faradaic efficiency of ammonia of up to 86.5% at -0.6 V vs reversible hydrogen electrode in a neutral electrolyte, with the corresponding yield rate of 36.71 mmol h-1 g-1. In situ electrochemical Raman spectroscopy confirmed that the structure of Cu-Co3O4 exhibits excellent stability and durability. Theoretical analysis revealed that the interaction between Cu and Co induces the d-band center position of the mono-metal oxide to shift toward the center to optimize the nitrate reduction intermediate hydrodeoxygenation free-energy change, especially of *NOx (x = 1, 2, and 3). These results offer guidelines for the electrochemical reduction of nitrate with transition metal oxide electrocatalysts.

13.
J Colloid Interface Sci ; 625: 305-316, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35717846

RESUMO

Electroreductive CO coupling provides a prospective strategy for biomass derivative upgrading via reducing the number of oxygen-containing functional groups and increasing their molecular weight. However, exploring superior electrocatalysts with effective reactivity and high selectivity for target products are still a challenge. In this work, single atom Au surface derived NiMn2O4 (SACs Au-NiMn2O4) spinel synergetic composites were fabricated by a versatile adsorption-deposition method and applied in electroreductive self-coupling of benzaldehyde to dibenzyl ether. The SACs Au-NiMn2O4 spinel synergetic composites enhanced electroreductive coupling of benzaldehyde, significantly improved the yield and selectivity of dibenzyl ether. Systematic characterizations and density functional theory calculation revealed that atomically dispersed Au occupied surface Ni2+ vacancies, which played a dominated role in CO coupling of benzaldehyde. Detailed calculation results showed that benzaldehyde preferred to adsorb on Ni octa-hedral sites of NiMn2O4 spinel synergetic structure, single atom Au surficial derivation over NiMn2O4 further reduced the adsorption energy (Eads) of benzaldehyde on SACs Au-NiMn2O4, thus the CO coupling of benzaldehyde to dibenzyl ether was promoted. Moreover, single atom Au surficial derivation lowered the energy barrier of rate-determining step, facilitated the formation of dibenzyl ether species. Our work also paves an avenue for rational design single atom materials using spinel as support.


Assuntos
Benzaldeídos , Óxido de Magnésio , Óxido de Alumínio
14.
Small ; 18(30): e2201359, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35768281

RESUMO

In this work, electrocatalytic upgrade of n-valeraldehyde to octane with higher activity and selectivity is achieved over Au single-atom catalysts (SACs)-NiMn2 O4 spinel synergetic composites. Experiments combined with density functional theory calculation collaboratively demonstrate that Au single-atoms occupy surface Ni2+ vacancies of NiMn2 O4 , which play a dominant role in n-valeraldehyde selective oxidation. A detailed investigation reveals that the initial n-valeraldehyde molecule preferentially adsorbs on the Mn tetrahedral site of NiMn2 O4 spinel synergetic structures, and the subsequent n-valeraldehyde molecule easily adsorbs on the Ni site. Specifically, Au single-atom surficial derivation over spinel lowers the adsorption energy (Eads ) of the initial n-valeraldehyde molecule, which will facilitate its adsorption on the Mn site of Au SACs-NiMn2 O4 . Furthermore, the single-atom Au surficial derivation not only alters the electronic structure of Au SACs-NiMn2 O4 but also lower the Eads of subsequent n-valeraldehyde molecule. Hence, the subsequent n-valeraldehyde molecules prefer adsorption on Au sites rather than Ni sites, and the process of two alkyl radicals originating from Mn-C4 H9 and Au-C4 H9 dimerization into an octane is accordingly accelerated. This work will provide an avenue for the rational design of SACs and supply a vital mechanism for understanding the electrocatalytic upgrade of n-valeraldehyde to octane.


Assuntos
Óxido de Magnésio , Octanos , Aldeídos , Óxido de Alumínio , Catálise
15.
Foods ; 11(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35407023

RESUMO

Owing to their excellent characteristics, Pickering emulsions have been widely used in the development and the application of new carriers for embedding and for delivering active compounds. In this study, ß-carotene was successfully encapsulated in a Pickering emulsion stabilized using Desmodium intortum protein isolate (DIPI). The results showed that the encapsulation efficiencies of ß-carotene in the control group Tween 20 emulsion (TE) and the DIPI Pickering emulsion (DIPIPE) were 46.7 ± 2.5% and 97.3 ± 0.8%, respectively. After storage for 30 days at 25 °C and 37 °C in a dark environment, approximately 79.4% and 72.1% of ß-carotene in DIPIPE were retained. Compared with TE, DIPIPE can improve the stability of ß-carotene during storage. In vitro digestion experiments showed that the bioaccessibility rate of ß-carotene in DIPIPE was less than that in TE. Cytotoxicity experiments showed that DIPI and ß-carotene micelles within a specific concentration range exerted no toxic effects on 3T3 cells. These results indicate that DIPIPE can be used as a good food-grade carrier for embedding and transporting active substances to broaden the application of the protein-based Pickering emulsion system in the development of functional foods.

16.
Front Plant Sci ; 13: 1109877, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714687

RESUMO

Grazing is the main way of utilizing understory vegetation in the tropics. However, the effects of grazing on vegetation diversity and soil functions in coconut plantations remain unclear. Therefore, this study was conducted in a young coconut plantation that was grazed by geese in Wenchang, China. We identified four grazing intensities according to the aboveground biomass, namely, no grazing (CK), light grazing (LG), moderate grazing (MG), and heavy grazing (HG). In April 2022, we used the quadrat method to investigate the composition and traits of vegetation, collected and analyzed 0-40-cm soil samples in each grazing intensity. The results showed that grazing changed the composition of understory species. The predominant species changed from Bidens pilosa to Praxelis clematidea + Paspalum thunbergii and then to P. clematidea with increasing grazing intensity. The richness, Shannon-Wiener index, evenness, modified functional attribute diversity (MFAD), functional divergence (Fdiv), and functional evenness (Feve) of CK were 4.5, 1.0, 0.29, 0.20, 0.84, and 0.80, respectively. Taxonomic diversity did not respond to LG, but responded significantly to MG and HG. Compared with CK, MG and HG increased richness by 96% and 200%, respectively, and Shannon-Wiener index increased by 40% and 98%, respectively. HG increased evenness by 95%. For functional diversity, MG and HG increased MFAD by 164% and 560%, respectively, but Fdiv and Feve did not respond to grazing intensity. The carbon (C) functioning, nitrogen (N) functioning, phosphorus (P) functioning, and multifunctionality in the 0-10-cm topsoil of CK were -0.03, 0.37, -0.06, 0.20, and 0.14, respectively. Grazing increased C functioning, P functioning, and multifunctionality in the 0-10-cm topsoil but decreased N functioning. Multiple linear regression showed that the taxonomic diversity and functional diversity could be used to estimate soil functions, but these vary among soil layers. In general, MG and HG can increase vegetation diversity and soil function. It may be possible to promote even distribution of geese by adding water sources or zoning grazing. Furthermore, quantitative grazing experiments are needed to determine the efficient use pattern of the understory in coconut plantations in tropics.

17.
ACS Appl Mater Interfaces ; 13(47): 56510-56518, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34788539

RESUMO

The interfacial interaction of activated carbon with volatile organic compounds (VOCs) is seriously affected by water vapor. Therefore, it is vital to enhance the hydrophobic performance of activated carbon for expanding its application in industrial and environmental fields. Herein, a series of hydrophobic activated carbon was fabricated by tailored mixed siloxane and applied in dynamic competitive adsorption at 0, 50, and 90% humidity. Simultaneously, the diffusion molecular models and multicomponent adsorption experiments were used to study the adsorption and diffusion mechanisms. The hydrophobicity of activated carbon was significantly improved by loading of mixed siloxane, in which the equilibrium water absorption decreased from 21.9 to 7.2% and the contact angles increased by 70.10°. Meanwhile, dynamic competitive adsorption at different humidities indicated that the siloxane-functionalized activated carbons (SACs) showed much better competitive adsorption performances for VOCs than original activated carbon, which was further confirmed by the theoretical calculations of adsorption energy. In addition, a remarkable adsorption selectivity and reusability could be demonstrated to VOCs with different polarities on SACs. This study not only provides a new strategy for the hydrophobic modification of activated carbon materials but also offers theoretical guidance for the treatment of gas streams with significant water contents.

18.
BMC Plant Biol ; 21(1): 466, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645406

RESUMO

BACKGROUND: Phosphorus (P) is an essential macronutrient for plant growth that participates in a series of biological processes. Thus, P deficiency limits crop growth and yield. Although Stylosanthes guianensis (stylo) is an important tropical legume that displays adaptation to low phosphate (Pi) availability, its adaptive mechanisms remain largely unknown. RESULTS: In this study, differences in low-P stress tolerance were investigated using two stylo cultivars ('RY2' and 'RY5') that were grown in hydroponics. Results showed that cultivar RY2 was better adapted to Pi starvation than RY5, as reflected by lower values of relative decrease rates of growth parameters than RY5 at low-P stress, especially for the reduction of shoot and root dry weight. Furthermore, RY2 exhibited higher P acquisition efficiency than RY5 under the same P treatment, although P utilization efficiency was similar between the two cultivars. In addition, better root growth performance and higher leaf and root APase activities were observed with RY2 compared to RY5. Subsequent RNA-seq analysis revealed 8,348 genes that were differentially expressed under P deficient and sufficient conditions in RY2 roots, with many Pi starvation regulated genes associated with P metabolic process, protein modification process, transport and other metabolic processes. A group of differentially expressed genes (DEGs) involved in Pi uptake and Pi homeostasis were identified, such as genes encoding Pi transporter (PT), purple acid phosphatase (PAP), and multidrug and toxin extrusion (MATE). Furthermore, a variety of genes related to transcription factors and regulators involved in Pi signaling, including genes belonging to the PHOSPHATE STARVATION RESPONSE 1-like (PHR1), WRKY and the SYG1/PHO81/XPR1 (SPX) domain, were also regulated by P deficiency in stylo roots. CONCLUSIONS: This study reveals the possible mechanisms underlying the adaptation of stylo to P deficiency. The low-P tolerance in stylo is probably manifested through regulation of root growth, Pi acquisition and cellular Pi homeostasis as well as Pi signaling pathway. The identified genes involved in low-P tolerance can be potentially used to design the breeding strategy for developing P-efficient stylo cultivars to grow on acid soils in the tropics.


Assuntos
Adaptação Fisiológica/genética , Deficiências Nutricionais/genética , Fabaceae/crescimento & desenvolvimento , Fabaceae/genética , Fósforo/deficiência , Transcriptoma , China , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo
19.
ACS Appl Mater Interfaces ; 13(32): 38256-38265, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34342991

RESUMO

The hydrogen evolution reaction (HER) by electrocatalytic water splitting is a prospective and economical route. However, the approach is severely hindered by the sluggish anodic OER, poor reactivity of electrocatalysts, and low-value-added byproducts at the anode. Herein, formaldehyde was added as an anode sacrificial agent, and a bifunctional Co-Nx-C@Co catalyst containing abundant Co-N4 sites and Co nanoparticles was successfully fabricated and evaluated as both a cathodic and an anodic material for the HER and formaldehyde selective oxidation reaction (FSOR), respectively. Co-Nx-C@Co displayed a remarkable electrocatalytic performance simultaneously for both HER and FSOR with high hydrogen (H2) and carbon monoxide (CO) selectivity. Density functional theory calculations combined with experiments identified that Co-N4 and Co nanoparticles were dominating active sites for CO and H2 generation, respectively. The coupling tactic of FSOR at the anode not only expedites the reaction rate of HER but also offers a high-efficiency and energy-saving means for the generation of valuable H2/CO syngas.

20.
Phys Chem Chem Phys ; 23(23): 13276-13283, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34095924

RESUMO

The kinetics for the reactions of CH2OO and syn-CH3CHOO with acrolein, a typical unsaturated aldehyde in the atmosphere, were studied in a flash photolysis flow reactor using the OH laser-induced fluorescence (LIF) method. The bimolecular reaction rate coefficients were measured at temperatures ranging from 281 to 318 K, and pressures ranging from 5 to 200 Torr. No obvious dependence of the rate coefficients on pressure was observed under the current experimental conditions. Both reactions exhibit negative temperature-dependence, with an activation energy of (-1.70 ± 0.19) and (-1.47 ± 0.24) kcal mol-1 for CH2OO and syn-CH3CHOO reacting with acrolein, derived from the Arrhenius equation. At 298 K, the measured rate coefficients for CH2OO/syn-CH3CHOO + acrolein reactions are (1.63 ± 0.19) × 10-12 cm3 s-1 and (1.17 ± 0.16) × 10-13 cm3 s-1, respectively. The rate coefficient of the former reaction is in reasonable agreement with a recent theoretical result.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...