Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Cancer Res ; 8(5): 1834-1844, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35116934

RESUMO

BACKGROUND: Studies have shown that extensive genetic or spatial heterogeneity is present within tumors. The present study explored the influence of heterogeneous cells in the tumor microenvironment (TME) on the sensitivity of EGFR-mutant lung adenocarcinoma cells to EGFR-TKIs and further investigated associated molecular mechanisms. METHODS: Tumor heterogeneity was simulated using transwell co-culture technique with H1975, A549 or MRC-5 cells grown in the upper chambers and PC-9 cells cultured in the bottom chamber. Each co-culture system was grouped based on different proportions of cells in the upper and lower chambers (from 1% to 300%), and each group was subdivided into erlotinib treatment group (erlotinib+) and erlotinib non-treatment group (erlotinib-). The viability of PC-9 cells was analyzed by CCK-8; HGF, IGF-1 and TGF-α were determined by ELISA; MET amplification was detected by qRT-PCR, and the relevant proteins were detected by Western blot. RESULTS: The viability of PC-9 cells increased with increased proportion of A549/PC-9 or MRC-5/PC-9 cells from 1% to 300%. HGF increased with increased proportion of H1975 cells from 1% to 300%. In all three co-culture systems, TGF-α production in the erlotinib+ subgroup was significantly lower than that in erlotinib- subgroup, and phosphorylated AKT protein showed an ascending tendency with the increased proportion of upper chamber cells relative to PC-9 cells from 1% to 300%. H1975 cells could induce MET amplification of PC-9 cells. MRC5 cells inhibited MET amplification. CONCLUSIONS: Tumor heterogeneity partially accounts for the resistance of EGFR-mutant lung adenocarcinoma cells to EGFR-TKIs. The possible mechanisms may be related to AKT signaling pathways activated by growth factors, which are secreted by heterogeneous cells in the TME under the pressure of EGFR-TKIs.

2.
Lung ; 192(6): 997-1004, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25218334

RESUMO

PURPOSE: This study was to evaluate the influence of mtDNA deletion on the lung cancer cells under the conditions of hypoxia or irradiation. METHOD: The treatment conditions of lung cancer cell lines with (A549) and without mtDNA (ρ0A549: obtained by inducing from A549) included 2 h of hypoxia and 4 Gy irradiation (group 1: without treatment; group 2: 2 h of hypoxia; group 3: 4 Gy irradiation; group 4: 2 h of hypoxia plus 4 Gy irradiation). The Human OneArray™ microarray was used to hybridize with the Cy5-labeled aRNA in microarray sample preparation. Differentially expressed genes (DEGs) between the lung cancer cells with and without mtDNA were identified using NOISeq package in R. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed using the online tool of DAVID. RESULT: In the KEGG pathway analysis of down-regulated DEGs, nineteen pathways were simultaneously enriched in the four groups, which were mainly metabolism- and biosynthesis-related pathways. Nine lung cancer-related pathways were enriched in group 4, and more cancer-associated DEGs, such as MYC, MAX, and E2F1 were found in group 4 than in the other groups. CONCLUSION: The mtDNA deletion could inhibit the biosynthesis and metabolism of lung cancer cells and promote the effect of hypoxia and radiation on lung cancer cells. MYC might be the key gene of the cooperation of hypoxia and radiation and MYC, MAX, and E2F1 might play roles in hypoxia- and radiation-induced cell death in lung cancer cells without mtDNA.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral/efeitos da radiação , DNA Mitocondrial/genética , Deleção de Genes , Hipóxia , Radiação Ionizante , Ubiquitina-Proteína Ligases/genética , Estudos de Casos e Controles , Morte Celular/genética , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/fisiopatologia , Análise em Microsséries , Doses de Radiação , Valores de Referência , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...