Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
2.
Eur J Pediatr ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158594

RESUMO

Several evidence gaps exist regarding the use of long-acting polyethylene glycol recombinant human growth hormone (PEG-rhGH) in children with idiopathic short stature (ISS), particularly studies conducted in real-world settings, with long-term follow-up, involving varied dosing regimens, and in comparison with daily rhGH. The study aimed to evaluate the effectiveness, safety, and adherence of once-weekly PEG-rhGH for catch-up growth in children with prepubertal ISS compared to daily rhGH. A real-world retrospective cohort study was conducted in prepubertal children with ISS in China. Children who voluntarily received once-weekly PEG-rhGH or daily rhGH were included and were followed up for 2 years. Ninety-five children were included, 47 received PEG-rhGH 0.2-0.3 mg/kg weekly and 48 received daily rhGH. Outcome measures included effectiveness in catch-up growth, adverse events, and treatment adherence. Height velocity increased significantly in both groups during rhGH therapy. In children who received PEG-rhGH treatment, height velocity was 10.59 ± 1.37 cm/year and 8.75 ± 0.86 cm/year in the first and second year, respectively, which were significantly more than those who received daily rhGH (9.80 ± 1.05 cm/year, P = 0.002, and 8.03 ± 0.89 cm/year, P < 0.001). The height standard deviation score improved at the end of the second year for all children (P < 0.001). However, children who received PEG-rhGH showed more excellent improvement than those with daily rhGH (1.65 ± 0.38 vs. 1.50 ± 0.36, P = 0.001). In children who received PEG-rhGH, lower missed doses were observed than those with daily rhGH (0.75 ± 1.06 vs. 4.4 ± 2.0, P < 0.001). No serious adverse events were observed. CONCLUSION: PEG-rhGH demonstrated superior effectiveness and adherence compared to daily rhGH in the treatment of children with ISS. The safety profiles were similar between the two treatments. WHAT IS KNOWN: • Recombinant human growth hormone (rhGH) has been used to increase adult height in children with idiopathic short stature (ISS), and its safety profile is comparable to other indications for growth hormone treatment. • The use of long-acting rhGH in children with ISS is still an area of uncertainty. WHAT IS NEW: • This 2-year real-world study provides new evidence that PEGylated rhGH (PEG-rhGH) is more effective than daily rhGH in promoting catch-up growth in children with ISS. • PEG-rhGH also demonstrated superior treatment adherence compared to daily rhGH in children with ISS. • The safety profiles of PEG-rhGH and daily rhGH were found to be similar.

3.
J Mol Histol ; 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39122896

RESUMO

Fetal growth restriction (FGR) is a relatively common complication of pregnancy, and insufficient syncytialization in the placenta may play an important role in the pathogenesis of FGR. However, the mechanism of impaired formation of the syncytiotrophoblast layer in FGR patients requires further exploration. In the present study, we demonstrated that the level of syncytialization was decreased in FGR patient placentas, while the expression of connective tissue growth factor (CTGF) was significantly upregulated. CTGF was found to inhibit trophoblast fusion via regulating cell cycle progress of BeWo cells. Furthermore, we found that CTGF negatively regulates cell cycle arrest in a p21-dependent manner as overexpression of p21 could rescue the impaired syncytialization induced by CTGF-overexpression. Besides, we also identified that CTGF inhibits the expression of p21 through ITGB4/PI3K/AKT signaling pathway. Our study provided a new insight for elucidating the pathogenic mechanism of FGR and a novel idea for the clinical therapy of FGR.

4.
Pak J Med Sci ; 40(7): 1420-1424, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39092052

RESUMO

Objective: To find out the effects of psychological support intervention on patients with nasopharyngeal carcinoma undergoing radiotherapy. Methods: This was a retrospective study. Sixty six patients with nasopharyngeal carcinoma who received radiotherapy in the Affiliated Hospital of Hebei University from March 2021 to March 2022 were included and randomly divided into the observation group and the control group, with 33 cases in each group. Patients in the control group were given conventional care measures, while those in the observation group were given psychological support intervention on top of conventional care measures. The nursing effects between the two groups were compared. Results: After the intervention, the psychological resilience score of the observation group was significantly higher than that of the control group, with a statistically significant difference (P<0.05). The psychological resilience scores after the intervention were significantly higher in the observation group than before the intervention, and those in the control group were higher than before the intervention, with a statistically significant difference(P<0.05). The overall health score of quality of life in the observation group was significantly higher than that in the control group after the intervention, with a statistically significant difference(P<0.05). Moreover, the skin reaction in the observation group after radiotherapy was significantly better than that of the control group (P<0.01). Conclusion: Psychological support intervention is an effective means to treat patients with nasopharyngeal carcinoma, which results in various benefits such as improving patients' mental resilience and quality of life and reducing the incidence of adverse reactions after radiotherapy.

5.
Front Cell Infect Microbiol ; 14: 1407051, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947127

RESUMO

The Cecum is a key site for cellulose digestion in nutrient metabolism of intestine, but its mechanisms of microbial and gene interactions has not been fully elucidated during pathogenesis of obesity. Therefore, the cecum tissues of the New Zealand rabbits and their contents between the high-fat diet-induced group (Ob) and control group (Co) were collected and analyzed using multi-omics. The metagenomic analysis indicated that the relative abundances of Corallococcus_sp._CAG:1435 and Flavobacteriales bacterium species were significantly lower, while those of Akkermansia glycaniphila, Clostridium_sp._CAG:793, Mycoplasma_sp._CAG:776, Mycoplasma_sp._CAG:472, Clostridium_sp._CAG:609, Akkermansia_sp._KLE1605, Clostridium_sp._CAG:508, and Firmicutes_bacterium_CAG:460 species were significantly higher in the Ob as compared to those in Co. Transcriptomic sequencing results showed that the differentially upregulated genes were mainly enriched in pathways, including calcium signaling pathway, PI3K-Akt signaling pathway, and Wnt signaling pathway, while the differentially downregulated genes were mainly enriched in pathways of NF-kappaB signaling pathway and T cell receptor signaling pathway. The comparative analysis of metabolites showed that the glycine, serine, and threonine metabolism and cysteine and methionine metabolism were the important metabolic pathways between the two groups. The combined analysis showed that CAMK1, IGFBP6, and IGFBP4 genes were highly correlated with Clostridium_sp._CAG:793, and Akkermansia_glycaniphila species. Thus, the preliminary study elucidated the microbial and gene interactions in cecum of obese rabbit and provided a basis for further studies in intestinal intervention for human obesity.


Assuntos
Ceco , Dieta Hiperlipídica , Microbioma Gastrointestinal , Obesidade , Animais , Coelhos , Dieta Hiperlipídica/efeitos adversos , Ceco/microbiologia , Ceco/metabolismo , Obesidade/metabolismo , Obesidade/microbiologia , Interações entre Hospedeiro e Microrganismos , Metagenômica , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Redes Reguladoras de Genes , Masculino , Perfilação da Expressão Gênica
6.
Discov Oncol ; 15(1): 311, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060763

RESUMO

The rapid development of high-throughput sequencing in recent years has facilitated great progress in the molecular-targeted therapy of hematological malignancies, including leukemia, lymphoma, and multiple myeloma. BCL-2 inhibitors are among the most important molecular-targeted agents. Immunotherapy for hematologic malignancy has rapidly increased in popularity in recent years and has been proven to improve the overall survival rate. However, few clinical studies have investigated combination therapy with BCL-2 inhibitors and immunotherapies, such as immune molecule-targeted drugs or immune cell adoptive therapy. In this review, we discuss the drug discovery process, current clinical application status, and resistance and tolerance issues associated with BCL-2 inhibitors. We emphasize their important role in regulating the immune system and propose that the combination of BCL-2 inhibitors with immunotherapy may be one of the most promising treatment methods for hematologic malignancies.

7.
Sci Rep ; 14(1): 15696, 2024 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977909

RESUMO

As the largest organ in the human body, skeletal muscle is essential for breathing support, movement initiation, and maintenance homeostasis. It has been shown that programmed cell death (PCD), which includes autophagy, apoptosis, and necrosis, is essential for the development of skeletal muscle. A novel form of PCD called ferroptosis is still poorly understood in relation to skeletal muscle. In this study, we observed that the activation of ferroptosis significantly impeded the differentiation of C2C12 myoblasts into myotubes and concurrently suppressed the expression of OTUB1, a crucial deubiquitinating enzyme. OTUB1-silenced C2C12 mouse myoblasts were used to investigate the function of OTUB1 in ferroptosis. The results show that OTUB1 knockdown in vitro significantly increased C2C12 ferroptosis and inhibited myogenesis. Interestingly, the induction of ferroptosis resulting from OTUB1 knockdown was concomitant with the activation of autophagy. Furthermore, OTUB1 interacted with the P62 protein and stabilized its expression by deubiquitinating it, thereby inhibiting autophagy-dependent ferroptosis and promoting myogenesis. All of these findings demonstrate the critical role that OTUB1 plays in controlling ferroptosis, and we suggest that focusing on the OTUB1-P62 axis may be a useful tactic in the treatment and prevention of disorders involving the skeletal muscle.


Assuntos
Autofagia , Diferenciação Celular , Cisteína Endopeptidases , Ferroptose , Desenvolvimento Muscular , Fibras Musculares Esqueléticas , Mioblastos , Animais , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Ferroptose/genética , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/genética , Mioblastos/metabolismo , Mioblastos/citologia , Linhagem Celular , Enzimas Desubiquitinantes/metabolismo , Enzimas Desubiquitinantes/genética , Ubiquitinação , Humanos , Proteína Sequestossoma-1/metabolismo , Proteína Sequestossoma-1/genética
8.
J Chromatogr A ; 1730: 465140, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38986401

RESUMO

In this work, a novel polyaniline-modified magnetic microporous organic network (MMON-PANI) composite was fabricated for effective magnetic solid phase extraction (MSPE) of five typical nonsteroidal anti-inflammatory drugs (NSAIDs) from animal-derived food samples before high performance liquid chromatography (HPLC) detection. The core-shell sea urchin shaped MMON-PANI integrates the merits of Fe3O4, MON, and PANI, exhibiting large specific surface area, rapid magnetic responsiveness, good stability, and multiple binding sites to NSAIDs. Convenient and effective extraction of trace NSAIDs from chicken, beef and pork samples is realized on MMON-PANI via the synergetic π-π, hydrogen bonding, hydrophobic, and electrostatic interactions. Under optimal conditions, the MMON-PANI-MSPE-HPLC-UV method exhibits wide linear ranges (0.2-1000 µg L-1), low limits of detection (0.07-1.7 µg L-1), good precisions (intraday and inter-day RSDs < 5.4 %, n = 3), large enrichment factors (98.6-99.9), and less adsorbent consumption (3 mg). The extraction mechanism and selectivity of MMON-PANI are also evaluated in detail. This work proves the incorporation of PANI onto MMON is an efficient way to promote NSAIDs enrichment and provides a new strategy to synthesize multifunctional MON-based composites in sample pretreatment.


Assuntos
Compostos de Anilina , Anti-Inflamatórios não Esteroides , Extração em Fase Sólida , Compostos de Anilina/química , Animais , Anti-Inflamatórios não Esteroides/isolamento & purificação , Anti-Inflamatórios não Esteroides/análise , Anti-Inflamatórios não Esteroides/química , Extração em Fase Sólida/métodos , Cromatografia Líquida de Alta Pressão/métodos , Limite de Detecção , Suínos , Galinhas , Bovinos , Adsorção , Carne/análise , Porosidade , Reprodutibilidade dos Testes
9.
J Hazard Mater ; 476: 135162, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39002482

RESUMO

Iron oxide @ biochar (FeO/C) promotes bacterial growth and facilitates electron transfer, thereby effectively promoting malathion degradation by Shewanella oneidensis MR-1 (S. oneidensis MR-1). This study elucidated the underlying mechanism of FeO/C-enhanced malathion degradation by S. oneidensis MR-1 through a combination of metabolomics and proteomics analysis. The kinetic fitting results from the degradation experiment indicated that 0.1 g/L FeO/C exerted the most significant enhancement effect on malathion degradation by S. oneidensis MR-1. Observations from Scanning Electron Microscopy and Laser Scanning Confocal Microscopy, along with physiological and biochemical analysis, showed that FeO/C enhanced the growth and oxidative response of S. oneidensis MR-1 under malathion stress. In addition, metabolomics and proteomics analysis revealed an increase in certain electron transfer related metabolites, such as coenzymes, and the upregulation of proteins, including coenzyme A, sdhD, and petC. Overall, spectroscopic analysis suggested that Fe2+, which was reduced from Fe3+ by S. oneidensis MR-1 in FeO/C, promoted electron transfer in S. oneidensis MR-1 to enhance the degradation of malathion. This study offers enhanced strategies for efficient removal of malathion contaminants.


Assuntos
Compostos Férricos , Malation , Metabolômica , Proteômica , Shewanella , Malation/metabolismo , Shewanella/metabolismo , Shewanella/efeitos dos fármacos , Compostos Férricos/metabolismo , Compostos Férricos/química , Biodegradação Ambiental , Inseticidas/metabolismo , Inseticidas/química , Proteínas de Bactérias/metabolismo
10.
Neuropharmacology ; 258: 110090, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39048031

RESUMO

Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, which is characterized by the accumulation and aggregation of amyloid in brain. Neuronostatin (NST) is an endogenous peptide hormone that participates in many fundamental neuronal processes. However, the metabolism and function of NST in neurons of AD mice are not known. In this study, by combining the structural analyses, primary cultures, knockout cells, and various assessments, the behavior, histopathology, brain-wide expression and cellular signaling pathways in the APP/PS1 mice were investigated. It was found that NST directly bound to GPR107, which was primarily expressed in neurons. NST modulated the neuronal survivability and neurite outgrowth induced by Aß via GPR107 in neurons. Intracerebroventricular (i.c.v.) administration of NST attenuated learning and memory abilities, reduced the synaptic protein levels of hippocampus, but improved amyloid plaques in the cortex and hippocampus of APP/PS1 mice. NST modulated glucose metabolism of hypothalamus-hippocampus-cortex axis in APP/PS1 mice and decreased ATP levels via the regulation of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) in response to Aß, suppressed energetic metabolism, and mitochondrial function in neurons via GPR107/protein kinase A (PKA) signaling pathway. In summary, our findings suggest that NST regulates neuronal function and brain energetic metabolism in AD mice via the GPR107/PKA signaling pathway, which can be a promising target for the treatment of AD.


Assuntos
Doença de Alzheimer , Metabolismo Energético , Camundongos Transgênicos , Neurônios , Receptores Acoplados a Proteínas G , Animais , Doença de Alzheimer/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Camundongos , Hormônios Peptídicos/metabolismo , Hormônios Peptídicos/farmacologia , Camundongos Endogâmicos C57BL , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Células Cultivadas , Masculino , Humanos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo
11.
J Am Chem Soc ; 146(31): 21320-21334, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39058278

RESUMO

The high-entropy silicon anodes are attractive for enhancing electronic and Li-ionic conductivity while mitigating volume effects for advanced Li-ion batteries (LIBs), but are plagued by the complicated elements screening process. Inspired by the resemblances in the structure between sphalerite and diamond, we have selected sphalerite-structured SiP with metallic conductivity as the parent phase for exploring the element screening of high-entropy silicon-based anodes. The inclusion of the Zn in the sphalerite structure is crucial for improving the structural stability and Li-storage capacity. Within the same group, Li-storage performance is significantly improved with increasing atomic number in the order of BZnSiP3 < AlZnSiP3 < GaZnSiP3 < InZnSiP3. Thus, InZnSiP3-based electrodes achieved a high capacity of 719 mA h g-1 even after 1,500 cycles at 2,000 mA g-1, and a high-rate capacity of 725 mA h g-1 at 10,000 mA g-1, owing to its superior lithium-ion affinity, faster electronic conduction and lithium-ion diffusion, higher Li-storage capacity and reversibility, and mechanical integrity than others. Additionally, the incorporation of elements with larger atomic sizes leads to greater lattice distortion and more defects, further facilitating mass and charge transport. Following these screening rules, high-entropy disordered-cation silicon-based compounds such as GaCuSnInZnSiP6, GaCu(or Sn)InZnSiP5, and CuSnInZnSiP5, as well as high-entropy compounds with mixed-cation and -anion compositions, such as InZnSiPSeTe and InZnSiP2Se(or Te), are synthesized, demonstrating improved Li-storage performance with metallic conductivity. The phase formation mechanism of these compounds is attributed to the negative formation energies arising from elevated entropy.

12.
Sci Rep ; 14(1): 16711, 2024 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030308

RESUMO

DARS, encoding for aspartyl-tRNA synthetase, is implicated in the pathogenesis of various cancers, including renal cell carcinoma, glioblastoma, colon cancer, and gastric cancer. Its role in BCR/ABL1-negative myeloproliferative neoplasms (MPNs), however, remains unexplored. This study aimed to elucidate the expression of DARS in patients with MPNs (PV 23, ET 19, PMF 16) through immunohistochemical analysis and to examine the profiles of circulating immune cells and cytokines using flow cytometry. Our findings indicate a significant overexpression of DARS in all MPNs subtypes at the protein level compared to controls (P < 0.05). Notably, elevated DARS expression was linked to splenomegaly in MPNs patients. The expression of DARS showed a negative correlation with CD4+ T cells (R = - 0.451, P = 0.0004) and CD4+ T/CD8+ T cell ratio (R = - 0.3758, P = 0.0040), as well as with CD68+ tumor-associated macrophages (R = 0.4037, P = 0.0017). Conversely, it was positively correlated with IL-2 (R = 0.5419, P < 0.001), IL-5 (R = 0.3161, P = 0.0166), IL-6 (R = 0.2992, P = 0.0238), and IFN-γ (R = 0.3873, P = 0.0029). These findings underscore a significant association between DARS expression in MPNs patients and specific clinical characteristics, as well as immune cell composition. Further investigation into the interplay between DARS and the immune microenvironment in MPNs could shed light on the underlying mechanisms of MPNs pathogenesis and immune dysregulation.


Assuntos
Proteínas de Fusão bcr-abl , Transtornos Mieloproliferativos , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Transtornos Mieloproliferativos/imunologia , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Idoso , Adulto , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Citocinas/metabolismo
13.
Peptides ; 179: 171271, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39002758

RESUMO

Tirzepatide (LY3298176), a GLP-1 and GIP receptor agonist, is fatty-acid-modified and 39-amino acid linear peptide, which ameliorates learning and memory impairment in diabetic rats. However, the specific molecular mechanism remains unknown. In the present study, we investigated the role of tirzepatide in the neuroprotective effects in Alzheimer's disease (AD) model mice. Tirzepatide was administrated intraperitoneal (i.p.) APP/PS1 mice for 8 weeks with at 10 nmol/kg once-weekly, it significantly decreased the levels of GLP-1R, and GFAP protein expression and amyloid plaques in the cortex, it also lowered neuronal apoptosis induced by amyloid-ß (Aß), but did not affect the anxiety and cognitive function in APP/PS1 mice. Moreover, tirzepatide reduced the blood glucose levels and increased the mRNA expression of GLP-1R, SACF1, ATF4, Glu2A, and Glu2B in the hypothalamus of APP/PS1 mice. Tirzepatide increased the mRNA expression of glucose transporter 1, hexokinase, glucose-6-phosphate dehydrogenase, and phosphofructokinase in the cortex. Lastly, tirzepatide improved the energetic metabolism by regulated reactive oxygen species production and mitochondrial membrane potential caused by Aß, thereby decreasing mitochondrial function and ATP levels in astrocytes through GLP-1R. These results provide valuable insights into the mechanism of brain glucose metabolism and mitochondrial function of tirzepatide, presenting potential strategies for AD treatment.


Assuntos
Doença de Alzheimer , Glucose , Fármacos Neuroprotetores , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Fármacos Neuroprotetores/farmacologia , Glucose/metabolismo , Modelos Animais de Doenças , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Camundongos Transgênicos , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Masculino , Peptídeos beta-Amiloides/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores dos Hormônios Gastrointestinais/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/genética , Fator 4 Ativador da Transcrição
14.
Int Immunopharmacol ; 138: 112598, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38981223

RESUMO

Euphorbia L. is a traditionally used herb and contains many newly identified compounds with novel chemical structures. Euphorbia factor L2 (EFL2), a diterpenoid derived from Euphorbia seeds, is reported to alleviate acute lung injury and arthritis by exerting anti-inflammatory effects. In this study, we aimed to test the therapeutic benefit and mechanisms of EFL2 in NLRP3 inflammasome-mediated gouty models and identified the potential molecular mechanism. A cell-based system was used to test the specific inhibitory effect of EFL2 on NLRP3-related inflammation. The gouty arthritis model and an air pouch inflammation model induced by monosodium urate monohydrate (MSU) crystals were used for in vivo experiments. Nlrp3-/- mice and in vitro studies were used for mechanistic exploration. Virtual molecular docking and biophysical assays were performed to identify the direct binding and regulatory target of EFL2. The inhibitory effect of EFL2 on inflammatory cell infiltration was determined by flow cytometry in vivo. The mechanism by which EFL2 activates the NLRP3 inflammasome signaling pathway was evaluated by immunological experiment and transmission electron microscopy. In vitro, EFL2 specifically reduced NLRP3 inflammasome-mediated IL-1ß production and alleviated MSU crystal-induced arthritis, as well as inflammatory cell infiltration. EFL2 downregulated NF-κB phosphorylation and NLRP3 inflammasome expression by binding to glucocorticoid receptors. Moreover, EFL2 could specifically suppress the lysosome damage-mediated NLRP3 inflammasome activation process. It is expected that this work may be useful to accelerate the development of anti-inflammatory drugs originated from traditional herbs and improve therapeutics in gout and its complications.


Assuntos
Anti-Inflamatórios , Euphorbia , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Humanos , Masculino , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Artrite Gotosa/tratamento farmacológico , Artrite Gotosa/imunologia , Artrite Gotosa/metabolismo , Artrite Gotosa/induzido quimicamente , Modelos Animais de Doenças , Diterpenos/farmacologia , Diterpenos/uso terapêutico , Euphorbia/química , Gota/tratamento farmacológico , Gota/imunologia , Gota/patologia , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ácido Úrico
15.
Front Endocrinol (Lausanne) ; 15: 1398367, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938515

RESUMO

Study Design: Retrospective radiological analysis. Objective: The aim of this study is to evaluate the distribution of bone mineral density (BMD) in lumbar vertebrae using the Hounsfield unit (HU) measurement method and investigate the clinical implications of HU values for assessing lumbar vertebrae BMD. Method: Two hundred and ninety-six patients were retrospectively reviewed and divided into six groups according to age: Group 1(20-29 years old), Group 2 (30-39 years old), Group 3 (40-49 years old), Group 4 (50-59 years old), Group 5 (60-69 years old), Group 6 (70-79 years old). Six different locations from each vertebra of L1-L5 were selected as regions of interest: the anterior, middle and posterior parts of the upper and lower slices of the vertebrae. HU values were measured for the six regions of interest, followed by statistical analysis. Results: The HU values of vertebrae showed a decreasing trend from young patients to elderly patients in Group 1 to Group 5. There was no significant difference in HU values among different vertebrae in the same age group. In all age groups, the HU values of the anterior and posterior part of the vertebral body were significantly different from L1 to L3, with the anterior part of the vertebral body having lower HU values than the posterior part. The HU values of the anterior and posterior part of the vertebral body of L4 and L5 were statistically significant only in Group 5 and Group 6, and the HU values of the anterior part of the vertebral body were lower than those of the posterior part. The HU values of posterior part of L4 and L5 in Group6 were higher than those in Group5. Conclusion: Bone mineral density in the lumbar vertebrae is not uniformly distributed, potentially attributed to varying stress stimuli. The assessment of local HU values in the lumbar spine is of significant importance for surgical treatment.


Assuntos
Densidade Óssea , Vértebras Lombares , Humanos , Vértebras Lombares/diagnóstico por imagem , Densidade Óssea/fisiologia , Pessoa de Meia-Idade , Feminino , Masculino , Estudos Retrospectivos , Adulto , Idoso , Adulto Jovem , Tomografia Computadorizada por Raios X , Osteoporose/diagnóstico por imagem , Absorciometria de Fóton
16.
Animal Model Exp Med ; 7(3): 347-361, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38895818

RESUMO

BACKGROUND: Apolipoprotein E4 (ApoE4) allele is the strongest genetic risk factor for late-onset Alzheimer's disease, and it can aggravate depressive symptoms in non-AD patients. However, the impact of ApoE4 on AD-associated depression-like behaviors and its underlying pathogenic mechanisms remain unclear. METHODS: This study developed a 5xFAD mouse model overexpressing human ApoE4 (E4FAD). Behavioral assessments and synaptic function tests were conducted to explore the effects of ApoE4 on cognition and depression in 5xFAD mice. Changes in peripheral and central lipid metabolism, as well as the levels of serotonin (5-HT) and γ-aminobutyric acid (GABA) neurotransmitters in the prefrontal cortex, were examined. In addition, the protein levels of 24-dehydrocholesterol reductase/glycogen synthase kinase-3 beta/mammalian target of rapamycin (DHCR24/GSK3ß/mTOR) and postsynaptic density protein 95/calmodulin-dependent protein kinase II/brain-derived neurotrophic factor (PSD95/CaMK-II/BDNF) were measured to investigate the molecular mechanism underlying the effects of ApoE4 on AD mice. RESULTS: Compared with 5xFAD mice, E4FAD mice exhibited more severe depression-like behaviors and cognitive impairments. These mice also exhibited increased amyloid-beta deposition in the hippocampus, increased astrocyte numbers, and decreased expression of depression-related neurotransmitters 5-HT and GABA in the prefrontal cortex. Furthermore, lipid metabolism disorders were observed in E4FAD, manifesting as elevated low-density lipoprotein cholesterol and reduced high-density lipoprotein cholesterol in peripheral blood, decreased cholesterol level in the prefrontal cortex, and reduced expression of key enzymes and proteins related to cholesterol synthesis and homeostasis. Abnormal expression of proteins related to the DHCR24/GSK3ß/mTOR and PSD95/CaMK-II/BDNF pathways was also observed. CONCLUSION: This study found that ApoE4 overexpression exacerbates depression-like behaviors in 5xFAD mice and confirmed that ApoE4 reduces cognitive function in these mice. The mechanism may involve the induction of central and peripheral lipid metabolism disorders. Therefore, modulating ApoE expression or function to restore cellular lipid homeostasis may be a promising therapeutic target for AD comorbid with depression. This study also provided a better animal model for studying AD comorbid with depression.


Assuntos
Apolipoproteína E4 , Depressão , Modelos Animais de Doenças , Metabolismo dos Lipídeos , Camundongos Transgênicos , Animais , Depressão/metabolismo , Apolipoproteína E4/genética , Camundongos , Doença de Alzheimer/metabolismo , Masculino , Humanos , Córtex Pré-Frontal/metabolismo , Comportamento Animal
17.
Discov Med ; 36(185): 1289-1297, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38926115

RESUMO

BACKGROUND: Genetic mutations play a crucial role in the development and progression of myelodysplastic syndromes (MDS), impacting the immune microenvironment and influencing the choice of treatment regimen, as well as the efficacy and prognosis of patients. The objective of this study was to examine variations in hematological and immunological characteristics associated with common gene mutations in MDS patients and establish a foundation for the precise treatment of MDS. METHODS: The hematological, immunological, and other clinical features of 71 recently diagnosed MDS patients from January 1, 2019, to July 31, 2023, were retrospectively analyzed. These patients were categorized based on their gene mutations, and the variances in hematological and immunological characteristics among distinct groups were compared. RESULTS: Hematological variances were observed among different gene mutation groups. Specifically, platelet counts in the splicing factor 3B subunit 1 (SF3B1) mutation group were notably higher compared to the wild-type group (p = 0.009). Conversely, in the additional sex combs like 1 (ASXL1) mutation groups, monocyte ratios were significantly elevated in comparison to the wild-type group (p = 0.046), and in the ten-eleven translocation 2 (TET2) mutation group, lymphocyte ratios were significantly lower (p = 0.022). Additionally, the leukocyte (p = 0.005), neutrophil ratio (p = 0.002), and lymphocyte ratio (p = 0.001) were significantly higher in the Runt-related transcription factor 1 (RUNX1) mutation group. Regarding immunological distinctions, the Natural Killer (NK) cell ratio demonstrated a significant increase in the SF3B1 mutation group (p = 0.005). Moreover, the TET2 mutation group exhibited a significantly higher Interleukin-8 (IL-8) level (p = 0.017). In contrast, the U2 small nuclear RNA auxiliary factor 1 (U2AF1) group displayed significantly lower levels of IL-1ß (p = 0.033), IL-10 (p = 0.033), and Tumour Necrosis Factor-α (TNF-α) (p = 0.009). CONCLUSION: Distinct variations exist in the immune microenvironment of MDS associated with different genetic mutations. Further studies are imperative to delve into the underlying mechanisms that drive these differences.


Assuntos
Dioxigenases , Mutação , Síndromes Mielodisplásicas , Fatores de Processamento de RNA , Humanos , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/imunologia , Síndromes Mielodisplásicas/sangue , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Fatores de Processamento de RNA/genética , Estudos Retrospectivos , Adulto , Idoso de 80 Anos ou mais , Proteínas de Ligação a DNA/genética , Fosfoproteínas/genética , Fosfoproteínas/imunologia , Células Matadoras Naturais/imunologia , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Contagem de Plaquetas , Proteínas Repressoras
18.
Toxics ; 12(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38922082

RESUMO

In this study, the degradation system of Shewanella oneidensis MR-1 and goethite was constructed with chlorpyrifos as the target contaminant. The effects of initial pH, contaminant concentration, and temperature on the removal rate of chlorpyrifos during the degradation process were investigated. The experimental conditions were optimized by response surface methodology with a Box-Behnken design (BBD). The results show that the removal rate of chlorpyrifos is 75.71% at pH = 6.86, an initial concentration of 19.18 mg·L-1, and a temperature of 30.71 °C. LC-MS/MS analyses showed that the degradation products were C4H11O3PS, C7H7Cl3NO4P, C9H11Cl2NO3PS, C7H7Cl3NO3PS, C9H11Cl3NO4P, C4H11O2PS, and C5H2Cl3NO. Presumably, the degradation pathways involved are: enzymatic degradation, hydrolysis, dealkylation, desulfur hydrolysis, and dechlorination. The findings of this study demonstrate the efficacy of the goethite/S. oneidensis MR-1 complex system in the removal of chlorpyrifos from water. Consequently, this research contributes to the establishment of a theoretical framework for the microbial remediation of organophosphorus pesticides in aqueous environments.

19.
J Colloid Interface Sci ; 672: 610-617, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38861848

RESUMO

The development of a highly efficient, stable, and low-cost bifunctional catalyst is imperative for facilitating the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). However, significant challenges are involved in extending its applications to rechargeable zinc-air batteries. This study presents a bifunctional catalyst, Zr2ON2@NiFe layered double hydroxide (LDH), that was developed by utilizing a urea-glass route for synthesizing the Zr2ON2 precursor, followed by riveting NiFe LDH nanosheets using a hydrothermal method. Specifically, the vertical distribution of NiFe LDH on the Zr2ON2 surface ensures the maximization of the number of accessible active sites and interfacial catalysis of NiFe LDH. Notably, Zr2ON2@NiFe LDH demonstrates ORR and OER bifunctional electrocatalytic behavior and high stability owing to its heterostructure and composition. Furthermore, a rechargeable zinc-air battery using a Zr2ON2@NiFe LDH electrocatalyst as the air cathode demonstrated a high peak power density (172 mW cm-2) and galvanostatic charge-discharge cycle stability (5 mA cm-2 over 443 h). Thus, this study presents an efficient and cost-effective strategy for the design of bifunctional electrocatalysts.

20.
Eur J Pharm Biopharm ; 201: 114367, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876360

RESUMO

Despite the great potential of starving therapy caused by nanoreactor based on glucose oxidase (GOX) in tumor therapy, efficiency and uncontrolled reaction rates in vivo lead to inevitable toxicity to normal tissues, which seriously hindering their clinical conversion. Herein, a cascade nanoreactor (GOX/Mn/MPDA) was constructed by coating mesoporous polydopamine nanoparticles (MPDA) with MnO2 shell and then depositing GOX into honeycomb-shaped manganese oxide nanostructures to achieve a combination of ferroptosis, photothermal therapy and starving therapy. Upon uptake of nanodrugs to cancer cells, the MnO2 shell would deplete glutathione (GSH) and produce Mn2+, while a large amount of H2O2 generated from the catalytic oxidation of glucose by GOX would accelerate the Fenton-like reaction mediated by Mn2+, producing high toxic •OH. More importantly, the cascade reaction between GOX and MnO2 would be further strengthened by localized hyperthermia caused by irradiated by near-infrared laser (NIR), inducing significant anti-tumor effects in vitro and in vivo. Regarding the effectiveness of tumor treatment in vivo, the tumor inhibition rate achieved an impressive 64.33%. This study provided a new strategy for anti-tumor therapeutic by designing a photothermal-enhanced cascade catalytic nanoreactor.


Assuntos
Ferroptose , Glucose Oxidase , Indóis , Compostos de Manganês , Nanopartículas , Óxidos , Terapia Fototérmica , Polímeros , Terapia Fototérmica/métodos , Compostos de Manganês/química , Animais , Humanos , Ferroptose/efeitos dos fármacos , Ferroptose/fisiologia , Indóis/química , Polímeros/química , Glucose Oxidase/metabolismo , Glucose Oxidase/administração & dosagem , Nanopartículas/química , Camundongos , Óxidos/química , Linhagem Celular Tumoral , Peróxido de Hidrogênio/metabolismo , Camundongos Endogâmicos BALB C , Terapia Combinada/métodos , Feminino , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Camundongos Nus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA